kern_synch.c revision 1.326 1 1.326 ad /* $NetBSD: kern_synch.c,v 1.326 2019/11/23 19:42:52 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.325 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019
5 1.260 ad * The NetBSD Foundation, Inc.
6 1.63 thorpej * All rights reserved.
7 1.63 thorpej *
8 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
9 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 1.188 yamt * Daniel Sieger.
12 1.63 thorpej *
13 1.63 thorpej * Redistribution and use in source and binary forms, with or without
14 1.63 thorpej * modification, are permitted provided that the following conditions
15 1.63 thorpej * are met:
16 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer.
18 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
19 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
20 1.63 thorpej * documentation and/or other materials provided with the distribution.
21 1.63 thorpej *
22 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
33 1.63 thorpej */
34 1.26 cgd
35 1.26 cgd /*-
36 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 1.26 cgd * The Regents of the University of California. All rights reserved.
38 1.26 cgd * (c) UNIX System Laboratories, Inc.
39 1.26 cgd * All or some portions of this file are derived from material licensed
40 1.26 cgd * to the University of California by American Telephone and Telegraph
41 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 1.26 cgd * the permission of UNIX System Laboratories, Inc.
43 1.26 cgd *
44 1.26 cgd * Redistribution and use in source and binary forms, with or without
45 1.26 cgd * modification, are permitted provided that the following conditions
46 1.26 cgd * are met:
47 1.26 cgd * 1. Redistributions of source code must retain the above copyright
48 1.26 cgd * notice, this list of conditions and the following disclaimer.
49 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.26 cgd * notice, this list of conditions and the following disclaimer in the
51 1.26 cgd * documentation and/or other materials provided with the distribution.
52 1.136 agc * 3. Neither the name of the University nor the names of its contributors
53 1.26 cgd * may be used to endorse or promote products derived from this software
54 1.26 cgd * without specific prior written permission.
55 1.26 cgd *
56 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.26 cgd * SUCH DAMAGE.
67 1.26 cgd *
68 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 1.26 cgd */
70 1.106 lukem
71 1.106 lukem #include <sys/cdefs.h>
72 1.326 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.326 2019/11/23 19:42:52 ad Exp $");
73 1.48 mrg
74 1.109 yamt #include "opt_kstack.h"
75 1.277 darran #include "opt_dtrace.h"
76 1.26 cgd
77 1.174 ad #define __MUTEX_PRIVATE
78 1.174 ad
79 1.26 cgd #include <sys/param.h>
80 1.26 cgd #include <sys/systm.h>
81 1.26 cgd #include <sys/proc.h>
82 1.26 cgd #include <sys/kernel.h>
83 1.188 yamt #include <sys/cpu.h>
84 1.290 christos #include <sys/pserialize.h>
85 1.26 cgd #include <sys/resourcevar.h>
86 1.55 ross #include <sys/sched.h>
87 1.179 dsl #include <sys/syscall_stats.h>
88 1.174 ad #include <sys/sleepq.h>
89 1.174 ad #include <sys/lockdebug.h>
90 1.190 ad #include <sys/evcnt.h>
91 1.199 ad #include <sys/intr.h>
92 1.207 ad #include <sys/lwpctl.h>
93 1.209 ad #include <sys/atomic.h>
94 1.295 njoly #include <sys/syslog.h>
95 1.47 mrg
96 1.47 mrg #include <uvm/uvm_extern.h>
97 1.47 mrg
98 1.231 ad #include <dev/lockstat.h>
99 1.231 ad
100 1.276 darran #include <sys/dtrace_bsd.h>
101 1.279 darran int dtrace_vtime_active=0;
102 1.276 darran dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
103 1.276 darran
104 1.271 rmind static void sched_unsleep(struct lwp *, bool);
105 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
106 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
107 1.122 thorpej
108 1.174 ad syncobj_t sleep_syncobj = {
109 1.313 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
110 1.313 ozaki .sobj_unsleep = sleepq_unsleep,
111 1.313 ozaki .sobj_changepri = sleepq_changepri,
112 1.313 ozaki .sobj_lendpri = sleepq_lendpri,
113 1.313 ozaki .sobj_owner = syncobj_noowner,
114 1.174 ad };
115 1.174 ad
116 1.174 ad syncobj_t sched_syncobj = {
117 1.313 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
118 1.313 ozaki .sobj_unsleep = sched_unsleep,
119 1.313 ozaki .sobj_changepri = sched_changepri,
120 1.313 ozaki .sobj_lendpri = sched_lendpri,
121 1.313 ozaki .sobj_owner = syncobj_noowner,
122 1.174 ad };
123 1.122 thorpej
124 1.289 rmind /* "Lightning bolt": once a second sleep address. */
125 1.289 rmind kcondvar_t lbolt __cacheline_aligned;
126 1.223 ad
127 1.289 rmind u_int sched_pstats_ticks __cacheline_aligned;
128 1.289 rmind
129 1.289 rmind /* Preemption event counters. */
130 1.289 rmind static struct evcnt kpreempt_ev_crit __cacheline_aligned;
131 1.289 rmind static struct evcnt kpreempt_ev_klock __cacheline_aligned;
132 1.289 rmind static struct evcnt kpreempt_ev_immed __cacheline_aligned;
133 1.231 ad
134 1.237 rmind void
135 1.270 elad synch_init(void)
136 1.237 rmind {
137 1.237 rmind
138 1.237 rmind cv_init(&lbolt, "lbolt");
139 1.237 rmind
140 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
141 1.237 rmind "kpreempt", "defer: critical section");
142 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
143 1.237 rmind "kpreempt", "defer: kernel_lock");
144 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
145 1.237 rmind "kpreempt", "immediate");
146 1.237 rmind }
147 1.237 rmind
148 1.26 cgd /*
149 1.174 ad * OBSOLETE INTERFACE
150 1.174 ad *
151 1.255 skrll * General sleep call. Suspends the current LWP until a wakeup is
152 1.255 skrll * performed on the specified identifier. The LWP will then be made
153 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
154 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
155 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
156 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
157 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
158 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
159 1.26 cgd * call should be interrupted by the signal (return EINTR).
