kern_synch.c revision 1.329 1 1.329 ad /* $NetBSD: kern_synch.c,v 1.329 2019/12/06 21:36:10 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.325 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019
5 1.260 ad * The NetBSD Foundation, Inc.
6 1.63 thorpej * All rights reserved.
7 1.63 thorpej *
8 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
9 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 1.188 yamt * Daniel Sieger.
12 1.63 thorpej *
13 1.63 thorpej * Redistribution and use in source and binary forms, with or without
14 1.63 thorpej * modification, are permitted provided that the following conditions
15 1.63 thorpej * are met:
16 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer.
18 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
19 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
20 1.63 thorpej * documentation and/or other materials provided with the distribution.
21 1.63 thorpej *
22 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
33 1.63 thorpej */
34 1.26 cgd
35 1.26 cgd /*-
36 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 1.26 cgd * The Regents of the University of California. All rights reserved.
38 1.26 cgd * (c) UNIX System Laboratories, Inc.
39 1.26 cgd * All or some portions of this file are derived from material licensed
40 1.26 cgd * to the University of California by American Telephone and Telegraph
41 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 1.26 cgd * the permission of UNIX System Laboratories, Inc.
43 1.26 cgd *
44 1.26 cgd * Redistribution and use in source and binary forms, with or without
45 1.26 cgd * modification, are permitted provided that the following conditions
46 1.26 cgd * are met:
47 1.26 cgd * 1. Redistributions of source code must retain the above copyright
48 1.26 cgd * notice, this list of conditions and the following disclaimer.
49 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.26 cgd * notice, this list of conditions and the following disclaimer in the
51 1.26 cgd * documentation and/or other materials provided with the distribution.
52 1.136 agc * 3. Neither the name of the University nor the names of its contributors
53 1.26 cgd * may be used to endorse or promote products derived from this software
54 1.26 cgd * without specific prior written permission.
55 1.26 cgd *
56 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.26 cgd * SUCH DAMAGE.
67 1.26 cgd *
68 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 1.26 cgd */
70 1.106 lukem
71 1.106 lukem #include <sys/cdefs.h>
72 1.329 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.329 2019/12/06 21:36:10 ad Exp $");
73 1.48 mrg
74 1.109 yamt #include "opt_kstack.h"
75 1.277 darran #include "opt_dtrace.h"
76 1.26 cgd
77 1.174 ad #define __MUTEX_PRIVATE
78 1.174 ad
79 1.26 cgd #include <sys/param.h>
80 1.26 cgd #include <sys/systm.h>
81 1.26 cgd #include <sys/proc.h>
82 1.26 cgd #include <sys/kernel.h>
83 1.188 yamt #include <sys/cpu.h>
84 1.290 christos #include <sys/pserialize.h>
85 1.26 cgd #include <sys/resourcevar.h>
86 1.55 ross #include <sys/sched.h>
87 1.179 dsl #include <sys/syscall_stats.h>
88 1.174 ad #include <sys/sleepq.h>
89 1.174 ad #include <sys/lockdebug.h>
90 1.190 ad #include <sys/evcnt.h>
91 1.199 ad #include <sys/intr.h>
92 1.207 ad #include <sys/lwpctl.h>
93 1.209 ad #include <sys/atomic.h>
94 1.295 njoly #include <sys/syslog.h>
95 1.47 mrg
96 1.47 mrg #include <uvm/uvm_extern.h>
97 1.47 mrg
98 1.231 ad #include <dev/lockstat.h>
99 1.231 ad
100 1.276 darran #include <sys/dtrace_bsd.h>
101 1.279 darran int dtrace_vtime_active=0;
102 1.276 darran dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
103 1.276 darran
104 1.271 rmind static void sched_unsleep(struct lwp *, bool);
105 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
106 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
107 1.122 thorpej
108 1.174 ad syncobj_t sleep_syncobj = {
109 1.313 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
110 1.313 ozaki .sobj_unsleep = sleepq_unsleep,
111 1.313 ozaki .sobj_changepri = sleepq_changepri,
112 1.313 ozaki .sobj_lendpri = sleepq_lendpri,
113 1.313 ozaki .sobj_owner = syncobj_noowner,
114 1.174 ad };
115 1.174 ad
116 1.174 ad syncobj_t sched_syncobj = {
117 1.313 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
118 1.313 ozaki .sobj_unsleep = sched_unsleep,
119 1.313 ozaki .sobj_changepri = sched_changepri,
120 1.313 ozaki .sobj_lendpri = sched_lendpri,
121 1.313 ozaki .sobj_owner = syncobj_noowner,
122 1.174 ad };
123 1.122 thorpej
124 1.289 rmind /* "Lightning bolt": once a second sleep address. */
125 1.289 rmind kcondvar_t lbolt __cacheline_aligned;
126 1.223 ad
127 1.289 rmind u_int sched_pstats_ticks __cacheline_aligned;
128 1.289 rmind
129 1.289 rmind /* Preemption event counters. */
130 1.289 rmind static struct evcnt kpreempt_ev_crit __cacheline_aligned;
131 1.289 rmind static struct evcnt kpreempt_ev_klock __cacheline_aligned;
132 1.289 rmind static struct evcnt kpreempt_ev_immed __cacheline_aligned;
133 1.231 ad
134 1.237 rmind void
135 1.270 elad synch_init(void)
136 1.237 rmind {
137 1.237 rmind
138 1.237 rmind cv_init(&lbolt, "lbolt");
139 1.237 rmind
140 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
141 1.237 rmind "kpreempt", "defer: critical section");
142 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
143 1.237 rmind "kpreempt", "defer: kernel_lock");
144 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
145 1.237 rmind "kpreempt", "immediate");
146 1.237 rmind }
147 1.237 rmind
148 1.26 cgd /*
149 1.174 ad * OBSOLETE INTERFACE
150 1.174 ad *
151 1.255 skrll * General sleep call. Suspends the current LWP until a wakeup is
152 1.255 skrll * performed on the specified identifier. The LWP will then be made
153 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
154 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
155 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
156 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
157 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
158 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
159 1.26 cgd * call should be interrupted by the signal (return EINTR).
