Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.311.10.1
      1  1.311.10.1       snj /*	$NetBSD: kern_synch.c,v 1.311.10.1 2018/02/26 00:43:23 snj Exp $	*/
      2        1.63   thorpej 
      3        1.63   thorpej /*-
      4       1.260        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
      5       1.260        ad  *    The NetBSD Foundation, Inc.
      6        1.63   thorpej  * All rights reserved.
      7        1.63   thorpej  *
      8        1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      9        1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10       1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11       1.188      yamt  * Daniel Sieger.
     12        1.63   thorpej  *
     13        1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     14        1.63   thorpej  * modification, are permitted provided that the following conditions
     15        1.63   thorpej  * are met:
     16        1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     17        1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     18        1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19        1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20        1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     21        1.63   thorpej  *
     22        1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23        1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24        1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25        1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26        1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27        1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28        1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29        1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30        1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31        1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32        1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     33        1.63   thorpej  */
     34        1.26       cgd 
     35        1.26       cgd /*-
     36        1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37        1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     38        1.26       cgd  * (c) UNIX System Laboratories, Inc.
     39        1.26       cgd  * All or some portions of this file are derived from material licensed
     40        1.26       cgd  * to the University of California by American Telephone and Telegraph
     41        1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42        1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     43        1.26       cgd  *
     44        1.26       cgd  * Redistribution and use in source and binary forms, with or without
     45        1.26       cgd  * modification, are permitted provided that the following conditions
     46        1.26       cgd  * are met:
     47        1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     48        1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     49        1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     50        1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     51        1.26       cgd  *    documentation and/or other materials provided with the distribution.
     52       1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     53        1.26       cgd  *    may be used to endorse or promote products derived from this software
     54        1.26       cgd  *    without specific prior written permission.
     55        1.26       cgd  *
     56        1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57        1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58        1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59        1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60        1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61        1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62        1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63        1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64        1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65        1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66        1.26       cgd  * SUCH DAMAGE.
     67        1.26       cgd  *
     68        1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69        1.26       cgd  */
     70       1.106     lukem 
     71       1.106     lukem #include <sys/cdefs.h>
     72  1.311.10.1       snj __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.311.10.1 2018/02/26 00:43:23 snj Exp $");
     73        1.48       mrg 
     74       1.109      yamt #include "opt_kstack.h"
     75       1.110    briggs #include "opt_perfctrs.h"
     76       1.277    darran #include "opt_dtrace.h"
     77        1.26       cgd 
     78       1.174        ad #define	__MUTEX_PRIVATE
     79       1.174        ad 
     80        1.26       cgd #include <sys/param.h>
     81        1.26       cgd #include <sys/systm.h>
     82        1.26       cgd #include <sys/proc.h>
     83        1.26       cgd #include <sys/kernel.h>
     84       1.111    briggs #if defined(PERFCTRS)
     85       1.110    briggs #include <sys/pmc.h>
     86       1.111    briggs #endif
     87       1.188      yamt #include <sys/cpu.h>
     88       1.290  christos #include <sys/pserialize.h>
     89        1.26       cgd #include <sys/resourcevar.h>
     90        1.55      ross #include <sys/sched.h>
     91       1.179       dsl #include <sys/syscall_stats.h>
     92       1.174        ad #include <sys/sleepq.h>
     93       1.174        ad #include <sys/lockdebug.h>
     94       1.190        ad #include <sys/evcnt.h>
     95       1.199        ad #include <sys/intr.h>
     96       1.207        ad #include <sys/lwpctl.h>
     97       1.209        ad #include <sys/atomic.h>
     98       1.295     njoly #include <sys/syslog.h>
     99        1.47       mrg 
    100        1.47       mrg #include <uvm/uvm_extern.h>
    101        1.47       mrg 
    102       1.231        ad #include <dev/lockstat.h>
    103       1.231        ad 
    104       1.276    darran #include <sys/dtrace_bsd.h>
    105       1.279    darran int                             dtrace_vtime_active=0;
    106       1.276    darran dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    107       1.276    darran 
    108       1.271     rmind static void	sched_unsleep(struct lwp *, bool);
    109       1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    110       1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    111       1.250     rmind static void	resched_cpu(struct lwp *);
    112       1.122   thorpej 
    113       1.174        ad syncobj_t sleep_syncobj = {
    114       1.174        ad 	SOBJ_SLEEPQ_SORTED,
    115       1.174        ad 	sleepq_unsleep,
    116       1.184      yamt 	sleepq_changepri,
    117       1.184      yamt 	sleepq_lendpri,
    118       1.184      yamt 	syncobj_noowner,
    119       1.174        ad };
    120       1.174        ad 
    121       1.174        ad syncobj_t sched_syncobj = {
    122       1.174        ad 	SOBJ_SLEEPQ_SORTED,
    123       1.174        ad 	sched_unsleep,
    124       1.184      yamt 	sched_changepri,
    125       1.184      yamt 	sched_lendpri,
    126       1.184      yamt 	syncobj_noowner,
    127       1.174        ad };
    128       1.122   thorpej 
    129       1.289     rmind /* "Lightning bolt": once a second sleep address. */
    130       1.289     rmind kcondvar_t		lbolt			__cacheline_aligned;
    131       1.223        ad 
    132       1.289     rmind u_int			sched_pstats_ticks	__cacheline_aligned;
    133       1.289     rmind 
    134       1.289     rmind /* Preemption event counters. */
    135       1.289     rmind static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    136       1.289     rmind static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    137       1.289     rmind static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    138       1.231        ad 
    139       1.237     rmind void
    140       1.270      elad synch_init(void)
    141       1.237     rmind {
    142       1.237     rmind 
    143       1.237     rmind 	cv_init(&lbolt, "lbolt");
    144       1.237     rmind 
    145       1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    146       1.237     rmind 	   "kpreempt", "defer: critical section");
    147       1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    148       1.237     rmind 	   "kpreempt", "defer: kernel_lock");
    149       1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    150       1.237     rmind 	   "kpreempt", "immediate");
    151       1.237     rmind }
    152       1.237     rmind 
    153        1.26       cgd /*
    154       1.174        ad  * OBSOLETE INTERFACE
    155       1.174        ad  *
    156       1.255     skrll  * General sleep call.  Suspends the current LWP until a wakeup is
    157       1.255     skrll  * performed on the specified identifier.  The LWP will then be made
    158       1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    159       1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    160        1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    161        1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    162        1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    163        1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    164        1.26       cgd  * call should be interrupted by the signal (return EINTR).