160 1.26 cgd */
161 1.26 cgd int
162 1.297 rmind tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
163 1.26 cgd {
164 1.122 thorpej struct lwp *l = curlwp;
165 1.174 ad sleepq_t *sq;
166 1.244 ad kmutex_t *mp;
167 1.26 cgd
168 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
169 1.272 pooka KASSERT(ident != &lbolt);
170 1.204 ad
171 1.174 ad if (sleepq_dontsleep(l)) {
172 1.174 ad (void)sleepq_abort(NULL, 0);
173 1.174 ad return 0;
174 1.26 cgd }
175 1.78 sommerfe
176 1.204 ad l->l_kpriority = true;
177 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
178 1.244 ad sleepq_enter(sq, l, mp);
179 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
180 1.297 rmind return sleepq_block(timo, priority & PCATCH);
181 1.26 cgd }
182 1.26 cgd
183 1.187 ad int
184 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
185 1.187 ad kmutex_t *mtx)
186 1.187 ad {
187 1.187 ad struct lwp *l = curlwp;
188 1.187 ad sleepq_t *sq;
189 1.244 ad kmutex_t *mp;
190 1.188 yamt int error;
191 1.187 ad
192 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
193 1.272 pooka KASSERT(ident != &lbolt);
194 1.204 ad
195 1.187 ad if (sleepq_dontsleep(l)) {
196 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
197 1.187 ad return 0;
198 1.187 ad }
199 1.187 ad
200 1.204 ad l->l_kpriority = true;
201 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
202 1.244 ad sleepq_enter(sq, l, mp);
203 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
204 1.187 ad mutex_exit(mtx);
205 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
206 1.187 ad
207 1.187 ad if ((priority & PNORELOCK) == 0)
208 1.187 ad mutex_enter(mtx);
209 1.297 rmind
210 1.187 ad return error;
211 1.187 ad }
212 1.187 ad
213 1.26 cgd /*
214 1.174 ad * General sleep call for situations where a wake-up is not expected.
215 1.26 cgd */
216 1.174 ad int
217 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
218 1.26 cgd {
219 1.174 ad struct lwp *l = curlwp;
220 1.244 ad kmutex_t *mp;
221 1.174 ad sleepq_t *sq;
222 1.174 ad int error;
223 1.26 cgd
224 1.284 pooka KASSERT(!(timo == 0 && intr == false));
225 1.284 pooka
226 1.174 ad if (sleepq_dontsleep(l))
227 1.174 ad return sleepq_abort(NULL, 0);
228 1.26 cgd
229 1.174 ad if (mtx != NULL)
230 1.174 ad mutex_exit(mtx);
231 1.204 ad l->l_kpriority = true;
232 1.244 ad sq = sleeptab_lookup(&sleeptab, l, &mp);
233 1.244 ad sleepq_enter(sq, l, mp);
234 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
235 1.188 yamt error = sleepq_block(timo, intr);
236 1.174 ad if (mtx != NULL)
237 1.174 ad mutex_enter(mtx);
238 1.83 thorpej
239 1.174 ad return error;
240 1.139 cl }
241 1.139 cl
242 1.26 cgd /*
243 1.174 ad * OBSOLETE INTERFACE
244 1.174 ad *
245 1.255 skrll * Make all LWPs sleeping on the specified identifier runnable.
246 1.26 cgd */
247 1.26 cgd void
248 1.174 ad wakeup(wchan_t ident)
249 1.26 cgd {
250 1.174 ad sleepq_t *sq;
251 1.244 ad kmutex_t *mp;
252 1.83 thorpej
253 1.261 rmind if (__predict_false(cold))
254 1.174 ad return;
255 1.83 thorpej
256 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
257 1.244 ad sleepq_wake(sq, ident, (u_int)-1, mp);
258 1.63 thorpej }
259 1.63 thorpej
260 1.63 thorpej /*
261 1.255 skrll * General yield call. Puts the current LWP back on its run queue and
262 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
263 1.255 skrll * current LWP explicitly requests it (eg sched_yield(2)).
264 1.117 gmcgarry */
265 1.117 gmcgarry void
266 1.117 gmcgarry yield(void)
267 1.117 gmcgarry {
268 1.122 thorpej struct lwp *l = curlwp;
269 1.117 gmcgarry
270 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
271 1.174 ad lwp_lock(l);
272 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
273 1.188 yamt KASSERT(l->l_stat == LSONPROC);
274 1.325 ad /* Voluntary - ditch kpriority boost. */
275 1.204 ad l->l_kpriority = false;
276 1.188 yamt (void)mi_switch(l);
277 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
278 1.69 thorpej }
279 1.69 thorpej
280 1.69 thorpej /*
281 1.255 skrll * General preemption call. Puts the current LWP back on its run queue
282 1.156 rpaulo * and performs an involuntary context switch.
283 1.69 thorpej */
284 1.69 thorpej void
285 1.174 ad preempt(void)
286 1.69 thorpej {
287 1.122 thorpej struct lwp *l = curlwp;
288 1.69 thorpej
289 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
290 1.174 ad lwp_lock(l);
291 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
292 1.188 yamt KASSERT(l->l_stat == LSONPROC);
293 1.325 ad /* Involuntary - keep kpriority boost. */
294 1.321 mlelstv l->l_pflag |= LP_PREEMPTING;
295 1.320 mlelstv (void)mi_switch(l);
296 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
297 1.69 thorpej }
298 1.69 thorpej
299 1.234 ad /*
300 1.234 ad * Handle a request made by another agent to preempt the current LWP
301 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
302 1.234 ad *
303 1.234 ad * Character addresses for lockstat only.
304 1.234 ad */
305 1.326 ad static char kpreempt_is_disabled;
306 1.231 ad static char kernel_lock_held;
307 1.326 ad static char is_softint_lwp;
308 1.326 ad static char spl_is_raised;
309 1.231 ad
310 1.231 ad bool
311 1.231 ad kpreempt(uintptr_t where)
312 1.231 ad {
313 1.231 ad uintptr_t failed;
314 1.231 ad lwp_t *l;
315 1.264 ad int s, dop, lsflag;
316 1.231 ad
317 1.231 ad l = curlwp;
318 1.231 ad failed = 0;
319 1.231 ad while ((dop = l->l_dopreempt) != 0) {
320 1.231 ad if (l->l_stat != LSONPROC) {
321 1.231 ad /*
322 1.231 ad * About to block (or die), let it happen.
323 1.231 ad * Doesn't really count as "preemption has
324 1.231 ad * been blocked", since we're going to
325 1.231 ad * context switch.