160 1.26 cgd */
161 1.26 cgd int
162 1.297 rmind tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
163 1.26 cgd {
164 1.122 thorpej struct lwp *l = curlwp;
165 1.174 ad sleepq_t *sq;
166 1.244 ad kmutex_t *mp;
167 1.26 cgd
168 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
169 1.272 pooka KASSERT(ident != &lbolt);
170 1.204 ad
171 1.174 ad if (sleepq_dontsleep(l)) {
172 1.174 ad (void)sleepq_abort(NULL, 0);
173 1.174 ad return 0;
174 1.26 cgd }
175 1.78 sommerfe
176 1.204 ad l->l_kpriority = true;
177 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
178 1.244 ad sleepq_enter(sq, l, mp);
179 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
180 1.297 rmind return sleepq_block(timo, priority & PCATCH);
181 1.26 cgd }
182 1.26 cgd
183 1.187 ad int
184 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
185 1.187 ad kmutex_t *mtx)
186 1.187 ad {
187 1.187 ad struct lwp *l = curlwp;
188 1.187 ad sleepq_t *sq;
189 1.244 ad kmutex_t *mp;
190 1.188 yamt int error;
191 1.187 ad
192 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
193 1.272 pooka KASSERT(ident != &lbolt);
194 1.204 ad
195 1.187 ad if (sleepq_dontsleep(l)) {
196 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
197 1.187 ad return 0;
198 1.187 ad }
199 1.187 ad
200 1.204 ad l->l_kpriority = true;
201 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
202 1.244 ad sleepq_enter(sq, l, mp);
203 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
204 1.187 ad mutex_exit(mtx);
205 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
206 1.187 ad
207 1.187 ad if ((priority & PNORELOCK) == 0)
208 1.187 ad mutex_enter(mtx);
209 1.297 rmind
210 1.187 ad return error;
211 1.187 ad }
212 1.187 ad
213 1.26 cgd /*
214 1.174 ad * General sleep call for situations where a wake-up is not expected.
215 1.26 cgd */
216 1.174 ad int
217 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
218 1.26 cgd {
219 1.174 ad struct lwp *l = curlwp;
220 1.244 ad kmutex_t *mp;
221 1.174 ad sleepq_t *sq;
222 1.174 ad int error;
223 1.26 cgd
224 1.284 pooka KASSERT(!(timo == 0 && intr == false));
225 1.284 pooka
226 1.174 ad if (sleepq_dontsleep(l))
227 1.174 ad return sleepq_abort(NULL, 0);
228 1.26 cgd
229 1.174 ad if (mtx != NULL)
230 1.174 ad mutex_exit(mtx);
231 1.204 ad l->l_kpriority = true;
232 1.244 ad sq = sleeptab_lookup(&sleeptab, l, &mp);
233 1.244 ad sleepq_enter(sq, l, mp);
234 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
235 1.188 yamt error = sleepq_block(timo, intr);
236 1.174 ad if (mtx != NULL)
237 1.174 ad mutex_enter(mtx);
238 1.83 thorpej
239 1.174 ad return error;
240 1.139 cl }
241 1.139 cl
242 1.26 cgd /*
243 1.174 ad * OBSOLETE INTERFACE
244 1.174 ad *
245 1.255 skrll * Make all LWPs sleeping on the specified identifier runnable.
246 1.26 cgd */
247 1.26 cgd void
248 1.174 ad wakeup(wchan_t ident)
249 1.26 cgd {
250 1.174 ad sleepq_t *sq;
251 1.244 ad kmutex_t *mp;
252 1.83 thorpej
253 1.261 rmind if (__predict_false(cold))
254 1.174 ad return;
255 1.83 thorpej
256 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
257 1.244 ad sleepq_wake(sq, ident, (u_int)-1, mp);
258 1.63 thorpej }
259 1.63 thorpej
260 1.63 thorpej /*
261 1.255 skrll * General yield call. Puts the current LWP back on its run queue and
262 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
263 1.255 skrll * current LWP explicitly requests it (eg sched_yield(2)).
264 1.117 gmcgarry */
265 1.117 gmcgarry void
266 1.117 gmcgarry yield(void)
267 1.117 gmcgarry {
268 1.122 thorpej struct lwp *l = curlwp;
269 1.117 gmcgarry
270 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
271 1.174 ad lwp_lock(l);
272 1.329 ad
273 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
274 1.188 yamt KASSERT(l->l_stat == LSONPROC);
275 1.329 ad
276 1.325 ad /* Voluntary - ditch kpriority boost. */
277 1.204 ad l->l_kpriority = false;
278 1.329 ad spc_lock(l->l_cpu);
279 1.329 ad mi_switch(l);
280 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
281 1.69 thorpej }
282 1.69 thorpej
283 1.69 thorpej /*
284 1.255 skrll * General preemption call. Puts the current LWP back on its run queue
285 1.156 rpaulo * and performs an involuntary context switch.
286 1.69 thorpej */
287 1.69 thorpej void
288 1.174 ad preempt(void)
289 1.69 thorpej {
290 1.122 thorpej struct lwp *l = curlwp;
291 1.69 thorpej
292 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
293 1.174 ad lwp_lock(l);
294 1.329 ad
295 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
296 1.188 yamt KASSERT(l->l_stat == LSONPROC);
297 1.329 ad
298 1.325 ad /* Involuntary - keep kpriority boost. */
299 1.321 mlelstv l->l_pflag |= LP_PREEMPTING;
300 1.329 ad spc_lock(l->l_cpu);
301 1.329 ad mi_switch(l);
302 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
303 1.69 thorpej }
304 1.69 thorpej
305 1.234 ad /*
306 1.234 ad * Handle a request made by another agent to preempt the current LWP
307 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
308 1.234 ad *
309 1.234 ad * Character addresses for lockstat only.
310 1.234 ad */
311 1.326 ad static char kpreempt_is_disabled;
312 1.231 ad static char kernel_lock_held;
313 1.326 ad static char is_softint_lwp;
314 1.326 ad static char spl_is_raised;
315 1.231 ad
316 1.231 ad bool
317 1.231 ad kpreempt(uintptr_t where)
318 1.231 ad {
319 1.231 ad uintptr_t failed;
320 1.231 ad lwp_t *l;
321 1.264 ad int s, dop, lsflag;
322 1.231 ad
323 1.231 ad l = curlwp;
324 1.231 ad failed = 0;
325 1.231 ad while ((dop = l->l_dopreempt) != 0) {
326 1.231 ad if (l->l_stat != LSONPROC) {
327 1.231 ad /*
328 1.231 ad * About to block (or die), let it happen.
329 1.231 ad * Doesn't really count as "preemption has
330 1.231 ad * been blocked", since we're going to
331 1.231 ad * context switch.