    165        1.26       cgd  */
    166        1.26       cgd int
    167       1.297     rmind tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
    168        1.26       cgd {
    169       1.122   thorpej 	struct lwp *l = curlwp;
    170       1.174        ad 	sleepq_t *sq;
    171       1.244        ad 	kmutex_t *mp;
    172        1.26       cgd 
    173       1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    174       1.272     pooka 	KASSERT(ident != &lbolt);
    175       1.204        ad 
    176       1.174        ad 	if (sleepq_dontsleep(l)) {
    177       1.174        ad 		(void)sleepq_abort(NULL, 0);
    178       1.174        ad 		return 0;
    179        1.26       cgd 	}
    180        1.78  sommerfe 
    181       1.204        ad 	l->l_kpriority = true;
    182       1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    183       1.244        ad 	sleepq_enter(sq, l, mp);
    184       1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    185       1.297     rmind 	return sleepq_block(timo, priority & PCATCH);
    186        1.26       cgd }
    187        1.26       cgd 
    188       1.187        ad int
    189       1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    190       1.187        ad 	kmutex_t *mtx)
    191       1.187        ad {
    192       1.187        ad 	struct lwp *l = curlwp;
    193       1.187        ad 	sleepq_t *sq;
    194       1.244        ad 	kmutex_t *mp;
    195       1.188      yamt 	int error;
    196       1.187        ad 
    197       1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    198       1.272     pooka 	KASSERT(ident != &lbolt);
    199       1.204        ad 
    200       1.187        ad 	if (sleepq_dontsleep(l)) {
    201       1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    202       1.187        ad 		return 0;
    203       1.187        ad 	}
    204       1.187        ad 
    205       1.204        ad 	l->l_kpriority = true;
    206       1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    207       1.244        ad 	sleepq_enter(sq, l, mp);
    208       1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    209       1.187        ad 	mutex_exit(mtx);
    210       1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    211       1.187        ad 
    212       1.187        ad 	if ((priority & PNORELOCK) == 0)
    213       1.187        ad 		mutex_enter(mtx);
    214       1.297     rmind 
    215       1.187        ad 	return error;
    216       1.187        ad }
    217       1.187        ad 
    218        1.26       cgd /*
    219       1.174        ad  * General sleep call for situations where a wake-up is not expected.
    220        1.26       cgd  */
    221       1.174        ad int
    222       1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    223        1.26       cgd {
    224       1.174        ad 	struct lwp *l = curlwp;
    225       1.244        ad 	kmutex_t *mp;
    226       1.174        ad 	sleepq_t *sq;
    227       1.174        ad 	int error;
    228        1.26       cgd 
    229       1.284     pooka 	KASSERT(!(timo == 0 && intr == false));
    230       1.284     pooka 
    231       1.174        ad 	if (sleepq_dontsleep(l))
    232       1.174        ad 		return sleepq_abort(NULL, 0);
    233        1.26       cgd 
    234       1.174        ad 	if (mtx != NULL)
    235       1.174        ad 		mutex_exit(mtx);
    236       1.204        ad 	l->l_kpriority = true;
    237       1.244        ad 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    238       1.244        ad 	sleepq_enter(sq, l, mp);
    239       1.204        ad 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    240       1.188      yamt 	error = sleepq_block(timo, intr);
    241       1.174        ad 	if (mtx != NULL)
    242       1.174        ad 		mutex_enter(mtx);
    243        1.83   thorpej 
    244       1.174        ad 	return error;
    245       1.139        cl }
    246       1.139        cl 
    247        1.26       cgd /*
    248       1.174        ad  * OBSOLETE INTERFACE
    249       1.174        ad  *
    250       1.255     skrll  * Make all LWPs sleeping on the specified identifier runnable.
    251        1.26       cgd  */
    252        1.26       cgd void
    253       1.174        ad wakeup(wchan_t ident)
    254        1.26       cgd {
    255       1.174        ad 	sleepq_t *sq;
    256       1.244        ad 	kmutex_t *mp;
    257        1.83   thorpej 
    258       1.261     rmind 	if (__predict_false(cold))
    259       1.174        ad 		return;
    260        1.83   thorpej 
    261       1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    262       1.244        ad 	sleepq_wake(sq, ident, (u_int)-1, mp);
    263        1.63   thorpej }
    264        1.63   thorpej 
    265        1.63   thorpej /*
    266       1.255     skrll  * General yield call.  Puts the current LWP back on its run queue and
    267       1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    268       1.255     skrll  * current LWP explicitly requests it (eg sched_yield(2)).
    269       1.117  gmcgarry  */
    270       1.117  gmcgarry void
    271       1.117  gmcgarry yield(void)
    272       1.117  gmcgarry {
    273       1.122   thorpej 	struct lwp *l = curlwp;
    274       1.117  gmcgarry 
    275       1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    276       1.174        ad 	lwp_lock(l);
    277       1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    278       1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    279       1.204        ad 	l->l_kpriority = false;
    280       1.188      yamt 	(void)mi_switch(l);
    281       1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    282        1.69   thorpej }
    283        1.69   thorpej 
    284        1.69   thorpej /*
    285       1.255     skrll  * General preemption call.  Puts the current LWP back on its run queue
    286       1.156    rpaulo  * and performs an involuntary context switch.
    287        1.69   thorpej  */
    288        1.69   thorpej void
    289       1.174        ad preempt(void)
    290        1.69   thorpej {
    291       1.122   thorpej 	struct lwp *l = curlwp;
    292        1.69   thorpej 
    293       1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    294       1.174        ad 	lwp_lock(l);
    295       1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    296       1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    297       1.204        ad 	l->l_kpriority = false;
    298       1.174        ad 	l->l_nivcsw++;
    299       1.188      yamt 	(void)mi_switch(l);
    300       1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    301        1.69   thorpej }
    302        1.69   thorpej 
    303       1.234        ad /*
    304       1.234        ad  * Handle a request made by another agent to preempt the current LWP
    305       1.234        ad  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    306       1.234        ad  *
    307       1.234        ad  * Character addresses for lockstat only.
    308       1.234        ad  */
    309       1.231        ad static char	in_critical_section;
    310       1.231        ad static char	kernel_lock_held;
    311       1.231        ad static char	is_softint;
    312       1.262      yamt static char	cpu_kpreempt_enter_fail;
    313       1.231        ad 
    314       1.231        ad bool
    315       1.231        ad kpreempt(uintptr_t where)
    316       1.231        ad {
    317       1.231        ad 	uintptr_t failed;
    318       1.231        ad 	lwp_t *l;
    319       1.264        ad 	int s, dop, lsflag;
    320       1.231        ad 
    321       1.231        ad 	l = curlwp;
    322       1.231        ad 	failed = 0;
    323       1.231        ad 	while ((dop = l->l_dopreempt) != 0) {
    324       1.231        ad 		if (l->l_stat != LSONPROC) {
    325       1.231        ad 			/*
    326       1.231        ad 			 * About to block (or die), let it happen.
    327       1.231        ad 			 * Doesn't really count as "preemption has
    328       1.231        ad 			 * been blocked", since we're going to
    329       1.231        ad 			 * context switch.
    330       1.231        ad 			 */
    331       1.231        ad 			l->l_dopreempt = 0;
    332       1.231        ad 			return true;
    333       1.231        ad 		}
    334       1.231        ad 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    335       1.231        ad 			/* Can't preempt idle loop, don't count as failure. */
    336       1.261     rmind 			l->l_dopreempt = 0;
    337       1.261     rmind 			return true;
    338       1.231        ad 		}
    339       1.231        ad 		if (__predict_false(l->l_nopreempt != 0)) {
    340       1.231        ad 			/* LWP holds preemption disabled, explicitly. */
    341       1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    342       1.234        ad 				kpreempt_ev_crit.ev_count++;
    343       1.231        ad 			}
    344       1.231        ad 			failed = (uintptr_t)&in_critical_section;
    345       1.231        ad 			break;
    346       1.231        ad 		}
    347       1.231        ad 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    348       1.261     rmind 			/* Can't preempt soft interrupts yet. */
    349       1.261     rmind 			l->l_dopreempt = 0;
    350       1.261     rmind 			failed = (uintptr_t)&is_softint;
    351       1.261     rmind 			break;
    352       1.231        ad 		}
    353       1.231        ad 		s = splsched();
    354       1.231        ad 		if (__predict_false(l->l_blcnt != 0 ||
    355       1.231        ad 		    curcpu()->ci_biglock_wanted != NULL)) {
    356       1.231        ad 			/* Hold or want kernel_lock, code is not MT safe. */
    357       1.231        ad 			splx(s);
    358       1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    359       1.234        ad 				kpreempt_ev_klock.ev_count++;
    360       1.231        ad 			}
    361       1.231        ad 			failed = (uintptr_t)&kernel_lock_held;
    362       1.231        ad 			break;
    363       1.231        ad 		}
    364       1.231        ad 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    365       1.231        ad 			/*
    366       1.231        ad 			 * It may be that the IPL is too high.