326 1.231 ad */
327 1.325 ad atomic_swap_uint(&l->l_dopreempt, 0);
328 1.231 ad return true;
329 1.231 ad }
330 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
331 1.231 ad /* Can't preempt idle loop, don't count as failure. */
332 1.325 ad atomic_swap_uint(&l->l_dopreempt, 0);
333 1.261 rmind return true;
334 1.231 ad }
335 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
336 1.231 ad /* LWP holds preemption disabled, explicitly. */
337 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
338 1.234 ad kpreempt_ev_crit.ev_count++;
339 1.231 ad }
340 1.326 ad failed = (uintptr_t)&kpreempt_is_disabled;
341 1.231 ad break;
342 1.231 ad }
343 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
344 1.261 rmind /* Can't preempt soft interrupts yet. */
345 1.325 ad atomic_swap_uint(&l->l_dopreempt, 0);
346 1.326 ad failed = (uintptr_t)&is_softint_lwp;
347 1.261 rmind break;
348 1.231 ad }
349 1.231 ad s = splsched();
350 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
351 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
352 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
353 1.231 ad splx(s);
354 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
355 1.234 ad kpreempt_ev_klock.ev_count++;
356 1.231 ad }
357 1.231 ad failed = (uintptr_t)&kernel_lock_held;
358 1.231 ad break;
359 1.231 ad }
360 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
361 1.231 ad /*
362 1.231 ad * It may be that the IPL is too high.
363 1.231 ad * kpreempt_enter() can schedule an
364 1.231 ad * interrupt to retry later.
365 1.231 ad */
366 1.231 ad splx(s);
367 1.326 ad failed = (uintptr_t)&spl_is_raised;
368 1.231 ad break;
369 1.231 ad }
370 1.231 ad /* Do it! */
371 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
372 1.234 ad kpreempt_ev_immed.ev_count++;
373 1.231 ad }
374 1.231 ad lwp_lock(l);
375 1.326 ad l->l_pflag |= LP_PREEMPTING;
376 1.231 ad mi_switch(l);
377 1.231 ad l->l_nopreempt++;
378 1.231 ad splx(s);
379 1.231 ad
380 1.231 ad /* Take care of any MD cleanup. */
381 1.231 ad cpu_kpreempt_exit(where);
382 1.231 ad l->l_nopreempt--;
383 1.231 ad }
384 1.231 ad
385 1.264 ad if (__predict_true(!failed)) {
386 1.264 ad return false;
387 1.264 ad }
388 1.264 ad
389 1.231 ad /* Record preemption failure for reporting via lockstat. */
390 1.264 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
391 1.264 ad lsflag = 0;
392 1.264 ad LOCKSTAT_ENTER(lsflag);
393 1.264 ad if (__predict_false(lsflag)) {
394 1.264 ad if (where == 0) {
395 1.264 ad where = (uintptr_t)__builtin_return_address(0);
396 1.264 ad }
397 1.264 ad /* Preemption is on, might recurse, so make it atomic. */
398 1.264 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
399 1.264 ad (void *)where) == NULL) {
400 1.264 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
401 1.264 ad l->l_pfaillock = failed;
402 1.231 ad }
403 1.231 ad }
404 1.264 ad LOCKSTAT_EXIT(lsflag);
405 1.264 ad return true;
406 1.231 ad }
407 1.231 ad
408 1.69 thorpej /*
409 1.231 ad * Return true if preemption is explicitly disabled.
410 1.230 ad */
411 1.231 ad bool
412 1.231 ad kpreempt_disabled(void)
413 1.231 ad {
414 1.261 rmind const lwp_t *l = curlwp;
415 1.231 ad
416 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
417 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
418 1.231 ad }
419 1.230 ad
420 1.230 ad /*
421 1.231 ad * Disable kernel preemption.
422 1.230 ad */
423 1.230 ad void
424 1.231 ad kpreempt_disable(void)
425 1.230 ad {
426 1.230 ad
427 1.231 ad KPREEMPT_DISABLE(curlwp);
428 1.230 ad }
429 1.230 ad
430 1.230 ad /*
431 1.231 ad * Reenable kernel preemption.
432 1.230 ad */
433 1.231 ad void
434 1.231 ad kpreempt_enable(void)
435 1.230 ad {
436 1.230 ad
437 1.231 ad KPREEMPT_ENABLE(curlwp);
438 1.230 ad }
439 1.230 ad
440 1.230 ad /*
441 1.188 yamt * Compute the amount of time during which the current lwp was running.
442 1.130 nathanw *
443 1.188 yamt * - update l_rtime unless it's an idle lwp.
444 1.188 yamt */
445 1.188 yamt
446 1.199 ad void
447 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
448 1.188 yamt {
449 1.188 yamt
450 1.261 rmind if (__predict_false(l->l_flag & LW_IDLE))
451 1.188 yamt return;
452 1.188 yamt
453 1.212 yamt /* rtime += now - stime */
454 1.212 yamt bintime_add(&l->l_rtime, now);
455 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
456 1.188 yamt }
457 1.188 yamt
458 1.188 yamt /*
459 1.245 ad * Select next LWP from the current CPU to run..
460 1.245 ad */
461 1.245 ad static inline lwp_t *
462 1.245 ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
463 1.245 ad {
464 1.245 ad lwp_t *newl;
465 1.245 ad
466 1.245 ad /*
467 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
468 1.245 ad * If no LWP is runnable, select the idle LWP.
469 1.245 ad *
470 1.245 ad * Note that spc_lwplock might not necessary be held, and
471 1.245 ad * new thread would be unlocked after setting the LWP-lock.
472 1.245 ad */
473 1.245 ad newl = sched_nextlwp();
474 1.245 ad if (newl != NULL) {
475 1.245 ad sched_dequeue(newl);
476 1.245 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
477 1.274 rmind KASSERT(newl->l_cpu == ci);
478 1.245 ad newl->l_stat = LSONPROC;
479 1.248 ad newl->l_pflag |= LP_RUNNING;
480 1.245 ad lwp_setlock(newl, spc->spc_lwplock);
481 1.245 ad } else {
482 1.245 ad newl = ci->ci_data.cpu_idlelwp;
483 1.245 ad newl->l_stat = LSONPROC;
484 1.248 ad newl->l_pflag |= LP_RUNNING;
485 1.245 ad }
486 1.261 rmind
487 1.245 ad /*
488 1.325 ad * Only clear want_resched if there are no pending (slow) software
489 1.325 ad * interrupts. We can do this without an atomic, because no new
490 1.325 ad * LWPs can appear in the queue due to our hold on spc_mutex, and
491 1.325 ad * the update to ci_want_resched will become globally visible before
492 1.325 ad * the release of spc_mutex becomes globally visible.
493 1.245 ad */
494 1.245 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
495 1.245 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
496 1.245 ad spc->spc_curpriority = lwp_eprio(newl);
497 1.245 ad
498 1.245 ad return newl;
499 1.245 ad }
500 1.245 ad
501 1.245 ad /*
502 1.188 yamt * The machine independent parts of context switch.
503 1.188 yamt *
504 1.188 yamt * Returns 1 if another LWP was actually run.