332 1.231 ad */
333 1.325 ad atomic_swap_uint(&l->l_dopreempt, 0);
334 1.231 ad return true;
335 1.231 ad }
336 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
337 1.231 ad /* Can't preempt idle loop, don't count as failure. */
338 1.325 ad atomic_swap_uint(&l->l_dopreempt, 0);
339 1.261 rmind return true;
340 1.231 ad }
341 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
342 1.231 ad /* LWP holds preemption disabled, explicitly. */
343 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
344 1.234 ad kpreempt_ev_crit.ev_count++;
345 1.231 ad }
346 1.326 ad failed = (uintptr_t)&kpreempt_is_disabled;
347 1.231 ad break;
348 1.231 ad }
349 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
350 1.261 rmind /* Can't preempt soft interrupts yet. */
351 1.325 ad atomic_swap_uint(&l->l_dopreempt, 0);
352 1.326 ad failed = (uintptr_t)&is_softint_lwp;
353 1.261 rmind break;
354 1.231 ad }
355 1.231 ad s = splsched();
356 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
357 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
358 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
359 1.231 ad splx(s);
360 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
361 1.234 ad kpreempt_ev_klock.ev_count++;
362 1.231 ad }
363 1.231 ad failed = (uintptr_t)&kernel_lock_held;
364 1.231 ad break;
365 1.231 ad }
366 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
367 1.231 ad /*
368 1.231 ad * It may be that the IPL is too high.
369 1.231 ad * kpreempt_enter() can schedule an
370 1.231 ad * interrupt to retry later.
371 1.231 ad */
372 1.231 ad splx(s);
373 1.326 ad failed = (uintptr_t)&spl_is_raised;
374 1.231 ad break;
375 1.231 ad }
376 1.231 ad /* Do it! */
377 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
378 1.234 ad kpreempt_ev_immed.ev_count++;
379 1.231 ad }
380 1.231 ad lwp_lock(l);
381 1.329 ad /* Involuntary - keep kpriority boost. */
382 1.326 ad l->l_pflag |= LP_PREEMPTING;
383 1.329 ad spc_lock(l->l_cpu);
384 1.231 ad mi_switch(l);
385 1.231 ad l->l_nopreempt++;
386 1.231 ad splx(s);
387 1.231 ad
388 1.231 ad /* Take care of any MD cleanup. */
389 1.231 ad cpu_kpreempt_exit(where);
390 1.231 ad l->l_nopreempt--;
391 1.231 ad }
392 1.231 ad
393 1.264 ad if (__predict_true(!failed)) {
394 1.264 ad return false;
395 1.264 ad }
396 1.264 ad
397 1.231 ad /* Record preemption failure for reporting via lockstat. */
398 1.264 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
399 1.264 ad lsflag = 0;
400 1.264 ad LOCKSTAT_ENTER(lsflag);
401 1.264 ad if (__predict_false(lsflag)) {
402 1.264 ad if (where == 0) {
403 1.264 ad where = (uintptr_t)__builtin_return_address(0);
404 1.264 ad }
405 1.264 ad /* Preemption is on, might recurse, so make it atomic. */
406 1.264 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
407 1.264 ad (void *)where) == NULL) {
408 1.264 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
409 1.264 ad l->l_pfaillock = failed;
410 1.231 ad }
411 1.231 ad }
412 1.264 ad LOCKSTAT_EXIT(lsflag);
413 1.264 ad return true;
414 1.231 ad }
415 1.231 ad
416 1.69 thorpej /*
417 1.231 ad * Return true if preemption is explicitly disabled.
418 1.230 ad */
419 1.231 ad bool
420 1.231 ad kpreempt_disabled(void)
421 1.231 ad {
422 1.261 rmind const lwp_t *l = curlwp;
423 1.231 ad
424 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
425 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
426 1.231 ad }
427 1.230 ad
428 1.230 ad /*
429 1.231 ad * Disable kernel preemption.
430 1.230 ad */
431 1.230 ad void
432 1.231 ad kpreempt_disable(void)
433 1.230 ad {
434 1.230 ad
435 1.231 ad KPREEMPT_DISABLE(curlwp);
436 1.230 ad }
437 1.230 ad
438 1.230 ad /*
439 1.231 ad * Reenable kernel preemption.
440 1.230 ad */
441 1.231 ad void
442 1.231 ad kpreempt_enable(void)
443 1.230 ad {
444 1.230 ad
445 1.231 ad KPREEMPT_ENABLE(curlwp);
446 1.230 ad }
447 1.230 ad
448 1.230 ad /*
449 1.188 yamt * Compute the amount of time during which the current lwp was running.
450 1.130 nathanw *
451 1.188 yamt * - update l_rtime unless it's an idle lwp.
452 1.188 yamt */
453 1.188 yamt
454 1.199 ad void
455 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
456 1.188 yamt {
457 1.188 yamt
458 1.261 rmind if (__predict_false(l->l_flag & LW_IDLE))
459 1.188 yamt return;
460 1.188 yamt
461 1.212 yamt /* rtime += now - stime */
462 1.212 yamt bintime_add(&l->l_rtime, now);
463 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
464 1.188 yamt }
465 1.188 yamt
466 1.188 yamt /*
467 1.245 ad * Select next LWP from the current CPU to run..
468 1.245 ad */
469 1.245 ad static inline lwp_t *
470 1.245 ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
471 1.245 ad {
472 1.245 ad lwp_t *newl;
473 1.245 ad
474 1.245 ad /*
475 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
476 1.245 ad * If no LWP is runnable, select the idle LWP.
477 1.245 ad *
478 1.245 ad * Note that spc_lwplock might not necessary be held, and
479 1.245 ad * new thread would be unlocked after setting the LWP-lock.
480 1.245 ad */
481 1.245 ad newl = sched_nextlwp();
482 1.245 ad if (newl != NULL) {
483 1.245 ad sched_dequeue(newl);
484 1.245 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
485 1.274 rmind KASSERT(newl->l_cpu == ci);
486 1.245 ad newl->l_stat = LSONPROC;
487 1.248 ad newl->l_pflag |= LP_RUNNING;
488 1.245 ad lwp_setlock(newl, spc->spc_lwplock);
489 1.245 ad } else {
490 1.245 ad newl = ci->ci_data.cpu_idlelwp;
491 1.245 ad newl->l_stat = LSONPROC;
492 1.248 ad newl->l_pflag |= LP_RUNNING;
493 1.245 ad }
494 1.261 rmind
495 1.245 ad /*
496 1.325 ad * Only clear want_resched if there are no pending (slow) software
497 1.325 ad * interrupts. We can do this without an atomic, because no new
498 1.325 ad * LWPs can appear in the queue due to our hold on spc_mutex, and
499 1.325 ad * the update to ci_want_resched will become globally visible before
500 1.325 ad * the release of spc_mutex becomes globally visible.
501 1.245 ad */
502 1.245 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
503 1.245 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
504 1.245 ad spc->spc_curpriority = lwp_eprio(newl);
505 1.245 ad
506 1.245 ad return newl;
507 1.245 ad }
508 1.245 ad
509 1.245 ad /*
510 1.188 yamt * The machine independent parts of context switch.