    367       1.231        ad 			 * kpreempt_enter() can schedule an
    368       1.231        ad 			 * interrupt to retry later.
    369       1.231        ad 			 */
    370       1.231        ad 			splx(s);
    371       1.262      yamt 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
    372       1.231        ad 			break;
    373       1.231        ad 		}
    374       1.231        ad 		/* Do it! */
    375       1.231        ad 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    376       1.234        ad 			kpreempt_ev_immed.ev_count++;
    377       1.231        ad 		}
    378       1.231        ad 		lwp_lock(l);
    379       1.231        ad 		mi_switch(l);
    380       1.231        ad 		l->l_nopreempt++;
    381       1.231        ad 		splx(s);
    382       1.231        ad 
    383       1.231        ad 		/* Take care of any MD cleanup. */
    384       1.231        ad 		cpu_kpreempt_exit(where);
    385       1.231        ad 		l->l_nopreempt--;
    386       1.231        ad 	}
    387       1.231        ad 
    388       1.264        ad 	if (__predict_true(!failed)) {
    389       1.264        ad 		return false;
    390       1.264        ad 	}
    391       1.264        ad 
    392       1.231        ad 	/* Record preemption failure for reporting via lockstat. */
    393       1.264        ad 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    394       1.264        ad 	lsflag = 0;
    395       1.264        ad 	LOCKSTAT_ENTER(lsflag);
    396       1.264        ad 	if (__predict_false(lsflag)) {
    397       1.264        ad 		if (where == 0) {
    398       1.264        ad 			where = (uintptr_t)__builtin_return_address(0);
    399       1.264        ad 		}
    400       1.264        ad 		/* Preemption is on, might recurse, so make it atomic. */
    401       1.264        ad 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    402       1.264        ad 		    (void *)where) == NULL) {
    403       1.264        ad 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    404       1.264        ad 			l->l_pfaillock = failed;
    405       1.231        ad 		}
    406       1.231        ad 	}
    407       1.264        ad 	LOCKSTAT_EXIT(lsflag);
    408       1.264        ad 	return true;
    409       1.231        ad }
    410       1.231        ad 
    411        1.69   thorpej /*
    412       1.231        ad  * Return true if preemption is explicitly disabled.
    413       1.230        ad  */
    414       1.231        ad bool
    415       1.231        ad kpreempt_disabled(void)
    416       1.231        ad {
    417       1.261     rmind 	const lwp_t *l = curlwp;
    418       1.231        ad 
    419       1.231        ad 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    420       1.231        ad 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    421       1.231        ad }
    422       1.230        ad 
    423       1.230        ad /*
    424       1.231        ad  * Disable kernel preemption.
    425       1.230        ad  */
    426       1.230        ad void
    427       1.231        ad kpreempt_disable(void)
    428       1.230        ad {
    429       1.230        ad 
    430       1.231        ad 	KPREEMPT_DISABLE(curlwp);
    431       1.230        ad }
    432       1.230        ad 
    433       1.230        ad /*
    434       1.231        ad  * Reenable kernel preemption.
    435       1.230        ad  */
    436       1.231        ad void
    437       1.231        ad kpreempt_enable(void)
    438       1.230        ad {
    439       1.230        ad 
    440       1.231        ad 	KPREEMPT_ENABLE(curlwp);
    441       1.230        ad }
    442       1.230        ad 
    443       1.230        ad /*
    444       1.188      yamt  * Compute the amount of time during which the current lwp was running.
    445       1.130   nathanw  *
    446       1.188      yamt  * - update l_rtime unless it's an idle lwp.
    447       1.188      yamt  */
    448       1.188      yamt 
    449       1.199        ad void
    450       1.212      yamt updatertime(lwp_t *l, const struct bintime *now)
    451       1.188      yamt {
    452       1.188      yamt 
    453       1.261     rmind 	if (__predict_false(l->l_flag & LW_IDLE))
    454       1.188      yamt 		return;
    455       1.188      yamt 
    456       1.212      yamt 	/* rtime += now - stime */
    457       1.212      yamt 	bintime_add(&l->l_rtime, now);
    458       1.212      yamt 	bintime_sub(&l->l_rtime, &l->l_stime);
    459       1.188      yamt }
    460       1.188      yamt 
    461       1.188      yamt /*
    462       1.245        ad  * Select next LWP from the current CPU to run..
    463       1.245        ad  */
    464       1.245        ad static inline lwp_t *
    465       1.245        ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    466       1.245        ad {
    467       1.245        ad 	lwp_t *newl;
    468       1.245        ad 
    469       1.245        ad 	/*
    470       1.245        ad 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    471       1.245        ad 	 * If no LWP is runnable, select the idle LWP.
    472       1.245        ad 	 *
    473       1.245        ad 	 * Note that spc_lwplock might not necessary be held, and
    474       1.245        ad 	 * new thread would be unlocked after setting the LWP-lock.
    475       1.245        ad 	 */
    476       1.245        ad 	newl = sched_nextlwp();
    477       1.245        ad 	if (newl != NULL) {
    478       1.245        ad 		sched_dequeue(newl);
    479       1.245        ad 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    480       1.274     rmind 		KASSERT(newl->l_cpu == ci);
    481       1.245        ad 		newl->l_stat = LSONPROC;
    482       1.248        ad 		newl->l_pflag |= LP_RUNNING;
    483       1.245        ad 		lwp_setlock(newl, spc->spc_lwplock);
    484       1.245        ad 	} else {
    485       1.245        ad 		newl = ci->ci_data.cpu_idlelwp;
    486       1.245        ad 		newl->l_stat = LSONPROC;
    487       1.248        ad 		newl->l_pflag |= LP_RUNNING;
    488       1.245        ad 	}
    489       1.261     rmind 
    490       1.245        ad 	/*
    491       1.245        ad 	 * Only clear want_resched if there are no pending (slow)
    492       1.245        ad 	 * software interrupts.
    493       1.245        ad 	 */
    494       1.245        ad 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    495       1.245        ad 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    496       1.245        ad 	spc->spc_curpriority = lwp_eprio(newl);
    497       1.245        ad 
    498       1.245        ad 	return newl;
    499       1.245        ad }
    500       1.245        ad 
    501       1.245        ad /*
    502       1.188      yamt  * The machine independent parts of context switch.
    503       1.188      yamt  *
    504       1.188      yamt  * Returns 1 if another LWP was actually run.