505 1.26 cgd */
506 1.122 thorpej int
507 1.199 ad mi_switch(lwp_t *l)
508 1.26 cgd {
509 1.246 rmind struct cpu_info *ci;
510 1.76 thorpej struct schedstate_percpu *spc;
511 1.188 yamt struct lwp *newl;
512 1.174 ad int retval, oldspl;
513 1.212 yamt struct bintime bt;
514 1.199 ad bool returning;
515 1.26 cgd
516 1.188 yamt KASSERT(lwp_locked(l, NULL));
517 1.231 ad KASSERT(kpreempt_disabled());
518 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
519 1.174 ad
520 1.174 ad kstack_check_magic(l);
521 1.83 thorpej
522 1.212 yamt binuptime(&bt);
523 1.199 ad
524 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
525 1.267 yamt KASSERT((l->l_pflag & LP_RUNNING) != 0);
526 1.231 ad KASSERT(l->l_cpu == curcpu());
527 1.196 ad ci = l->l_cpu;
528 1.196 ad spc = &ci->ci_schedstate;
529 1.199 ad returning = false;
530 1.190 ad newl = NULL;
531 1.190 ad
532 1.199 ad /*
533 1.199 ad * If we have been asked to switch to a specific LWP, then there
534 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
535 1.199 ad * blocking, then return to the interrupted thread without adjusting
536 1.199 ad * VM context or its start time: neither have been changed in order
537 1.199 ad * to take the interrupt.
538 1.199 ad */
539 1.190 ad if (l->l_switchto != NULL) {
540 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
541 1.199 ad returning = true;
542 1.199 ad softint_block(l);
543 1.248 ad if ((l->l_pflag & LP_TIMEINTR) != 0)
544 1.212 yamt updatertime(l, &bt);
545 1.199 ad }
546 1.190 ad newl = l->l_switchto;
547 1.190 ad l->l_switchto = NULL;
548 1.190 ad }
549 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
550 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
551 1.204 ad /* There are pending soft interrupts, so pick one. */
552 1.204 ad newl = softint_picklwp();
553 1.204 ad newl->l_stat = LSONPROC;
554 1.248 ad newl->l_pflag |= LP_RUNNING;
555 1.204 ad }
556 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
557 1.190 ad
558 1.246 rmind /* Lock the runqueue */
559 1.246 rmind KASSERT(l->l_stat != LSRUN);
560 1.246 rmind mutex_spin_enter(spc->spc_mutex);
561 1.246 rmind
562 1.113 gmcgarry /*
563 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
564 1.113 gmcgarry */
565 1.246 rmind if (l->l_stat == LSONPROC && l != newl) {
566 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
567 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
568 1.188 yamt l->l_stat = LSRUN;
569 1.246 rmind lwp_setlock(l, spc->spc_mutex);
570 1.326 ad sched_enqueue(l);
571 1.285 rmind /*
572 1.285 rmind * Handle migration. Note that "migrating LWP" may
573 1.285 rmind * be reset here, if interrupt/preemption happens
574 1.285 rmind * early in idle LWP.
575 1.285 rmind */
576 1.314 ozaki if (l->l_target_cpu != NULL &&
577 1.314 ozaki (l->l_pflag & LP_BOUND) == 0) {
578 1.285 rmind KASSERT((l->l_pflag & LP_INTR) == 0);
579 1.246 rmind spc->spc_migrating = l;
580 1.216 rmind }
581 1.246 rmind } else
582 1.188 yamt l->l_stat = LSIDL;
583 1.174 ad }
584 1.174 ad
585 1.245 ad /* Pick new LWP to run. */
586 1.190 ad if (newl == NULL) {
587 1.245 ad newl = nextlwp(ci, spc);
588 1.199 ad }
589 1.199 ad
590 1.204 ad /* Items that must be updated with the CPU locked. */
591 1.199 ad if (!returning) {
592 1.326 ad /* Count time spent in current system call */
593 1.326 ad SYSCALL_TIME_SLEEP(l);
594 1.326 ad
595 1.326 ad updatertime(l, &bt);
596 1.326 ad
597 1.204 ad /* Update the new LWP's start time. */
598 1.212 yamt newl->l_stime = bt;
599 1.204 ad
600 1.199 ad /*
601 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
602 1.204 ad * We use cpu_onproc to keep track of which kernel or
603 1.204 ad * user thread is running 'underneath' the software
604 1.204 ad * interrupt. This is important for time accounting,
605 1.204 ad * itimers and forcing user threads to preempt (aston).
606 1.199 ad */
607 1.204 ad ci->ci_data.cpu_onproc = newl;
608 1.188 yamt }
609 1.188 yamt
610 1.241 ad /*
611 1.325 ad * Preemption related tasks. Must be done holding spc_mutex. Clear
612 1.325 ad * l_dopreempt without an atomic - it's only ever set non-zero by
613 1.325 ad * sched_resched_cpu() which also holds spc_mutex, and only ever
614 1.325 ad * cleared by the LWP itself (us) with atomics when not under lock.
615 1.241 ad */
616 1.231 ad l->l_dopreempt = 0;
617 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
618 1.231 ad LOCKSTAT_FLAG(lsflag);
619 1.231 ad LOCKSTAT_ENTER(lsflag);
620 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
621 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
622 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
623 1.231 ad LOCKSTAT_EXIT(lsflag);
624 1.231 ad l->l_pfailtime = 0;
625 1.231 ad l->l_pfaillock = 0;
626 1.231 ad l->l_pfailaddr = 0;
627 1.231 ad }
628 1.231 ad
629 1.188 yamt if (l != newl) {
630 1.188 yamt struct lwp *prevlwp;
631 1.174 ad
632 1.209 ad /* Release all locks, but leave the current LWP locked */
633 1.246 rmind if (l->l_mutex == spc->spc_mutex) {
634 1.209 ad /*
635 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
636 1.209 ad * to the run queue (it is now locked by spc_mutex).
637 1.209 ad */
638 1.217 ad mutex_spin_exit(spc->spc_lwplock);
639 1.188 yamt } else {
640 1.209 ad /*
641 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
642 1.209 ad * run queues.
643 1.209 ad */
644 1.188 yamt mutex_spin_exit(spc->spc_mutex);
645 1.188 yamt }
646 1.188 yamt
647 1.209 ad /*
648 1.253 skrll * Mark that context switch is going to be performed
649 1.209 ad * for this LWP, to protect it from being switched
650 1.209 ad * to on another CPU.
651 1.209 ad */
652 1.209 ad KASSERT(l->l_ctxswtch == 0);
653 1.209 ad l->l_ctxswtch = 1;
654 1.209 ad l->l_ncsw++;
655 1.321 mlelstv if ((l->l_pflag & LP_PREEMPTING) != 0)
656 1.321 mlelstv l->l_nivcsw++;
657 1.267 yamt KASSERT((l->l_pflag & LP_RUNNING) != 0);
658 1.326 ad l->l_pflag &= ~(LP_RUNNING | LP_PREEMPTING);
659 1.209 ad
660 1.209 ad /*
661 1.209 ad * Increase the count of spin-mutexes before the release
662 1.209 ad * of the last lock - we must remain at IPL_SCHED during
663 1.209 ad * the context switch.