511 1.188 yamt *
512 1.329 ad * NOTE: do not use l->l_cpu in this routine. The caller may have enqueued
513 1.329 ad * itself onto another CPU's run queue, so l->l_cpu may point elsewhere.
514 1.26 cgd */
515 1.329 ad void
516 1.199 ad mi_switch(lwp_t *l)
517 1.26 cgd {
518 1.246 rmind struct cpu_info *ci;
519 1.76 thorpej struct schedstate_percpu *spc;
520 1.188 yamt struct lwp *newl;
521 1.329 ad int oldspl;
522 1.212 yamt struct bintime bt;
523 1.199 ad bool returning;
524 1.26 cgd
525 1.188 yamt KASSERT(lwp_locked(l, NULL));
526 1.231 ad KASSERT(kpreempt_disabled());
527 1.329 ad KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
528 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
529 1.174 ad
530 1.174 ad kstack_check_magic(l);
531 1.83 thorpej
532 1.212 yamt binuptime(&bt);
533 1.199 ad
534 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
535 1.267 yamt KASSERT((l->l_pflag & LP_RUNNING) != 0);
536 1.329 ad KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
537 1.329 ad ci = curcpu();
538 1.196 ad spc = &ci->ci_schedstate;
539 1.199 ad returning = false;
540 1.190 ad newl = NULL;
541 1.190 ad
542 1.199 ad /*
543 1.199 ad * If we have been asked to switch to a specific LWP, then there
544 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
545 1.199 ad * blocking, then return to the interrupted thread without adjusting
546 1.199 ad * VM context or its start time: neither have been changed in order
547 1.199 ad * to take the interrupt.
548 1.199 ad */
549 1.190 ad if (l->l_switchto != NULL) {
550 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
551 1.199 ad returning = true;
552 1.199 ad softint_block(l);
553 1.248 ad if ((l->l_pflag & LP_TIMEINTR) != 0)
554 1.212 yamt updatertime(l, &bt);
555 1.199 ad }
556 1.190 ad newl = l->l_switchto;
557 1.190 ad l->l_switchto = NULL;
558 1.190 ad }
559 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
560 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
561 1.204 ad /* There are pending soft interrupts, so pick one. */
562 1.204 ad newl = softint_picklwp();
563 1.204 ad newl->l_stat = LSONPROC;
564 1.248 ad newl->l_pflag |= LP_RUNNING;
565 1.204 ad }
566 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
567 1.190 ad
568 1.113 gmcgarry /*
569 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
570 1.113 gmcgarry */
571 1.246 rmind if (l->l_stat == LSONPROC && l != newl) {
572 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
573 1.329 ad KASSERT((l->l_flag & LW_IDLE) == 0);
574 1.329 ad l->l_stat = LSRUN;
575 1.329 ad lwp_setlock(l, spc->spc_mutex);
576 1.329 ad sched_enqueue(l);
577 1.329 ad /*
578 1.329 ad * Handle migration. Note that "migrating LWP" may
579 1.329 ad * be reset here, if interrupt/preemption happens
580 1.329 ad * early in idle LWP.
581 1.329 ad */
582 1.329 ad if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
583 1.329 ad KASSERT((l->l_pflag & LP_INTR) == 0);
584 1.329 ad spc->spc_migrating = l;
585 1.329 ad }
586 1.174 ad }
587 1.174 ad
588 1.245 ad /* Pick new LWP to run. */
589 1.190 ad if (newl == NULL) {
590 1.245 ad newl = nextlwp(ci, spc);
591 1.199 ad }
592 1.199 ad
593 1.204 ad /* Items that must be updated with the CPU locked. */
594 1.199 ad if (!returning) {
595 1.326 ad /* Count time spent in current system call */
596 1.326 ad SYSCALL_TIME_SLEEP(l);
597 1.326 ad
598 1.326 ad updatertime(l, &bt);
599 1.326 ad
600 1.204 ad /* Update the new LWP's start time. */
601 1.212 yamt newl->l_stime = bt;
602 1.204 ad
603 1.199 ad /*
604 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
605 1.327 ad * We use ci_onproc to keep track of which kernel or
606 1.204 ad * user thread is running 'underneath' the software
607 1.204 ad * interrupt. This is important for time accounting,
608 1.204 ad * itimers and forcing user threads to preempt (aston).
609 1.199 ad */
610 1.327 ad ci->ci_onproc = newl;
611 1.188 yamt }
612 1.188 yamt
613 1.241 ad /*
614 1.325 ad * Preemption related tasks. Must be done holding spc_mutex. Clear
615 1.325 ad * l_dopreempt without an atomic - it's only ever set non-zero by
616 1.325 ad * sched_resched_cpu() which also holds spc_mutex, and only ever
617 1.325 ad * cleared by the LWP itself (us) with atomics when not under lock.
618 1.241 ad */
619 1.231 ad l->l_dopreempt = 0;
620 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
621 1.231 ad LOCKSTAT_FLAG(lsflag);
622 1.231 ad LOCKSTAT_ENTER(lsflag);
623 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
624 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
625 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
626 1.231 ad LOCKSTAT_EXIT(lsflag);
627 1.231 ad l->l_pfailtime = 0;
628 1.231 ad l->l_pfaillock = 0;
629 1.231 ad l->l_pfailaddr = 0;
630 1.231 ad }
631 1.231 ad
632 1.188 yamt if (l != newl) {
633 1.188 yamt struct lwp *prevlwp;
634 1.174 ad
635 1.209 ad /* Release all locks, but leave the current LWP locked */
636 1.246 rmind if (l->l_mutex == spc->spc_mutex) {
637 1.209 ad /*
638 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
639 1.209 ad * to the run queue (it is now locked by spc_mutex).
640 1.209 ad */
641 1.217 ad mutex_spin_exit(spc->spc_lwplock);
642 1.188 yamt } else {
643 1.209 ad /*
644 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
645 1.209 ad * run queues.
646 1.209 ad */
647 1.188 yamt mutex_spin_exit(spc->spc_mutex);
648 1.188 yamt }
649 1.188 yamt
650 1.209 ad /*
651 1.253 skrll * Mark that context switch is going to be performed
652 1.209 ad * for this LWP, to protect it from being switched
653 1.209 ad * to on another CPU.