    505        1.26       cgd  */
    506       1.122   thorpej int
    507       1.199        ad mi_switch(lwp_t *l)
    508        1.26       cgd {
    509       1.246     rmind 	struct cpu_info *ci;
    510        1.76   thorpej 	struct schedstate_percpu *spc;
    511       1.188      yamt 	struct lwp *newl;
    512       1.174        ad 	int retval, oldspl;
    513       1.212      yamt 	struct bintime bt;
    514       1.199        ad 	bool returning;
    515        1.26       cgd 
    516       1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    517       1.231        ad 	KASSERT(kpreempt_disabled());
    518       1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    519       1.174        ad 
    520       1.174        ad 	kstack_check_magic(l);
    521        1.83   thorpej 
    522       1.212      yamt 	binuptime(&bt);
    523       1.199        ad 
    524       1.304      matt 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    525       1.267      yamt 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    526       1.231        ad 	KASSERT(l->l_cpu == curcpu());
    527       1.196        ad 	ci = l->l_cpu;
    528       1.196        ad 	spc = &ci->ci_schedstate;
    529       1.199        ad 	returning = false;
    530       1.190        ad 	newl = NULL;
    531       1.190        ad 
    532       1.199        ad 	/*
    533       1.199        ad 	 * If we have been asked to switch to a specific LWP, then there
    534       1.199        ad 	 * is no need to inspect the run queues.  If a soft interrupt is
    535       1.199        ad 	 * blocking, then return to the interrupted thread without adjusting
    536       1.199        ad 	 * VM context or its start time: neither have been changed in order
    537       1.199        ad 	 * to take the interrupt.
    538       1.199        ad 	 */
    539       1.190        ad 	if (l->l_switchto != NULL) {
    540       1.204        ad 		if ((l->l_pflag & LP_INTR) != 0) {
    541       1.199        ad 			returning = true;
    542       1.199        ad 			softint_block(l);
    543       1.248        ad 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    544       1.212      yamt 				updatertime(l, &bt);
    545       1.199        ad 		}
    546       1.190        ad 		newl = l->l_switchto;
    547       1.190        ad 		l->l_switchto = NULL;
    548       1.190        ad 	}
    549       1.204        ad #ifndef __HAVE_FAST_SOFTINTS
    550       1.204        ad 	else if (ci->ci_data.cpu_softints != 0) {
    551       1.204        ad 		/* There are pending soft interrupts, so pick one. */
    552       1.204        ad 		newl = softint_picklwp();
    553       1.204        ad 		newl->l_stat = LSONPROC;
    554       1.248        ad 		newl->l_pflag |= LP_RUNNING;
    555       1.204        ad 	}
    556       1.204        ad #endif	/* !__HAVE_FAST_SOFTINTS */
    557       1.190        ad 
    558       1.180       dsl 	/* Count time spent in current system call */
    559       1.199        ad 	if (!returning) {
    560       1.199        ad 		SYSCALL_TIME_SLEEP(l);
    561       1.180       dsl 
    562       1.199        ad 		/*
    563       1.199        ad 		 * XXXSMP If we are using h/w performance counters,
    564       1.199        ad 		 * save context.
    565       1.199        ad 		 */
    566       1.174        ad #if PERFCTRS
    567       1.199        ad 		if (PMC_ENABLED(l->l_proc)) {
    568       1.199        ad 			pmc_save_context(l->l_proc);
    569       1.199        ad 		}
    570       1.199        ad #endif
    571       1.212      yamt 		updatertime(l, &bt);
    572       1.174        ad 	}
    573       1.113  gmcgarry 
    574       1.246     rmind 	/* Lock the runqueue */
    575       1.246     rmind 	KASSERT(l->l_stat != LSRUN);
    576       1.246     rmind 	mutex_spin_enter(spc->spc_mutex);
    577       1.246     rmind 
    578       1.113  gmcgarry 	/*
    579       1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    580       1.113  gmcgarry 	 */
    581       1.246     rmind 	if (l->l_stat == LSONPROC && l != newl) {
    582       1.217        ad 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    583       1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    584       1.188      yamt 			l->l_stat = LSRUN;
    585       1.246     rmind 			lwp_setlock(l, spc->spc_mutex);
    586       1.246     rmind 			sched_enqueue(l, true);
    587       1.285     rmind 			/*
    588       1.285     rmind 			 * Handle migration.  Note that "migrating LWP" may
    589       1.285     rmind 			 * be reset here, if interrupt/preemption happens
    590       1.285     rmind 			 * early in idle LWP.
    591       1.285     rmind 			 */
    592  1.311.10.1       snj 			if (l->l_target_cpu != NULL &&
    593  1.311.10.1       snj 			    (l->l_pflag & LP_BOUND) == 0) {
    594       1.285     rmind 				KASSERT((l->l_pflag & LP_INTR) == 0);
    595       1.246     rmind 				spc->spc_migrating = l;
    596       1.216     rmind 			}
    597       1.246     rmind 		} else
    598       1.188      yamt 			l->l_stat = LSIDL;
    599       1.174        ad 	}
    600       1.174        ad 
    601       1.245        ad 	/* Pick new LWP to run. */
    602       1.190        ad 	if (newl == NULL) {
    603       1.245        ad 		newl = nextlwp(ci, spc);
    604       1.199        ad 	}
    605       1.199        ad 
    606       1.204        ad 	/* Items that must be updated with the CPU locked. */
    607       1.199        ad 	if (!returning) {
    608       1.204        ad 		/* Update the new LWP's start time. */
    609       1.212      yamt 		newl->l_stime = bt;
    610       1.204        ad 
    611       1.199        ad 		/*
    612       1.204        ad 		 * ci_curlwp changes when a fast soft interrupt occurs.
    613       1.204        ad 		 * We use cpu_onproc to keep track of which kernel or
    614       1.204        ad 		 * user thread is running 'underneath' the software
    615       1.204        ad 		 * interrupt.  This is important for time accounting,
    616       1.204        ad 		 * itimers and forcing user threads to preempt (aston).
    617       1.199        ad 		 */
    618       1.204        ad 		ci->ci_data.cpu_onproc = newl;
    619       1.188      yamt 	}
    620       1.188      yamt 
    621       1.241        ad 	/*
    622       1.241        ad 	 * Preemption related tasks.  Must be done with the current
    623       1.241        ad 	 * CPU locked.
    624       1.241        ad 	 */
    625       1.241        ad 	cpu_did_resched(l);
    626       1.231        ad 	l->l_dopreempt = 0;
    627       1.231        ad 	if (__predict_false(l->l_pfailaddr != 0)) {
    628       1.231        ad 		LOCKSTAT_FLAG(lsflag);
    629       1.231        ad 		LOCKSTAT_ENTER(lsflag);
    630       1.231        ad 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    631       1.231        ad 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    632       1.231        ad 		    1, l->l_pfailtime, l->l_pfailaddr);
    633       1.231        ad 		LOCKSTAT_EXIT(lsflag);
    634       1.231        ad 		l->l_pfailtime = 0;
    635       1.231        ad 		l->l_pfaillock = 0;
    636       1.231        ad 		l->l_pfailaddr = 0;
    637       1.231        ad 	}
    638       1.231        ad 
    639       1.188      yamt 	if (l != newl) {
    640       1.188      yamt 		struct lwp *prevlwp;
    641       1.174        ad 
    642       1.209        ad 		/* Release all locks, but leave the current LWP locked */
    643       1.246     rmind 		if (l->l_mutex == spc->spc_mutex) {
    644       1.209        ad 			/*
    645       1.209        ad 			 * Drop spc_lwplock, if the current LWP has been moved
    646       1.209        ad 			 * to the run queue (it is now locked by spc_mutex).