664 1.209 ad */
665 1.287 matt KASSERTMSG(ci->ci_mtx_count == -1,
666 1.301 rmind "%s: cpu%u: ci_mtx_count (%d) != -1 "
667 1.301 rmind "(block with spin-mutex held)",
668 1.291 jym __func__, cpu_index(ci), ci->ci_mtx_count);
669 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
670 1.209 ad ci->ci_mtx_count--;
671 1.209 ad lwp_unlock(l);
672 1.209 ad
673 1.218 ad /* Count the context switch on this CPU. */
674 1.218 ad ci->ci_data.cpu_nswtch++;
675 1.188 yamt
676 1.209 ad /* Update status for lwpctl, if present. */
677 1.209 ad if (l->l_lwpctl != NULL)
678 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
679 1.209 ad
680 1.199 ad /*
681 1.199 ad * Save old VM context, unless a soft interrupt
682 1.199 ad * handler is blocking.
683 1.199 ad */
684 1.199 ad if (!returning)
685 1.199 ad pmap_deactivate(l);
686 1.188 yamt
687 1.209 ad /*
688 1.275 skrll * We may need to spin-wait if 'newl' is still
689 1.209 ad * context switching on another CPU.
690 1.209 ad */
691 1.261 rmind if (__predict_false(newl->l_ctxswtch != 0)) {
692 1.209 ad u_int count;
693 1.209 ad count = SPINLOCK_BACKOFF_MIN;
694 1.209 ad while (newl->l_ctxswtch)
695 1.209 ad SPINLOCK_BACKOFF(count);
696 1.209 ad }
697 1.207 ad
698 1.276 darran /*
699 1.276 darran * If DTrace has set the active vtime enum to anything
700 1.276 darran * other than INACTIVE (0), then it should have set the
701 1.276 darran * function to call.
702 1.276 darran */
703 1.278 darran if (__predict_false(dtrace_vtime_active)) {
704 1.276 darran (*dtrace_vtime_switch_func)(newl);
705 1.276 darran }
706 1.276 darran
707 1.318 ozaki /*
708 1.318 ozaki * We must ensure not to come here from inside a read section.
709 1.318 ozaki */
710 1.318 ozaki KASSERT(pserialize_not_in_read_section());
711 1.318 ozaki
712 1.188 yamt /* Switch to the new LWP.. */
713 1.305 mlelstv #ifdef MULTIPROCESSOR
714 1.304 matt KASSERT(curlwp == ci->ci_curlwp);
715 1.305 mlelstv #endif
716 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
717 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
718 1.207 ad ci = curcpu();
719 1.305 mlelstv #ifdef MULTIPROCESSOR
720 1.304 matt KASSERT(curlwp == ci->ci_curlwp);
721 1.305 mlelstv #endif
722 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
723 1.304 matt l, curlwp, prevlwp);
724 1.207 ad
725 1.188 yamt /*
726 1.209 ad * Switched away - we have new curlwp.
727 1.209 ad * Restore VM context and IPL.
728 1.188 yamt */
729 1.209 ad pmap_activate(l);
730 1.288 rmind pcu_switchpoint(l);
731 1.265 rmind
732 1.188 yamt if (prevlwp != NULL) {
733 1.209 ad /* Normalize the count of the spin-mutexes */
734 1.209 ad ci->ci_mtx_count++;
735 1.209 ad /* Unmark the state of context switch */
736 1.209 ad membar_exit();
737 1.209 ad prevlwp->l_ctxswtch = 0;
738 1.188 yamt }
739 1.209 ad
740 1.209 ad /* Update status for lwpctl, if present. */
741 1.219 ad if (l->l_lwpctl != NULL) {
742 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
743 1.219 ad l->l_lwpctl->lc_pctr++;
744 1.219 ad }
745 1.174 ad
746 1.290 christos /* Note trip through cpu_switchto(). */
747 1.290 christos pserialize_switchpoint();
748 1.290 christos
749 1.231 ad KASSERT(l->l_cpu == ci);
750 1.231 ad splx(oldspl);
751 1.300 yamt /*
752 1.300 yamt * note that, unless the caller disabled preemption,
753 1.300 yamt * we can be preempted at any time after the above splx() call.
754 1.300 yamt */
755 1.188 yamt retval = 1;
756 1.188 yamt } else {
757 1.188 yamt /* Nothing to do - just unlock and return. */
758 1.317 bouyer pserialize_switchpoint();
759 1.246 rmind mutex_spin_exit(spc->spc_mutex);
760 1.321 mlelstv l->l_pflag &= ~LP_PREEMPTING;
761 1.188 yamt lwp_unlock(l);
762 1.122 thorpej retval = 0;
763 1.122 thorpej }
764 1.110 briggs
765 1.188 yamt KASSERT(l == curlwp);
766 1.188 yamt KASSERT(l->l_stat == LSONPROC);
767 1.188 yamt
768 1.180 dsl SYSCALL_TIME_WAKEUP(l);
769 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
770 1.169 yamt
771 1.122 thorpej return retval;
772 1.26 cgd }
773 1.26 cgd
774 1.26 cgd /*
775 1.245 ad * The machine independent parts of context switch to oblivion.
776 1.245 ad * Does not return. Call with the LWP unlocked.
777 1.245 ad */
778 1.245 ad void
779 1.245 ad lwp_exit_switchaway(lwp_t *l)
780 1.245 ad {
781 1.245 ad struct cpu_info *ci;
782 1.245 ad struct lwp *newl;
783 1.245 ad struct bintime bt;
784 1.245 ad
785 1.245 ad ci = l->l_cpu;
786 1.245 ad
787 1.245 ad KASSERT(kpreempt_disabled());
788 1.245 ad KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
789 1.245 ad KASSERT(ci == curcpu());
790 1.245 ad LOCKDEBUG_BARRIER(NULL, 0);
791 1.245 ad
792 1.245 ad kstack_check_magic(l);
793 1.245 ad
794 1.245 ad /* Count time spent in current system call */
795 1.245 ad SYSCALL_TIME_SLEEP(l);
796 1.245 ad binuptime(&bt);
797 1.245 ad updatertime(l, &bt);
798 1.245 ad
799 1.245 ad /* Must stay at IPL_SCHED even after releasing run queue lock. */
800 1.245 ad (void)splsched();
801 1.245 ad
802 1.245 ad /*
803 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
804 1.245 ad * If no LWP is runnable, select the idle LWP.