654 1.209 ad */
655 1.209 ad KASSERT(l->l_ctxswtch == 0);
656 1.209 ad l->l_ctxswtch = 1;
657 1.209 ad l->l_ncsw++;
658 1.321 mlelstv if ((l->l_pflag & LP_PREEMPTING) != 0)
659 1.321 mlelstv l->l_nivcsw++;
660 1.267 yamt KASSERT((l->l_pflag & LP_RUNNING) != 0);
661 1.326 ad l->l_pflag &= ~(LP_RUNNING | LP_PREEMPTING);
662 1.209 ad
663 1.209 ad /*
664 1.209 ad * Increase the count of spin-mutexes before the release
665 1.209 ad * of the last lock - we must remain at IPL_SCHED during
666 1.209 ad * the context switch.
667 1.209 ad */
668 1.287 matt KASSERTMSG(ci->ci_mtx_count == -1,
669 1.301 rmind "%s: cpu%u: ci_mtx_count (%d) != -1 "
670 1.301 rmind "(block with spin-mutex held)",
671 1.291 jym __func__, cpu_index(ci), ci->ci_mtx_count);
672 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
673 1.209 ad ci->ci_mtx_count--;
674 1.209 ad lwp_unlock(l);
675 1.209 ad
676 1.218 ad /* Count the context switch on this CPU. */
677 1.218 ad ci->ci_data.cpu_nswtch++;
678 1.188 yamt
679 1.209 ad /* Update status for lwpctl, if present. */
680 1.209 ad if (l->l_lwpctl != NULL)
681 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
682 1.209 ad
683 1.199 ad /*
684 1.199 ad * Save old VM context, unless a soft interrupt
685 1.199 ad * handler is blocking.
686 1.199 ad */
687 1.199 ad if (!returning)
688 1.199 ad pmap_deactivate(l);
689 1.188 yamt
690 1.209 ad /*
691 1.275 skrll * We may need to spin-wait if 'newl' is still
692 1.209 ad * context switching on another CPU.
693 1.209 ad */
694 1.261 rmind if (__predict_false(newl->l_ctxswtch != 0)) {
695 1.209 ad u_int count;
696 1.209 ad count = SPINLOCK_BACKOFF_MIN;
697 1.209 ad while (newl->l_ctxswtch)
698 1.209 ad SPINLOCK_BACKOFF(count);
699 1.209 ad }
700 1.329 ad membar_enter();
701 1.207 ad
702 1.276 darran /*
703 1.276 darran * If DTrace has set the active vtime enum to anything
704 1.276 darran * other than INACTIVE (0), then it should have set the
705 1.276 darran * function to call.
706 1.276 darran */
707 1.278 darran if (__predict_false(dtrace_vtime_active)) {
708 1.276 darran (*dtrace_vtime_switch_func)(newl);
709 1.276 darran }
710 1.276 darran
711 1.318 ozaki /*
712 1.318 ozaki * We must ensure not to come here from inside a read section.
713 1.318 ozaki */
714 1.318 ozaki KASSERT(pserialize_not_in_read_section());
715 1.318 ozaki
716 1.188 yamt /* Switch to the new LWP.. */
717 1.305 mlelstv #ifdef MULTIPROCESSOR
718 1.304 matt KASSERT(curlwp == ci->ci_curlwp);
719 1.305 mlelstv #endif
720 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
721 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
722 1.207 ad ci = curcpu();
723 1.305 mlelstv #ifdef MULTIPROCESSOR
724 1.304 matt KASSERT(curlwp == ci->ci_curlwp);
725 1.305 mlelstv #endif
726 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
727 1.304 matt l, curlwp, prevlwp);
728 1.207 ad
729 1.188 yamt /*
730 1.209 ad * Switched away - we have new curlwp.
731 1.209 ad * Restore VM context and IPL.
732 1.188 yamt */
733 1.209 ad pmap_activate(l);
734 1.288 rmind pcu_switchpoint(l);
735 1.265 rmind
736 1.188 yamt if (prevlwp != NULL) {
737 1.209 ad /* Normalize the count of the spin-mutexes */
738 1.209 ad ci->ci_mtx_count++;
739 1.209 ad /* Unmark the state of context switch */
740 1.209 ad membar_exit();
741 1.209 ad prevlwp->l_ctxswtch = 0;
742 1.188 yamt }
743 1.209 ad
744 1.209 ad /* Update status for lwpctl, if present. */
745 1.219 ad if (l->l_lwpctl != NULL) {
746 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
747 1.219 ad l->l_lwpctl->lc_pctr++;
748 1.219 ad }
749 1.174 ad
750 1.300 yamt /*
751 1.329 ad * Note that, unless the caller disabled preemption, we can
752 1.329 ad * be preempted at any time after this splx().
753 1.300 yamt */
754 1.329 ad splx(oldspl);
755 1.188 yamt } else {
756 1.188 yamt /* Nothing to do - just unlock and return. */
757 1.246 rmind mutex_spin_exit(spc->spc_mutex);
758 1.321 mlelstv l->l_pflag &= ~LP_PREEMPTING;
759 1.188 yamt lwp_unlock(l);
760 1.122 thorpej }
761 1.110 briggs
762 1.329 ad /* Only now is it safe to consider l_cpu again. */
763 1.188 yamt KASSERT(l == curlwp);
764 1.329 ad KASSERT(l->l_cpu == ci);
765 1.188 yamt KASSERT(l->l_stat == LSONPROC);
766 1.188 yamt
767 1.180 dsl SYSCALL_TIME_WAKEUP(l);
768 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
769 1.26 cgd }
770 1.26 cgd
771 1.26 cgd /*
772 1.245 ad * The machine independent parts of context switch to oblivion.
773 1.245 ad * Does not return. Call with the LWP unlocked.
774 1.245 ad */
775 1.245 ad void
776 1.245 ad lwp_exit_switchaway(lwp_t *l)
777 1.245 ad {
778 1.245 ad struct cpu_info *ci;
779 1.245 ad struct lwp *newl;
780 1.245 ad struct bintime bt;
781 1.245 ad
782 1.245 ad ci = l->l_cpu;
783 1.245 ad
784 1.245 ad KASSERT(kpreempt_disabled());
785 1.245 ad KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
786 1.245 ad KASSERT(ci == curcpu());
787 1.245 ad LOCKDEBUG_BARRIER(NULL, 0);
788 1.245 ad
789 1.245 ad kstack_check_magic(l);
790 1.245 ad
791 1.245 ad /* Count time spent in current system call */
792 1.245 ad SYSCALL_TIME_SLEEP(l);
793 1.245 ad binuptime(&bt);
794 1.245 ad updatertime(l, &bt);
795 1.245 ad
796 1.245 ad /* Must stay at IPL_SCHED even after releasing run queue lock. */
797 1.245 ad (void)splsched();
798 1.245 ad
799 1.245 ad /*
800 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
801 1.245 ad * If no LWP is runnable, select the idle LWP.