    647       1.209        ad 			 */
    648       1.217        ad 			mutex_spin_exit(spc->spc_lwplock);
    649       1.188      yamt 		} else {
    650       1.209        ad 			/*
    651       1.209        ad 			 * Otherwise, drop the spc_mutex, we are done with the
    652       1.209        ad 			 * run queues.
    653       1.209        ad 			 */
    654       1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    655       1.188      yamt 		}
    656       1.188      yamt 
    657       1.209        ad 		/*
    658       1.253     skrll 		 * Mark that context switch is going to be performed
    659       1.209        ad 		 * for this LWP, to protect it from being switched
    660       1.209        ad 		 * to on another CPU.
    661       1.209        ad 		 */
    662       1.209        ad 		KASSERT(l->l_ctxswtch == 0);
    663       1.209        ad 		l->l_ctxswtch = 1;
    664       1.209        ad 		l->l_ncsw++;
    665       1.267      yamt 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
    666       1.248        ad 		l->l_pflag &= ~LP_RUNNING;
    667       1.209        ad 
    668       1.209        ad 		/*
    669       1.209        ad 		 * Increase the count of spin-mutexes before the release
    670       1.209        ad 		 * of the last lock - we must remain at IPL_SCHED during
    671       1.209        ad 		 * the context switch.
    672       1.209        ad 		 */
    673       1.287      matt 		KASSERTMSG(ci->ci_mtx_count == -1,
    674       1.301     rmind 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
    675       1.301     rmind 		    "(block with spin-mutex held)",
    676       1.291       jym 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    677       1.209        ad 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    678       1.209        ad 		ci->ci_mtx_count--;
    679       1.209        ad 		lwp_unlock(l);
    680       1.209        ad 
    681       1.218        ad 		/* Count the context switch on this CPU. */
    682       1.218        ad 		ci->ci_data.cpu_nswtch++;
    683       1.188      yamt 
    684       1.209        ad 		/* Update status for lwpctl, if present. */
    685       1.209        ad 		if (l->l_lwpctl != NULL)
    686       1.209        ad 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    687       1.209        ad 
    688       1.199        ad 		/*
    689       1.199        ad 		 * Save old VM context, unless a soft interrupt
    690       1.199        ad 		 * handler is blocking.
    691       1.199        ad 		 */
    692       1.199        ad 		if (!returning)
    693       1.199        ad 			pmap_deactivate(l);
    694       1.188      yamt 
    695       1.209        ad 		/*
    696       1.275     skrll 		 * We may need to spin-wait if 'newl' is still
    697       1.209        ad 		 * context switching on another CPU.
    698       1.209        ad 		 */
    699       1.261     rmind 		if (__predict_false(newl->l_ctxswtch != 0)) {
    700       1.209        ad 			u_int count;
    701       1.209        ad 			count = SPINLOCK_BACKOFF_MIN;
    702       1.209        ad 			while (newl->l_ctxswtch)
    703       1.209        ad 				SPINLOCK_BACKOFF(count);
    704       1.209        ad 		}
    705       1.207        ad 
    706       1.276    darran 		/*
    707       1.276    darran 		 * If DTrace has set the active vtime enum to anything
    708       1.276    darran 		 * other than INACTIVE (0), then it should have set the
    709       1.276    darran 		 * function to call.
    710       1.276    darran 		 */
    711       1.278    darran 		if (__predict_false(dtrace_vtime_active)) {
    712       1.276    darran 			(*dtrace_vtime_switch_func)(newl);
    713       1.276    darran 		}
    714       1.276    darran 
    715       1.188      yamt 		/* Switch to the new LWP.. */
    716       1.305   mlelstv #ifdef MULTIPROCESSOR
    717       1.304      matt 		KASSERT(curlwp == ci->ci_curlwp);
    718       1.305   mlelstv #endif
    719       1.304      matt 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    720       1.204        ad 		prevlwp = cpu_switchto(l, newl, returning);
    721       1.207        ad 		ci = curcpu();
    722       1.305   mlelstv #ifdef MULTIPROCESSOR
    723       1.304      matt 		KASSERT(curlwp == ci->ci_curlwp);
    724       1.305   mlelstv #endif
    725       1.304      matt 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
    726       1.304      matt 		    l, curlwp, prevlwp);
    727       1.207        ad 
    728       1.188      yamt 		/*
    729       1.209        ad 		 * Switched away - we have new curlwp.
    730       1.209        ad 		 * Restore VM context and IPL.
    731       1.188      yamt 		 */
    732       1.209        ad 		pmap_activate(l);
    733       1.265     rmind 		uvm_emap_switch(l);
    734       1.288     rmind 		pcu_switchpoint(l);
    735       1.265     rmind 
    736       1.188      yamt 		if (prevlwp != NULL) {
    737       1.209        ad 			/* Normalize the count of the spin-mutexes */
    738       1.209        ad 			ci->ci_mtx_count++;
    739       1.209        ad 			/* Unmark the state of context switch */
    740       1.209        ad 			membar_exit();
    741       1.209        ad 			prevlwp->l_ctxswtch = 0;
    742       1.188      yamt 		}
    743       1.209        ad 
    744       1.209        ad 		/* Update status for lwpctl, if present. */
    745       1.219        ad 		if (l->l_lwpctl != NULL) {
    746       1.209        ad 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    747       1.219        ad 			l->l_lwpctl->lc_pctr++;
    748       1.219        ad 		}
    749       1.174        ad 
    750       1.290  christos 		/* Note trip through cpu_switchto(). */
    751       1.290  christos 		pserialize_switchpoint();
    752       1.290  christos 
    753       1.231        ad 		KASSERT(l->l_cpu == ci);
    754       1.231        ad 		splx(oldspl);
    755       1.300      yamt 		/*
    756       1.300      yamt 		 * note that, unless the caller disabled preemption,
    757       1.300      yamt 		 * we can be preempted at any time after the above splx() call.
    758       1.300      yamt 		 */
    759       1.188      yamt 		retval = 1;
    760       1.188      yamt 	} else {
    761       1.188      yamt 		/* Nothing to do - just unlock and return. */
    762       1.246     rmind 		mutex_spin_exit(spc->spc_mutex);
    763       1.188      yamt 		lwp_unlock(l);
    764       1.122   thorpej 		retval = 0;
    765       1.122   thorpej 	}
    766       1.110    briggs 
    767       1.188      yamt 	KASSERT(l == curlwp);
    768       1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    769       1.188      yamt 
    770       1.110    briggs 	/*
    771       1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    772       1.231        ad 	 * XXXSMP preemption problem.
    773        1.26       cgd 	 */
    774       1.114  gmcgarry #if PERFCTRS
    775       1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    776       1.175  christos 		pmc_restore_context(l->l_proc);
    777       1.166  christos 	}
    778       1.114  gmcgarry #endif
    779       1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    780       1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    781       1.169      yamt 
    782       1.122   thorpej 	return retval;
    783        1.26       cgd }
    784        1.26       cgd 
    785        1.26       cgd /*
    786       1.245        ad  * The machine independent parts of context switch to oblivion.