805 1.245 ad *
806 1.245 ad * Note that spc_lwplock might not necessary be held, and
807 1.245 ad * new thread would be unlocked after setting the LWP-lock.
808 1.245 ad */
809 1.245 ad spc_lock(ci);
810 1.245 ad #ifndef __HAVE_FAST_SOFTINTS
811 1.245 ad if (ci->ci_data.cpu_softints != 0) {
812 1.245 ad /* There are pending soft interrupts, so pick one. */
813 1.245 ad newl = softint_picklwp();
814 1.245 ad newl->l_stat = LSONPROC;
815 1.248 ad newl->l_pflag |= LP_RUNNING;
816 1.245 ad } else
817 1.245 ad #endif /* !__HAVE_FAST_SOFTINTS */
818 1.245 ad {
819 1.245 ad newl = nextlwp(ci, &ci->ci_schedstate);
820 1.245 ad }
821 1.245 ad
822 1.245 ad /* Update the new LWP's start time. */
823 1.245 ad newl->l_stime = bt;
824 1.248 ad l->l_pflag &= ~LP_RUNNING;
825 1.245 ad
826 1.245 ad /*
827 1.245 ad * ci_curlwp changes when a fast soft interrupt occurs.
828 1.245 ad * We use cpu_onproc to keep track of which kernel or
829 1.245 ad * user thread is running 'underneath' the software
830 1.245 ad * interrupt. This is important for time accounting,
831 1.245 ad * itimers and forcing user threads to preempt (aston).
832 1.245 ad */
833 1.245 ad ci->ci_data.cpu_onproc = newl;
834 1.245 ad
835 1.245 ad /* Unlock the run queue. */
836 1.245 ad spc_unlock(ci);
837 1.245 ad
838 1.245 ad /* Count the context switch on this CPU. */
839 1.245 ad ci->ci_data.cpu_nswtch++;
840 1.245 ad
841 1.245 ad /* Update status for lwpctl, if present. */
842 1.245 ad if (l->l_lwpctl != NULL)
843 1.247 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
844 1.245 ad
845 1.245 ad /*
846 1.275 skrll * We may need to spin-wait if 'newl' is still
847 1.245 ad * context switching on another CPU.
848 1.245 ad */
849 1.261 rmind if (__predict_false(newl->l_ctxswtch != 0)) {
850 1.245 ad u_int count;
851 1.245 ad count = SPINLOCK_BACKOFF_MIN;
852 1.245 ad while (newl->l_ctxswtch)
853 1.245 ad SPINLOCK_BACKOFF(count);
854 1.245 ad }
855 1.245 ad
856 1.279 darran /*
857 1.279 darran * If DTrace has set the active vtime enum to anything
858 1.279 darran * other than INACTIVE (0), then it should have set the
859 1.279 darran * function to call.
860 1.279 darran */
861 1.279 darran if (__predict_false(dtrace_vtime_active)) {
862 1.279 darran (*dtrace_vtime_switch_func)(newl);
863 1.279 darran }
864 1.276 darran
865 1.245 ad /* Switch to the new LWP.. */
866 1.245 ad (void)cpu_switchto(NULL, newl, false);
867 1.245 ad
868 1.251 uwe for (;;) continue; /* XXX: convince gcc about "noreturn" */
869 1.245 ad /* NOTREACHED */
870 1.245 ad }
871 1.245 ad
872 1.245 ad /*
873 1.271 rmind * setrunnable: change LWP state to be runnable, placing it on the run queue.
874 1.174 ad *
875 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
876 1.26 cgd */
877 1.26 cgd void
878 1.122 thorpej setrunnable(struct lwp *l)
879 1.26 cgd {
880 1.122 thorpej struct proc *p = l->l_proc;
881 1.205 ad struct cpu_info *ci;
882 1.326 ad kmutex_t *oldlock;
883 1.26 cgd
884 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
885 1.324 kamil KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
886 1.229 ad KASSERT(mutex_owned(p->p_lock));
887 1.183 ad KASSERT(lwp_locked(l, NULL));
888 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
889 1.83 thorpej
890 1.122 thorpej switch (l->l_stat) {
891 1.122 thorpej case LSSTOP:
892 1.33 mycroft /*
893 1.33 mycroft * If we're being traced (possibly because someone attached us
894 1.33 mycroft * while we were stopped), check for a signal from the debugger.
895 1.33 mycroft */
896 1.310 christos if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
897 1.174 ad signotify(l);
898 1.174 ad p->p_nrlwps++;
899 1.26 cgd break;
900 1.174 ad case LSSUSPENDED:
901 1.326 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
902 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
903 1.174 ad p->p_nrlwps++;
904 1.192 rmind cv_broadcast(&p->p_lwpcv);
905 1.122 thorpej break;
906 1.174 ad case LSSLEEP:
907 1.174 ad KASSERT(l->l_wchan != NULL);
908 1.26 cgd break;
909 1.326 ad case LSIDL:
910 1.326 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
911 1.326 ad break;
912 1.174 ad default:
913 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
914 1.26 cgd }
915 1.139 cl
916 1.174 ad /*
917 1.286 pooka * If the LWP was sleeping, start it again.
918 1.174 ad */
919 1.174 ad if (l->l_wchan != NULL) {
920 1.174 ad l->l_stat = LSSLEEP;
921 1.183 ad /* lwp_unsleep() will release the lock. */
922 1.221 ad lwp_unsleep(l, true);
923 1.174 ad return;
924 1.174 ad }
925 1.139 cl
926 1.174 ad /*
927 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
928 1.174 ad * about to call mi_switch(), in which case it will yield.
929 1.174 ad */
930 1.248 ad if ((l->l_pflag & LP_RUNNING) != 0) {
931 1.174 ad l->l_stat = LSONPROC;
932 1.174 ad l->l_slptime = 0;
933 1.174 ad lwp_unlock(l);
934 1.174 ad return;
935 1.174 ad }
936 1.122 thorpej
937 1.174 ad /*
938 1.205 ad * Look for a CPU to run.
939 1.205 ad * Set the LWP runnable.