802 1.245 ad *
803 1.245 ad * Note that spc_lwplock might not necessary be held, and
804 1.245 ad * new thread would be unlocked after setting the LWP-lock.
805 1.245 ad */
806 1.245 ad spc_lock(ci);
807 1.245 ad #ifndef __HAVE_FAST_SOFTINTS
808 1.245 ad if (ci->ci_data.cpu_softints != 0) {
809 1.245 ad /* There are pending soft interrupts, so pick one. */
810 1.245 ad newl = softint_picklwp();
811 1.245 ad newl->l_stat = LSONPROC;
812 1.248 ad newl->l_pflag |= LP_RUNNING;
813 1.245 ad } else
814 1.245 ad #endif /* !__HAVE_FAST_SOFTINTS */
815 1.245 ad {
816 1.245 ad newl = nextlwp(ci, &ci->ci_schedstate);
817 1.245 ad }
818 1.245 ad
819 1.245 ad /* Update the new LWP's start time. */
820 1.245 ad newl->l_stime = bt;
821 1.248 ad l->l_pflag &= ~LP_RUNNING;
822 1.245 ad
823 1.245 ad /*
824 1.245 ad * ci_curlwp changes when a fast soft interrupt occurs.
825 1.327 ad * We use ci_onproc to keep track of which kernel or
826 1.245 ad * user thread is running 'underneath' the software
827 1.245 ad * interrupt. This is important for time accounting,
828 1.245 ad * itimers and forcing user threads to preempt (aston).
829 1.245 ad */
830 1.327 ad ci->ci_onproc = newl;
831 1.245 ad
832 1.245 ad /* Unlock the run queue. */
833 1.245 ad spc_unlock(ci);
834 1.245 ad
835 1.245 ad /* Count the context switch on this CPU. */
836 1.245 ad ci->ci_data.cpu_nswtch++;
837 1.245 ad
838 1.245 ad /* Update status for lwpctl, if present. */
839 1.245 ad if (l->l_lwpctl != NULL)
840 1.247 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
841 1.245 ad
842 1.245 ad /*
843 1.275 skrll * We may need to spin-wait if 'newl' is still
844 1.245 ad * context switching on another CPU.
845 1.245 ad */
846 1.261 rmind if (__predict_false(newl->l_ctxswtch != 0)) {
847 1.245 ad u_int count;
848 1.245 ad count = SPINLOCK_BACKOFF_MIN;
849 1.245 ad while (newl->l_ctxswtch)
850 1.245 ad SPINLOCK_BACKOFF(count);
851 1.245 ad }
852 1.329 ad membar_enter();
853 1.245 ad
854 1.279 darran /*
855 1.279 darran * If DTrace has set the active vtime enum to anything
856 1.279 darran * other than INACTIVE (0), then it should have set the
857 1.279 darran * function to call.
858 1.279 darran */
859 1.279 darran if (__predict_false(dtrace_vtime_active)) {
860 1.279 darran (*dtrace_vtime_switch_func)(newl);
861 1.279 darran }
862 1.276 darran
863 1.245 ad /* Switch to the new LWP.. */
864 1.245 ad (void)cpu_switchto(NULL, newl, false);
865 1.245 ad
866 1.251 uwe for (;;) continue; /* XXX: convince gcc about "noreturn" */
867 1.245 ad /* NOTREACHED */
868 1.245 ad }
869 1.245 ad
870 1.245 ad /*
871 1.271 rmind * setrunnable: change LWP state to be runnable, placing it on the run queue.
872 1.174 ad *
873 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
874 1.26 cgd */
875 1.26 cgd void
876 1.122 thorpej setrunnable(struct lwp *l)
877 1.26 cgd {
878 1.122 thorpej struct proc *p = l->l_proc;
879 1.205 ad struct cpu_info *ci;
880 1.326 ad kmutex_t *oldlock;
881 1.26 cgd
882 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
883 1.324 kamil KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
884 1.229 ad KASSERT(mutex_owned(p->p_lock));
885 1.183 ad KASSERT(lwp_locked(l, NULL));
886 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
887 1.83 thorpej
888 1.122 thorpej switch (l->l_stat) {
889 1.122 thorpej case LSSTOP:
890 1.33 mycroft /*
891 1.33 mycroft * If we're being traced (possibly because someone attached us
892 1.33 mycroft * while we were stopped), check for a signal from the debugger.
893 1.33 mycroft */
894 1.310 christos if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
895 1.174 ad signotify(l);
896 1.174 ad p->p_nrlwps++;
897 1.26 cgd break;
898 1.174 ad case LSSUSPENDED:
899 1.326 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
900 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
901 1.174 ad p->p_nrlwps++;
902 1.192 rmind cv_broadcast(&p->p_lwpcv);
903 1.122 thorpej break;
904 1.174 ad case LSSLEEP:
905 1.174 ad KASSERT(l->l_wchan != NULL);
906 1.26 cgd break;
907 1.326 ad case LSIDL:
908 1.326 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
909 1.326 ad break;
910 1.174 ad default:
911 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
912 1.26 cgd }
913 1.139 cl
914 1.174 ad /*
915 1.286 pooka * If the LWP was sleeping, start it again.
916 1.174 ad */
917 1.174 ad if (l->l_wchan != NULL) {
918 1.174 ad l->l_stat = LSSLEEP;
919 1.183 ad /* lwp_unsleep() will release the lock. */
920 1.221 ad lwp_unsleep(l, true);
921 1.174 ad return;
922 1.174 ad }
923 1.139 cl
924 1.174 ad /*
925 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
926 1.174 ad * about to call mi_switch(), in which case it will yield.
927 1.174 ad */
928 1.248 ad if ((l->l_pflag & LP_RUNNING) != 0) {
929 1.174 ad l->l_stat = LSONPROC;
930 1.174 ad l->l_slptime = 0;
931 1.174 ad lwp_unlock(l);
932 1.174 ad return;
933 1.174 ad }
934 1.122 thorpej
935 1.174 ad /*
936 1.205 ad * Look for a CPU to run.
937 1.205 ad * Set the LWP runnable.
938 1.174 ad */
939 1.205 ad ci = sched_takecpu(l);
940 1.205 ad l->l_cpu = ci;
941 1.236 ad spc_lock(ci);
942 1.326 ad oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
943 1.188 yamt sched_setrunnable(l);
944 1.174 ad l->l_stat = LSRUN;
945 1.122 thorpej l->l_slptime = 0;
946 1.326 ad sched_enqueue(l);
947 1.326 ad sched_resched_lwp(l, true);
948 1.326 ad /* SPC & LWP now unlocked. */
949 1.326 ad mutex_spin_exit(oldlock);
950 1.26 cgd }
951 1.26 cgd
952 1.26 cgd /*
953 1.174 ad * suspendsched:
954 1.174 ad *
955 1.266 yamt * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
956 1.174 ad */
957 1.94 bouyer void
958 1.174 ad suspendsched(void)
959 1.94 bouyer {
960 1.174 ad CPU_INFO_ITERATOR cii;
961 1.174 ad struct cpu_info *ci;
962 1.122 thorpej struct lwp *l;
963 1.174 ad struct proc *p;
964 1.94 bouyer
965 1.94 bouyer /*
966 1.174 ad * We do this by process in order not to violate the locking rules.