    787       1.245        ad  * Does not return.  Call with the LWP unlocked.
    788       1.245        ad  */
    789       1.245        ad void
    790       1.245        ad lwp_exit_switchaway(lwp_t *l)
    791       1.245        ad {
    792       1.245        ad 	struct cpu_info *ci;
    793       1.245        ad 	struct lwp *newl;
    794       1.245        ad 	struct bintime bt;
    795       1.245        ad 
    796       1.245        ad 	ci = l->l_cpu;
    797       1.245        ad 
    798       1.245        ad 	KASSERT(kpreempt_disabled());
    799       1.245        ad 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    800       1.245        ad 	KASSERT(ci == curcpu());
    801       1.245        ad 	LOCKDEBUG_BARRIER(NULL, 0);
    802       1.245        ad 
    803       1.245        ad 	kstack_check_magic(l);
    804       1.245        ad 
    805       1.245        ad 	/* Count time spent in current system call */
    806       1.245        ad 	SYSCALL_TIME_SLEEP(l);
    807       1.245        ad 	binuptime(&bt);
    808       1.245        ad 	updatertime(l, &bt);
    809       1.245        ad 
    810       1.245        ad 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    811       1.245        ad 	(void)splsched();
    812       1.245        ad 
    813       1.245        ad 	/*
    814       1.245        ad 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    815       1.245        ad 	 * If no LWP is runnable, select the idle LWP.
    816       1.245        ad 	 *
    817       1.245        ad 	 * Note that spc_lwplock might not necessary be held, and
    818       1.245        ad 	 * new thread would be unlocked after setting the LWP-lock.
    819       1.245        ad 	 */
    820       1.245        ad 	spc_lock(ci);
    821       1.245        ad #ifndef __HAVE_FAST_SOFTINTS
    822       1.245        ad 	if (ci->ci_data.cpu_softints != 0) {
    823       1.245        ad 		/* There are pending soft interrupts, so pick one. */
    824       1.245        ad 		newl = softint_picklwp();
    825       1.245        ad 		newl->l_stat = LSONPROC;
    826       1.248        ad 		newl->l_pflag |= LP_RUNNING;
    827       1.245        ad 	} else
    828       1.245        ad #endif	/* !__HAVE_FAST_SOFTINTS */
    829       1.245        ad 	{
    830       1.245        ad 		newl = nextlwp(ci, &ci->ci_schedstate);
    831       1.245        ad 	}
    832       1.245        ad 
    833       1.245        ad 	/* Update the new LWP's start time. */
    834       1.245        ad 	newl->l_stime = bt;
    835       1.248        ad 	l->l_pflag &= ~LP_RUNNING;
    836       1.245        ad 
    837       1.245        ad 	/*
    838       1.245        ad 	 * ci_curlwp changes when a fast soft interrupt occurs.
    839       1.245        ad 	 * We use cpu_onproc to keep track of which kernel or
    840       1.245        ad 	 * user thread is running 'underneath' the software
    841       1.245        ad 	 * interrupt.  This is important for time accounting,
    842       1.245        ad 	 * itimers and forcing user threads to preempt (aston).
    843       1.245        ad 	 */
    844       1.245        ad 	ci->ci_data.cpu_onproc = newl;
    845       1.245        ad 
    846       1.245        ad 	/*
    847       1.245        ad 	 * Preemption related tasks.  Must be done with the current
    848       1.245        ad 	 * CPU locked.
    849       1.245        ad 	 */
    850       1.245        ad 	cpu_did_resched(l);
    851       1.245        ad 
    852       1.245        ad 	/* Unlock the run queue. */
    853       1.245        ad 	spc_unlock(ci);
    854       1.245        ad 
    855       1.245        ad 	/* Count the context switch on this CPU. */
    856       1.245        ad 	ci->ci_data.cpu_nswtch++;
    857       1.245        ad 
    858       1.245        ad 	/* Update status for lwpctl, if present. */
    859       1.245        ad 	if (l->l_lwpctl != NULL)
    860       1.247        ad 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    861       1.245        ad 
    862       1.245        ad 	/*
    863       1.275     skrll 	 * We may need to spin-wait if 'newl' is still
    864       1.245        ad 	 * context switching on another CPU.
    865       1.245        ad 	 */
    866       1.261     rmind 	if (__predict_false(newl->l_ctxswtch != 0)) {
    867       1.245        ad 		u_int count;
    868       1.245        ad 		count = SPINLOCK_BACKOFF_MIN;
    869       1.245        ad 		while (newl->l_ctxswtch)
    870       1.245        ad 			SPINLOCK_BACKOFF(count);
    871       1.245        ad 	}
    872       1.245        ad 
    873       1.279    darran 	/*
    874       1.279    darran 	 * If DTrace has set the active vtime enum to anything
    875       1.279    darran 	 * other than INACTIVE (0), then it should have set the
    876       1.279    darran 	 * function to call.
    877       1.279    darran 	 */
    878       1.279    darran 	if (__predict_false(dtrace_vtime_active)) {
    879       1.279    darran 		(*dtrace_vtime_switch_func)(newl);
    880       1.279    darran 	}
    881       1.276    darran 
    882       1.245        ad 	/* Switch to the new LWP.. */
    883       1.245        ad 	(void)cpu_switchto(NULL, newl, false);
    884       1.245        ad 
    885       1.251       uwe 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    886       1.245        ad 	/* NOTREACHED */
    887       1.245        ad }
    888       1.245        ad 
    889       1.245        ad /*
    890       1.271     rmind  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    891       1.174        ad  *
    892       1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    893        1.26       cgd  */
    894        1.26       cgd void
    895       1.122   thorpej setrunnable(struct lwp *l)
    896        1.26       cgd {
    897       1.122   thorpej 	struct proc *p = l->l_proc;
    898       1.205        ad 	struct cpu_info *ci;
    899        1.26       cgd 
    900       1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    901       1.229        ad 	KASSERT(mutex_owned(p->p_lock));
    902       1.183        ad 	KASSERT(lwp_locked(l, NULL));
    903       1.205        ad 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    904        1.83   thorpej 
    905       1.122   thorpej 	switch (l->l_stat) {
    906       1.122   thorpej 	case LSSTOP:
    907        1.33   mycroft 		/*
    908        1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    909        1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    910        1.33   mycroft 		 */
    911       1.310  christos 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
    912       1.174        ad 			signotify(l);
    913       1.174        ad 		p->p_nrlwps++;
    914        1.26       cgd 		break;
    915       1.174        ad 	case LSSUSPENDED:
    916       1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    917       1.174        ad 		p->p_nrlwps++;
    918       1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    919       1.122   thorpej 		break;
    920       1.174        ad 	case LSSLEEP:
    921       1.174        ad 		KASSERT(l->l_wchan != NULL);
    922        1.26       cgd 		break;
    923       1.174        ad 	default:
    924       1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    925        1.26       cgd 	}
    926       1.139        cl 
    927       1.174        ad 	/*
    928       1.286     pooka 	 * If the LWP was sleeping, start it again.