940 1.174 ad */
941 1.205 ad ci = sched_takecpu(l);
942 1.205 ad l->l_cpu = ci;
943 1.236 ad spc_lock(ci);
944 1.326 ad oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
945 1.188 yamt sched_setrunnable(l);
946 1.174 ad l->l_stat = LSRUN;
947 1.122 thorpej l->l_slptime = 0;
948 1.326 ad sched_enqueue(l);
949 1.326 ad sched_resched_lwp(l, true);
950 1.326 ad /* SPC & LWP now unlocked. */
951 1.326 ad mutex_spin_exit(oldlock);
952 1.26 cgd }
953 1.26 cgd
954 1.26 cgd /*
955 1.174 ad * suspendsched:
956 1.174 ad *
957 1.266 yamt * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
958 1.174 ad */
959 1.94 bouyer void
960 1.174 ad suspendsched(void)
961 1.94 bouyer {
962 1.174 ad CPU_INFO_ITERATOR cii;
963 1.174 ad struct cpu_info *ci;
964 1.122 thorpej struct lwp *l;
965 1.174 ad struct proc *p;
966 1.94 bouyer
967 1.94 bouyer /*
968 1.174 ad * We do this by process in order not to violate the locking rules.
969 1.94 bouyer */
970 1.228 ad mutex_enter(proc_lock);
971 1.174 ad PROCLIST_FOREACH(p, &allproc) {
972 1.229 ad mutex_enter(p->p_lock);
973 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
974 1.229 ad mutex_exit(p->p_lock);
975 1.94 bouyer continue;
976 1.174 ad }
977 1.174 ad
978 1.309 pgoyette if (p->p_stat != SSTOP) {
979 1.309 pgoyette if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
980 1.309 pgoyette p->p_pptr->p_nstopchild++;
981 1.309 pgoyette p->p_waited = 0;
982 1.309 pgoyette }
983 1.309 pgoyette p->p_stat = SSTOP;
984 1.309 pgoyette }
985 1.174 ad
986 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
987 1.174 ad if (l == curlwp)
988 1.174 ad continue;
989 1.174 ad
990 1.174 ad lwp_lock(l);
991 1.122 thorpej
992 1.97 enami /*
993 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
994 1.174 ad * when it tries to return to user mode. We want to
995 1.174 ad * try and get to get as many LWPs as possible to
996 1.174 ad * the user / kernel boundary, so that they will
997 1.174 ad * release any locks that they hold.
998 1.97 enami */
999 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1000 1.174 ad
1001 1.174 ad if (l->l_stat == LSSLEEP &&
1002 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1003 1.174 ad /* setrunnable() will release the lock. */
1004 1.174 ad setrunnable(l);
1005 1.174 ad continue;
1006 1.174 ad }
1007 1.174 ad
1008 1.174 ad lwp_unlock(l);
1009 1.94 bouyer }
1010 1.174 ad
1011 1.229 ad mutex_exit(p->p_lock);
1012 1.94 bouyer }
1013 1.228 ad mutex_exit(proc_lock);
1014 1.174 ad
1015 1.174 ad /*
1016 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1017 1.326 ad * They'll trap into the kernel and suspend themselves in userret().
1018 1.326 ad *
1019 1.326 ad * Unusually, we don't hold any other scheduler object locked, which
1020 1.326 ad * would keep preemption off for sched_resched_cpu(), so disable it
1021 1.326 ad * explicitly.
1022 1.174 ad */
1023 1.326 ad kpreempt_disable();
1024 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1025 1.204 ad spc_lock(ci);
1026 1.326 ad sched_resched_cpu(ci, PRI_KERNEL, true);
1027 1.326 ad /* spc now unlocked */
1028 1.204 ad }
1029 1.326 ad kpreempt_enable();
1030 1.174 ad }
1031 1.174 ad
1032 1.174 ad /*
1033 1.174 ad * sched_unsleep:
1034 1.174 ad *
1035 1.174 ad * The is called when the LWP has not been awoken normally but instead
1036 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1037 1.174 ad * it's not a valid action for running or idle LWPs.
1038 1.174 ad */
1039 1.271 rmind static void
1040 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1041 1.174 ad {
1042 1.174 ad
1043 1.174 ad lwp_unlock(l);
1044 1.174 ad panic("sched_unsleep");
1045 1.174 ad }
1046 1.174 ad
1047 1.250 rmind static void
1048 1.326 ad sched_changepri(struct lwp *l, pri_t pri)
1049 1.188 yamt {
1050 1.326 ad struct schedstate_percpu *spc;
1051 1.326 ad struct cpu_info *ci;
1052 1.188 yamt
1053 1.250 rmind KASSERT(lwp_locked(l, NULL));
1054 1.188 yamt
1055 1.326 ad ci = l->l_cpu;
1056 1.326 ad spc = &ci->ci_schedstate;
1057 1.174 ad
1058 1.271 rmind if (l->l_stat == LSRUN) {
1059 1.326 ad KASSERT(lwp_locked(l, spc->spc_mutex));
1060 1.204 ad sched_dequeue(l);
1061 1.204 ad l->l_priority = pri;
1062 1.326 ad sched_enqueue(l);
1063 1.326 ad sched_resched_lwp(l, false);
1064 1.326 ad } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1065 1.326 ad /* On priority drop, only evict realtime LWPs. */
1066 1.326 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
1067 1.326 ad l->l_priority = pri;
1068 1.326 ad spc_lock(ci);
1069 1.326 ad sched_resched_cpu(ci, spc->spc_maxpriority, true);
1070 1.326 ad /* spc now unlocked */
1071 1.204 ad } else {
1072 1.174 ad l->l_priority = pri;
1073 1.157 yamt }
1074 1.184 yamt }
1075 1.184 yamt
1076 1.188 yamt static void
1077 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1078 1.184 yamt {
1079 1.326 ad struct schedstate_percpu *spc;
1080 1.326 ad struct cpu_info *ci;
1081 1.184 yamt
1082 1.188 yamt KASSERT(lwp_locked(l, NULL));
1083 1.184 yamt
1084 1.326 ad ci = l->l_cpu;
1085 1.326 ad spc = &ci->ci_schedstate;
1086 1.326 ad
1087 1.271 rmind if (l->l_stat == LSRUN) {
1088 1.326 ad KASSERT(lwp_locked(l, spc->spc_mutex));
1089 1.204 ad sched_dequeue(l);
1090 1.204 ad l->l_inheritedprio = pri;
1091 1.311 christos l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1092 1.326 ad sched_enqueue(l);
1093 1.326 ad sched_resched_lwp(l, false);
1094 1.326 ad } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1095 1.326 ad /* On priority drop, only evict realtime LWPs. */
1096 1.326 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
1097 1.326 ad l->l_inheritedprio = pri;
1098 1.326 ad l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1099 1.326 ad spc_lock(ci);
1100 1.326 ad sched_resched_cpu(ci, spc->spc_maxpriority, true);
1101 1.326 ad /* spc now unlocked */
1102 1.204 ad } else {
1103 1.184 yamt l->l_inheritedprio = pri;
1104 1.311 christos l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1105 1.184 yamt }
1106 1.184 yamt }
1107 1.184 yamt
1108 1.184 yamt struct lwp *
1109 1.184 yamt syncobj_noowner(wchan_t wchan)
1110 1.184 yamt {
1111 1.184 yamt
1112 1.184 yamt return NULL;
1113 1.151 yamt }
1114 1.151 yamt
1115 1.250 rmind /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1116 1.281 rmind const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1117 1.281 rmind
1118 1.281 rmind /*
1119 1.281 rmind * Constants for averages over 1, 5 and 15 minutes when sampling at
1120 1.281 rmind * 5 second intervals.