967 1.94 bouyer */
968 1.228 ad mutex_enter(proc_lock);
969 1.174 ad PROCLIST_FOREACH(p, &allproc) {
970 1.229 ad mutex_enter(p->p_lock);
971 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
972 1.229 ad mutex_exit(p->p_lock);
973 1.94 bouyer continue;
974 1.174 ad }
975 1.174 ad
976 1.309 pgoyette if (p->p_stat != SSTOP) {
977 1.309 pgoyette if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
978 1.309 pgoyette p->p_pptr->p_nstopchild++;
979 1.309 pgoyette p->p_waited = 0;
980 1.309 pgoyette }
981 1.309 pgoyette p->p_stat = SSTOP;
982 1.309 pgoyette }
983 1.174 ad
984 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
985 1.174 ad if (l == curlwp)
986 1.174 ad continue;
987 1.174 ad
988 1.174 ad lwp_lock(l);
989 1.122 thorpej
990 1.97 enami /*
991 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
992 1.174 ad * when it tries to return to user mode. We want to
993 1.174 ad * try and get to get as many LWPs as possible to
994 1.174 ad * the user / kernel boundary, so that they will
995 1.174 ad * release any locks that they hold.
996 1.97 enami */
997 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
998 1.174 ad
999 1.174 ad if (l->l_stat == LSSLEEP &&
1000 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1001 1.174 ad /* setrunnable() will release the lock. */
1002 1.174 ad setrunnable(l);
1003 1.174 ad continue;
1004 1.174 ad }
1005 1.174 ad
1006 1.174 ad lwp_unlock(l);
1007 1.94 bouyer }
1008 1.174 ad
1009 1.229 ad mutex_exit(p->p_lock);
1010 1.94 bouyer }
1011 1.228 ad mutex_exit(proc_lock);
1012 1.174 ad
1013 1.174 ad /*
1014 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1015 1.326 ad * They'll trap into the kernel and suspend themselves in userret().
1016 1.326 ad *
1017 1.326 ad * Unusually, we don't hold any other scheduler object locked, which
1018 1.326 ad * would keep preemption off for sched_resched_cpu(), so disable it
1019 1.326 ad * explicitly.
1020 1.174 ad */
1021 1.326 ad kpreempt_disable();
1022 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1023 1.204 ad spc_lock(ci);
1024 1.326 ad sched_resched_cpu(ci, PRI_KERNEL, true);
1025 1.326 ad /* spc now unlocked */
1026 1.204 ad }
1027 1.326 ad kpreempt_enable();
1028 1.174 ad }
1029 1.174 ad
1030 1.174 ad /*
1031 1.174 ad * sched_unsleep:
1032 1.174 ad *
1033 1.174 ad * The is called when the LWP has not been awoken normally but instead
1034 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1035 1.174 ad * it's not a valid action for running or idle LWPs.
1036 1.174 ad */
1037 1.271 rmind static void
1038 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1039 1.174 ad {
1040 1.174 ad
1041 1.174 ad lwp_unlock(l);
1042 1.174 ad panic("sched_unsleep");
1043 1.174 ad }
1044 1.174 ad
1045 1.250 rmind static void
1046 1.326 ad sched_changepri(struct lwp *l, pri_t pri)
1047 1.188 yamt {
1048 1.326 ad struct schedstate_percpu *spc;
1049 1.326 ad struct cpu_info *ci;
1050 1.188 yamt
1051 1.250 rmind KASSERT(lwp_locked(l, NULL));
1052 1.188 yamt
1053 1.326 ad ci = l->l_cpu;
1054 1.326 ad spc = &ci->ci_schedstate;
1055 1.174 ad
1056 1.271 rmind if (l->l_stat == LSRUN) {
1057 1.326 ad KASSERT(lwp_locked(l, spc->spc_mutex));
1058 1.204 ad sched_dequeue(l);
1059 1.204 ad l->l_priority = pri;
1060 1.326 ad sched_enqueue(l);
1061 1.326 ad sched_resched_lwp(l, false);
1062 1.326 ad } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1063 1.326 ad /* On priority drop, only evict realtime LWPs. */
1064 1.326 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
1065 1.326 ad l->l_priority = pri;
1066 1.326 ad spc_lock(ci);
1067 1.326 ad sched_resched_cpu(ci, spc->spc_maxpriority, true);
1068 1.326 ad /* spc now unlocked */
1069 1.204 ad } else {
1070 1.174 ad l->l_priority = pri;
1071 1.157 yamt }
1072 1.184 yamt }
1073 1.184 yamt
1074 1.188 yamt static void
1075 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1076 1.184 yamt {
1077 1.326 ad struct schedstate_percpu *spc;
1078 1.326 ad struct cpu_info *ci;
1079 1.184 yamt
1080 1.188 yamt KASSERT(lwp_locked(l, NULL));
1081 1.184 yamt
1082 1.326 ad ci = l->l_cpu;
1083 1.326 ad spc = &ci->ci_schedstate;
1084 1.326 ad
1085 1.271 rmind if (l->l_stat == LSRUN) {
1086 1.326 ad KASSERT(lwp_locked(l, spc->spc_mutex));
1087 1.204 ad sched_dequeue(l);
1088 1.204 ad l->l_inheritedprio = pri;
1089 1.311 christos l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1090 1.326 ad sched_enqueue(l);
1091 1.326 ad sched_resched_lwp(l, false);
1092 1.326 ad } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1093 1.326 ad /* On priority drop, only evict realtime LWPs. */
1094 1.326 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
1095 1.326 ad l->l_inheritedprio = pri;
1096 1.326 ad l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1097 1.326 ad spc_lock(ci);
1098 1.326 ad sched_resched_cpu(ci, spc->spc_maxpriority, true);
1099 1.326 ad /* spc now unlocked */
1100 1.204 ad } else {
1101 1.184 yamt l->l_inheritedprio = pri;
1102 1.311 christos l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1103 1.184 yamt }
1104 1.184 yamt }
1105 1.184 yamt
1106 1.184 yamt struct lwp *
1107 1.184 yamt syncobj_noowner(wchan_t wchan)
1108 1.184 yamt {
1109 1.184 yamt
1110 1.184 yamt return NULL;
1111 1.151 yamt }
1112 1.151 yamt
1113 1.250 rmind /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1114 1.281 rmind const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1115 1.281 rmind
1116 1.281 rmind /*
1117 1.281 rmind * Constants for averages over 1, 5 and 15 minutes when sampling at
1118 1.281 rmind * 5 second intervals.