    929       1.174        ad 	 */
    930       1.174        ad 	if (l->l_wchan != NULL) {
    931       1.174        ad 		l->l_stat = LSSLEEP;
    932       1.183        ad 		/* lwp_unsleep() will release the lock. */
    933       1.221        ad 		lwp_unsleep(l, true);
    934       1.174        ad 		return;
    935       1.174        ad 	}
    936       1.139        cl 
    937       1.174        ad 	/*
    938       1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    939       1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    940       1.174        ad 	 */
    941       1.248        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
    942       1.174        ad 		l->l_stat = LSONPROC;
    943       1.174        ad 		l->l_slptime = 0;
    944       1.174        ad 		lwp_unlock(l);
    945       1.174        ad 		return;
    946       1.174        ad 	}
    947       1.122   thorpej 
    948       1.174        ad 	/*
    949       1.205        ad 	 * Look for a CPU to run.
    950       1.205        ad 	 * Set the LWP runnable.
    951       1.174        ad 	 */
    952       1.205        ad 	ci = sched_takecpu(l);
    953       1.205        ad 	l->l_cpu = ci;
    954       1.236        ad 	spc_lock(ci);
    955       1.236        ad 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    956       1.188      yamt 	sched_setrunnable(l);
    957       1.174        ad 	l->l_stat = LSRUN;
    958       1.122   thorpej 	l->l_slptime = 0;
    959       1.174        ad 
    960       1.271     rmind 	sched_enqueue(l, false);
    961       1.271     rmind 	resched_cpu(l);
    962       1.271     rmind 	lwp_unlock(l);
    963        1.26       cgd }
    964        1.26       cgd 
    965        1.26       cgd /*
    966       1.174        ad  * suspendsched:
    967       1.174        ad  *
    968       1.266      yamt  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    969       1.174        ad  */
    970        1.94    bouyer void
    971       1.174        ad suspendsched(void)
    972        1.94    bouyer {
    973       1.174        ad 	CPU_INFO_ITERATOR cii;
    974       1.174        ad 	struct cpu_info *ci;
    975       1.122   thorpej 	struct lwp *l;
    976       1.174        ad 	struct proc *p;
    977        1.94    bouyer 
    978        1.94    bouyer 	/*
    979       1.174        ad 	 * We do this by process in order not to violate the locking rules.
    980        1.94    bouyer 	 */
    981       1.228        ad 	mutex_enter(proc_lock);
    982       1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    983       1.229        ad 		mutex_enter(p->p_lock);
    984       1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    985       1.229        ad 			mutex_exit(p->p_lock);
    986        1.94    bouyer 			continue;
    987       1.174        ad 		}
    988       1.174        ad 
    989       1.309  pgoyette 		if (p->p_stat != SSTOP) {
    990       1.309  pgoyette 			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
    991       1.309  pgoyette 				p->p_pptr->p_nstopchild++;
    992       1.309  pgoyette 				p->p_waited = 0;
    993       1.309  pgoyette 			}
    994       1.309  pgoyette 			p->p_stat = SSTOP;
    995       1.309  pgoyette 		}
    996       1.174        ad 
    997       1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    998       1.174        ad 			if (l == curlwp)
    999       1.174        ad 				continue;
   1000       1.174        ad 
   1001       1.174        ad 			lwp_lock(l);
   1002       1.122   thorpej 
   1003        1.97     enami 			/*
   1004       1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
   1005       1.174        ad 			 * when it tries to return to user mode.  We want to
   1006       1.174        ad 			 * try and get to get as many LWPs as possible to
   1007       1.174        ad 			 * the user / kernel boundary, so that they will
   1008       1.174        ad 			 * release any locks that they hold.
   1009        1.97     enami 			 */
   1010       1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1011       1.174        ad 
   1012       1.174        ad 			if (l->l_stat == LSSLEEP &&
   1013       1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
   1014       1.174        ad 				/* setrunnable() will release the lock. */
   1015       1.174        ad 				setrunnable(l);
   1016       1.174        ad 				continue;
   1017       1.174        ad 			}
   1018       1.174        ad 
   1019       1.174        ad 			lwp_unlock(l);
   1020        1.94    bouyer 		}
   1021       1.174        ad 
   1022       1.229        ad 		mutex_exit(p->p_lock);
   1023        1.94    bouyer 	}
   1024       1.228        ad 	mutex_exit(proc_lock);
   1025       1.174        ad 
   1026       1.174        ad 	/*
   1027       1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1028       1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
   1029       1.174        ad 	 */
   1030       1.204        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
   1031       1.204        ad 		spc_lock(ci);
   1032       1.204        ad 		cpu_need_resched(ci, RESCHED_IMMED);
   1033       1.204        ad 		spc_unlock(ci);
   1034       1.204        ad 	}
   1035       1.174        ad }
   1036       1.174        ad 
   1037       1.174        ad /*
   1038       1.174        ad  * sched_unsleep:
   1039       1.174        ad  *
   1040       1.174        ad  *	The is called when the LWP has not been awoken normally but instead
   1041       1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
   1042       1.174        ad  *	it's not a valid action for running or idle LWPs.
   1043       1.174        ad  */
   1044       1.271     rmind static void
   1045       1.221        ad sched_unsleep(struct lwp *l, bool cleanup)
   1046       1.174        ad {
   1047       1.174        ad 
   1048       1.174        ad 	lwp_unlock(l);
   1049       1.174        ad 	panic("sched_unsleep");
   1050       1.174        ad }
   1051       1.174        ad 
   1052       1.250     rmind static void
   1053       1.188      yamt resched_cpu(struct lwp *l)
   1054       1.188      yamt {
   1055       1.274     rmind 	struct cpu_info *ci = l->l_cpu;
   1056       1.188      yamt 
   1057       1.250     rmind 	KASSERT(lwp_locked(l, NULL));
   1058       1.204        ad 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1059       1.188      yamt 		cpu_need_resched(ci, 0);
   1060       1.188      yamt }
   1061       1.188      yamt 
   1062       1.188      yamt static void
   1063       1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
   1064       1.174        ad {
   1065       1.174        ad 
   1066       1.188      yamt 	KASSERT(lwp_locked(l, NULL));
   1067       1.174        ad 
   1068       1.271     rmind 	if (l->l_stat == LSRUN) {
   1069       1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1070       1.204        ad 		sched_dequeue(l);
   1071       1.204        ad 		l->l_priority = pri;
   1072       1.204        ad 		sched_enqueue(l, false);
   1073       1.204        ad 	} else {
   1074       1.174        ad 		l->l_priority = pri;
   1075       1.157      yamt 	}
   1076       1.188      yamt 	resched_cpu(l);
   1077       1.184      yamt }
   1078       1.184      yamt 
   1079       1.188      yamt static void
   1080       1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
   1081       1.184      yamt {
   1082       1.184      yamt 
   1083       1.188      yamt 	KASSERT(lwp_locked(l, NULL));
   1084       1.184      yamt 
   1085       1.271     rmind 	if (l->l_stat == LSRUN) {
   1086       1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1087       1.204        ad 		sched_dequeue(l);
   1088       1.204        ad 		l->l_inheritedprio = pri;
   1089       1.311  christos 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1090       1.204        ad 		sched_enqueue(l, false);
   1091       1.204        ad 	} else {
   1092       1.184      yamt 		l->l_inheritedprio = pri;
   1093       1.311  christos 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1094       1.184      yamt 	}
   1095       1.188      yamt 	resched_cpu(l);
   1096       1.184      yamt }
   1097       1.184      yamt 
   1098       1.184      yamt struct lwp *
   1099       1.184      yamt syncobj_noowner(wchan_t wchan)
   1100       1.184      yamt {
   1101       1.184      yamt 
   1102       1.184      yamt 	return NULL;
   1103       1.151      yamt }
   1104       1.151      yamt 
   1105       1.250     rmind /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1106       1.281     rmind const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1107       1.281     rmind 
   1108       1.281     rmind /*
   1109       1.281     rmind  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1110       1.281     rmind  * 5 second intervals.