1121 1.281 rmind */
1122 1.281 rmind static const fixpt_t cexp[ ] = {
1123 1.281 rmind 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1124 1.281 rmind 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1125 1.281 rmind 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1126 1.281 rmind };
1127 1.134 matt
1128 1.134 matt /*
1129 1.188 yamt * sched_pstats:
1130 1.188 yamt *
1131 1.281 rmind * => Update process statistics and check CPU resource allocation.
1132 1.281 rmind * => Call scheduler-specific hook to eventually adjust LWP priorities.
1133 1.281 rmind * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1134 1.130 nathanw */
1135 1.113 gmcgarry void
1136 1.281 rmind sched_pstats(void)
1137 1.113 gmcgarry {
1138 1.281 rmind extern struct loadavg averunnable;
1139 1.281 rmind struct loadavg *avg = &averunnable;
1140 1.249 rmind const int clkhz = (stathz != 0 ? stathz : hz);
1141 1.281 rmind static bool backwards = false;
1142 1.281 rmind static u_int lavg_count = 0;
1143 1.188 yamt struct proc *p;
1144 1.281 rmind int nrun;
1145 1.113 gmcgarry
1146 1.188 yamt sched_pstats_ticks++;
1147 1.281 rmind if (++lavg_count >= 5) {
1148 1.281 rmind lavg_count = 0;
1149 1.281 rmind nrun = 0;
1150 1.281 rmind }
1151 1.228 ad mutex_enter(proc_lock);
1152 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1153 1.281 rmind struct lwp *l;
1154 1.281 rmind struct rlimit *rlim;
1155 1.296 dholland time_t runtm;
1156 1.281 rmind int sig;
1157 1.281 rmind
1158 1.271 rmind /* Increment sleep time (if sleeping), ignore overflow. */
1159 1.229 ad mutex_enter(p->p_lock);
1160 1.212 yamt runtm = p->p_rtime.sec;
1161 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1162 1.281 rmind fixpt_t lpctcpu;
1163 1.281 rmind u_int lcpticks;
1164 1.281 rmind
1165 1.249 rmind if (__predict_false((l->l_flag & LW_IDLE) != 0))
1166 1.188 yamt continue;
1167 1.188 yamt lwp_lock(l);
1168 1.212 yamt runtm += l->l_rtime.sec;
1169 1.188 yamt l->l_swtime++;
1170 1.242 rmind sched_lwp_stats(l);
1171 1.281 rmind
1172 1.281 rmind /* For load average calculation. */
1173 1.282 rmind if (__predict_false(lavg_count == 0) &&
1174 1.282 rmind (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1175 1.281 rmind switch (l->l_stat) {
1176 1.281 rmind case LSSLEEP:
1177 1.281 rmind if (l->l_slptime > 1) {
1178 1.281 rmind break;
1179 1.281 rmind }
1180 1.323 mrg /* FALLTHROUGH */
1181 1.281 rmind case LSRUN:
1182 1.281 rmind case LSONPROC:
1183 1.281 rmind case LSIDL:
1184 1.281 rmind nrun++;
1185 1.281 rmind }
1186 1.281 rmind }
1187 1.282 rmind lwp_unlock(l);
1188 1.282 rmind
1189 1.282 rmind l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1190 1.282 rmind if (l->l_slptime != 0)
1191 1.282 rmind continue;
1192 1.282 rmind
1193 1.282 rmind lpctcpu = l->l_pctcpu;
1194 1.282 rmind lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1195 1.282 rmind lpctcpu += ((FSCALE - ccpu) *
1196 1.282 rmind (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1197 1.282 rmind l->l_pctcpu = lpctcpu;
1198 1.188 yamt }
1199 1.249 rmind /* Calculating p_pctcpu only for ps(1) */
1200 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1201 1.174 ad
1202 1.303 christos if (__predict_false(runtm < 0)) {
1203 1.303 christos if (!backwards) {
1204 1.303 christos backwards = true;
1205 1.303 christos printf("WARNING: negative runtime; "
1206 1.303 christos "monotonic clock has gone backwards\n");
1207 1.303 christos }
1208 1.303 christos mutex_exit(p->p_lock);
1209 1.303 christos continue;
1210 1.303 christos }
1211 1.303 christos
1212 1.188 yamt /*
1213 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1214 1.293 apb * If over the hard limit, kill it with SIGKILL.
1215 1.293 apb * If over the soft limit, send SIGXCPU and raise
1216 1.293 apb * the soft limit a little.
1217 1.188 yamt */
1218 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1219 1.188 yamt sig = 0;
1220 1.249 rmind if (__predict_false(runtm >= rlim->rlim_cur)) {
1221 1.293 apb if (runtm >= rlim->rlim_max) {
1222 1.188 yamt sig = SIGKILL;
1223 1.312 christos log(LOG_NOTICE,
1224 1.312 christos "pid %d, command %s, is killed: %s\n",
1225 1.312 christos p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1226 1.293 apb uprintf("pid %d, command %s, is killed: %s\n",
1227 1.312 christos p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1228 1.293 apb } else {
1229 1.188 yamt sig = SIGXCPU;
1230 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1231 1.188 yamt rlim->rlim_cur += 5;
1232 1.188 yamt }
1233 1.188 yamt }
1234 1.229 ad mutex_exit(p->p_lock);
1235 1.303 christos if (__predict_false(sig)) {
1236 1.259 rmind KASSERT((p->p_flag & PK_SYSTEM) == 0);
1237 1.188 yamt psignal(p, sig);
1238 1.259 rmind }
1239 1.174 ad }
1240 1.281 rmind
1241 1.281 rmind /* Load average calculation. */
1242 1.281 rmind if (__predict_false(lavg_count == 0)) {
1243 1.281 rmind int i;
1244 1.283 martin CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1245 1.281 rmind for (i = 0; i < __arraycount(cexp); i++) {
1246 1.281 rmind avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1247 1.281 rmind nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1248 1.281 rmind }
1249 1.281 rmind }
1250 1.281 rmind
1251 1.281 rmind /* Lightning bolt. */
1252 1.273 pooka cv_broadcast(&lbolt);
1253 1.325 ad
1254 1.325 ad mutex_exit(proc_lock);
1255 1.113 gmcgarry }
1256