1119 1.281 rmind */
1120 1.281 rmind static const fixpt_t cexp[ ] = {
1121 1.281 rmind 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1122 1.281 rmind 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1123 1.281 rmind 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1124 1.281 rmind };
1125 1.134 matt
1126 1.134 matt /*
1127 1.188 yamt * sched_pstats:
1128 1.188 yamt *
1129 1.281 rmind * => Update process statistics and check CPU resource allocation.
1130 1.281 rmind * => Call scheduler-specific hook to eventually adjust LWP priorities.
1131 1.281 rmind * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1132 1.130 nathanw */
1133 1.113 gmcgarry void
1134 1.281 rmind sched_pstats(void)
1135 1.113 gmcgarry {
1136 1.281 rmind extern struct loadavg averunnable;
1137 1.281 rmind struct loadavg *avg = &averunnable;
1138 1.249 rmind const int clkhz = (stathz != 0 ? stathz : hz);
1139 1.281 rmind static bool backwards = false;
1140 1.281 rmind static u_int lavg_count = 0;
1141 1.188 yamt struct proc *p;
1142 1.281 rmind int nrun;
1143 1.113 gmcgarry
1144 1.188 yamt sched_pstats_ticks++;
1145 1.281 rmind if (++lavg_count >= 5) {
1146 1.281 rmind lavg_count = 0;
1147 1.281 rmind nrun = 0;
1148 1.281 rmind }
1149 1.228 ad mutex_enter(proc_lock);
1150 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1151 1.281 rmind struct lwp *l;
1152 1.281 rmind struct rlimit *rlim;
1153 1.296 dholland time_t runtm;
1154 1.281 rmind int sig;
1155 1.281 rmind
1156 1.271 rmind /* Increment sleep time (if sleeping), ignore overflow. */
1157 1.229 ad mutex_enter(p->p_lock);
1158 1.212 yamt runtm = p->p_rtime.sec;
1159 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1160 1.281 rmind fixpt_t lpctcpu;
1161 1.281 rmind u_int lcpticks;
1162 1.281 rmind
1163 1.249 rmind if (__predict_false((l->l_flag & LW_IDLE) != 0))
1164 1.188 yamt continue;
1165 1.188 yamt lwp_lock(l);
1166 1.212 yamt runtm += l->l_rtime.sec;
1167 1.188 yamt l->l_swtime++;
1168 1.242 rmind sched_lwp_stats(l);
1169 1.281 rmind
1170 1.281 rmind /* For load average calculation. */
1171 1.282 rmind if (__predict_false(lavg_count == 0) &&
1172 1.282 rmind (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1173 1.281 rmind switch (l->l_stat) {
1174 1.281 rmind case LSSLEEP:
1175 1.281 rmind if (l->l_slptime > 1) {
1176 1.281 rmind break;
1177 1.281 rmind }
1178 1.323 mrg /* FALLTHROUGH */
1179 1.281 rmind case LSRUN:
1180 1.281 rmind case LSONPROC:
1181 1.281 rmind case LSIDL:
1182 1.281 rmind nrun++;
1183 1.281 rmind }
1184 1.281 rmind }
1185 1.282 rmind lwp_unlock(l);
1186 1.282 rmind
1187 1.282 rmind l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1188 1.282 rmind if (l->l_slptime != 0)
1189 1.282 rmind continue;
1190 1.282 rmind
1191 1.282 rmind lpctcpu = l->l_pctcpu;
1192 1.282 rmind lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1193 1.282 rmind lpctcpu += ((FSCALE - ccpu) *
1194 1.282 rmind (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1195 1.282 rmind l->l_pctcpu = lpctcpu;
1196 1.188 yamt }
1197 1.249 rmind /* Calculating p_pctcpu only for ps(1) */
1198 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1199 1.174 ad
1200 1.303 christos if (__predict_false(runtm < 0)) {
1201 1.303 christos if (!backwards) {
1202 1.303 christos backwards = true;
1203 1.303 christos printf("WARNING: negative runtime; "
1204 1.303 christos "monotonic clock has gone backwards\n");
1205 1.303 christos }
1206 1.303 christos mutex_exit(p->p_lock);
1207 1.303 christos continue;
1208 1.303 christos }
1209 1.303 christos
1210 1.188 yamt /*
1211 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1212 1.293 apb * If over the hard limit, kill it with SIGKILL.
1213 1.293 apb * If over the soft limit, send SIGXCPU and raise
1214 1.293 apb * the soft limit a little.
1215 1.188 yamt */
1216 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1217 1.188 yamt sig = 0;
1218 1.249 rmind if (__predict_false(runtm >= rlim->rlim_cur)) {
1219 1.293 apb if (runtm >= rlim->rlim_max) {
1220 1.188 yamt sig = SIGKILL;
1221 1.312 christos log(LOG_NOTICE,
1222 1.312 christos "pid %d, command %s, is killed: %s\n",
1223 1.312 christos p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1224 1.293 apb uprintf("pid %d, command %s, is killed: %s\n",
1225 1.312 christos p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1226 1.293 apb } else {
1227 1.188 yamt sig = SIGXCPU;
1228 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1229 1.188 yamt rlim->rlim_cur += 5;
1230 1.188 yamt }
1231 1.188 yamt }
1232 1.229 ad mutex_exit(p->p_lock);
1233 1.303 christos if (__predict_false(sig)) {
1234 1.259 rmind KASSERT((p->p_flag & PK_SYSTEM) == 0);
1235 1.188 yamt psignal(p, sig);
1236 1.259 rmind }
1237 1.174 ad }
1238 1.281 rmind
1239 1.281 rmind /* Load average calculation. */
1240 1.281 rmind if (__predict_false(lavg_count == 0)) {
1241 1.281 rmind int i;
1242 1.283 martin CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1243 1.281 rmind for (i = 0; i < __arraycount(cexp); i++) {
1244 1.281 rmind avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1245 1.281 rmind nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1246 1.281 rmind }
1247 1.281 rmind }
1248 1.281 rmind
1249 1.281 rmind /* Lightning bolt. */
1250 1.273 pooka cv_broadcast(&lbolt);
1251 1.325 ad
1252 1.325 ad mutex_exit(proc_lock);
1253 1.113 gmcgarry }
1254