   1111       1.281     rmind  */
   1112       1.281     rmind static const fixpt_t cexp[ ] = {
   1113       1.281     rmind 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1114       1.281     rmind 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1115       1.281     rmind 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1116       1.281     rmind };
   1117       1.134      matt 
   1118       1.134      matt /*
   1119       1.188      yamt  * sched_pstats:
   1120       1.188      yamt  *
   1121       1.281     rmind  * => Update process statistics and check CPU resource allocation.
   1122       1.281     rmind  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1123       1.281     rmind  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1124       1.130   nathanw  */
   1125       1.113  gmcgarry void
   1126       1.281     rmind sched_pstats(void)
   1127       1.113  gmcgarry {
   1128       1.281     rmind 	extern struct loadavg averunnable;
   1129       1.281     rmind 	struct loadavg *avg = &averunnable;
   1130       1.249     rmind 	const int clkhz = (stathz != 0 ? stathz : hz);
   1131       1.281     rmind 	static bool backwards = false;
   1132       1.281     rmind 	static u_int lavg_count = 0;
   1133       1.188      yamt 	struct proc *p;
   1134       1.281     rmind 	int nrun;
   1135       1.113  gmcgarry 
   1136       1.188      yamt 	sched_pstats_ticks++;
   1137       1.281     rmind 	if (++lavg_count >= 5) {
   1138       1.281     rmind 		lavg_count = 0;
   1139       1.281     rmind 		nrun = 0;
   1140       1.281     rmind 	}
   1141       1.228        ad 	mutex_enter(proc_lock);
   1142       1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
   1143       1.281     rmind 		struct lwp *l;
   1144       1.281     rmind 		struct rlimit *rlim;
   1145       1.296  dholland 		time_t runtm;
   1146       1.281     rmind 		int sig;
   1147       1.281     rmind 
   1148       1.271     rmind 		/* Increment sleep time (if sleeping), ignore overflow. */
   1149       1.229        ad 		mutex_enter(p->p_lock);
   1150       1.212      yamt 		runtm = p->p_rtime.sec;
   1151       1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1152       1.281     rmind 			fixpt_t lpctcpu;
   1153       1.281     rmind 			u_int lcpticks;
   1154       1.281     rmind 
   1155       1.249     rmind 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1156       1.188      yamt 				continue;
   1157       1.188      yamt 			lwp_lock(l);
   1158       1.212      yamt 			runtm += l->l_rtime.sec;
   1159       1.188      yamt 			l->l_swtime++;
   1160       1.242     rmind 			sched_lwp_stats(l);
   1161       1.281     rmind 
   1162       1.281     rmind 			/* For load average calculation. */
   1163       1.282     rmind 			if (__predict_false(lavg_count == 0) &&
   1164       1.282     rmind 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1165       1.281     rmind 				switch (l->l_stat) {
   1166       1.281     rmind 				case LSSLEEP:
   1167       1.281     rmind 					if (l->l_slptime > 1) {
   1168       1.281     rmind 						break;
   1169       1.281     rmind 					}
   1170       1.281     rmind 				case LSRUN:
   1171       1.281     rmind 				case LSONPROC:
   1172       1.281     rmind 				case LSIDL:
   1173       1.281     rmind 					nrun++;
   1174       1.281     rmind 				}
   1175       1.281     rmind 			}
   1176       1.282     rmind 			lwp_unlock(l);
   1177       1.282     rmind 
   1178       1.282     rmind 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1179       1.282     rmind 			if (l->l_slptime != 0)
   1180       1.282     rmind 				continue;
   1181       1.282     rmind 
   1182       1.282     rmind 			lpctcpu = l->l_pctcpu;
   1183       1.282     rmind 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1184       1.282     rmind 			lpctcpu += ((FSCALE - ccpu) *
   1185       1.282     rmind 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1186       1.282     rmind 			l->l_pctcpu = lpctcpu;
   1187       1.188      yamt 		}
   1188       1.249     rmind 		/* Calculating p_pctcpu only for ps(1) */
   1189       1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1190       1.174        ad 
   1191       1.303  christos 		if (__predict_false(runtm < 0)) {
   1192       1.303  christos 			if (!backwards) {
   1193       1.303  christos 				backwards = true;
   1194       1.303  christos 				printf("WARNING: negative runtime; "
   1195       1.303  christos 				    "monotonic clock has gone backwards\n");
   1196       1.303  christos 			}
   1197       1.303  christos 			mutex_exit(p->p_lock);
   1198       1.303  christos 			continue;
   1199       1.303  christos 		}
   1200       1.303  christos 
   1201       1.188      yamt 		/*
   1202       1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
   1203       1.293       apb 		 * If over the hard limit, kill it with SIGKILL.
   1204       1.293       apb 		 * If over the soft limit, send SIGXCPU and raise
   1205       1.293       apb 		 * the soft limit a little.
   1206       1.188      yamt 		 */
   1207       1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1208       1.188      yamt 		sig = 0;
   1209       1.249     rmind 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1210       1.293       apb 			if (runtm >= rlim->rlim_max) {
   1211       1.188      yamt 				sig = SIGKILL;
   1212       1.293       apb 				log(LOG_NOTICE, "pid %d is killed: %s\n",
   1213       1.293       apb 					p->p_pid, "exceeded RLIMIT_CPU");
   1214       1.293       apb 				uprintf("pid %d, command %s, is killed: %s\n",
   1215       1.293       apb 					p->p_pid, p->p_comm,
   1216       1.293       apb 					"exceeded RLIMIT_CPU");
   1217       1.293       apb 			} else {
   1218       1.188      yamt 				sig = SIGXCPU;
   1219       1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
   1220       1.188      yamt 					rlim->rlim_cur += 5;
   1221       1.188      yamt 			}
   1222       1.188      yamt 		}
   1223       1.229        ad 		mutex_exit(p->p_lock);
   1224       1.303  christos 		if (__predict_false(sig)) {
   1225       1.259     rmind 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1226       1.188      yamt 			psignal(p, sig);
   1227       1.259     rmind 		}
   1228       1.174        ad 	}
   1229       1.228        ad 	mutex_exit(proc_lock);
   1230       1.281     rmind 
   1231       1.281     rmind 	/* Load average calculation. */
   1232       1.281     rmind 	if (__predict_false(lavg_count == 0)) {
   1233       1.281     rmind 		int i;
   1234       1.283    martin 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1235       1.281     rmind 		for (i = 0; i < __arraycount(cexp); i++) {
   1236       1.281     rmind 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1237       1.281     rmind 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1238       1.281     rmind 		}
   1239       1.281     rmind 	}
   1240       1.281     rmind 
   1241       1.281     rmind 	/* Lightning bolt. */
   1242       1.273     pooka 	cv_broadcast(&lbolt);
   1243       1.113  gmcgarry }
   1244