kern_synch.c revision 1.334 1 1.334 ad /* $NetBSD: kern_synch.c,v 1.334 2019/12/21 11:54:04 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.325 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019
5 1.260 ad * The NetBSD Foundation, Inc.
6 1.63 thorpej * All rights reserved.
7 1.63 thorpej *
8 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
9 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 1.188 yamt * Daniel Sieger.
12 1.63 thorpej *
13 1.63 thorpej * Redistribution and use in source and binary forms, with or without
14 1.63 thorpej * modification, are permitted provided that the following conditions
15 1.63 thorpej * are met:
16 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer.
18 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
19 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
20 1.63 thorpej * documentation and/or other materials provided with the distribution.
21 1.63 thorpej *
22 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
33 1.63 thorpej */
34 1.26 cgd
35 1.26 cgd /*-
36 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 1.26 cgd * The Regents of the University of California. All rights reserved.
38 1.26 cgd * (c) UNIX System Laboratories, Inc.
39 1.26 cgd * All or some portions of this file are derived from material licensed
40 1.26 cgd * to the University of California by American Telephone and Telegraph
41 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 1.26 cgd * the permission of UNIX System Laboratories, Inc.
43 1.26 cgd *
44 1.26 cgd * Redistribution and use in source and binary forms, with or without
45 1.26 cgd * modification, are permitted provided that the following conditions
46 1.26 cgd * are met:
47 1.26 cgd * 1. Redistributions of source code must retain the above copyright
48 1.26 cgd * notice, this list of conditions and the following disclaimer.
49 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.26 cgd * notice, this list of conditions and the following disclaimer in the
51 1.26 cgd * documentation and/or other materials provided with the distribution.
52 1.136 agc * 3. Neither the name of the University nor the names of its contributors
53 1.26 cgd * may be used to endorse or promote products derived from this software
54 1.26 cgd * without specific prior written permission.
55 1.26 cgd *
56 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.26 cgd * SUCH DAMAGE.
67 1.26 cgd *
68 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 1.26 cgd */
70 1.106 lukem
71 1.106 lukem #include <sys/cdefs.h>
72 1.334 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.334 2019/12/21 11:54:04 ad Exp $");
73 1.48 mrg
74 1.109 yamt #include "opt_kstack.h"
75 1.277 darran #include "opt_dtrace.h"
76 1.26 cgd
77 1.174 ad #define __MUTEX_PRIVATE
78 1.174 ad
79 1.26 cgd #include <sys/param.h>
80 1.26 cgd #include <sys/systm.h>
81 1.26 cgd #include <sys/proc.h>
82 1.26 cgd #include <sys/kernel.h>
83 1.188 yamt #include <sys/cpu.h>
84 1.290 christos #include <sys/pserialize.h>
85 1.26 cgd #include <sys/resourcevar.h>
86 1.55 ross #include <sys/sched.h>
87 1.179 dsl #include <sys/syscall_stats.h>
88 1.174 ad #include <sys/sleepq.h>
89 1.174 ad #include <sys/lockdebug.h>
90 1.190 ad #include <sys/evcnt.h>
91 1.199 ad #include <sys/intr.h>
92 1.207 ad #include <sys/lwpctl.h>
93 1.209 ad #include <sys/atomic.h>
94 1.295 njoly #include <sys/syslog.h>
95 1.47 mrg
96 1.47 mrg #include <uvm/uvm_extern.h>
97 1.47 mrg
98 1.231 ad #include <dev/lockstat.h>
99 1.231 ad
100 1.276 darran #include <sys/dtrace_bsd.h>
101 1.279 darran int dtrace_vtime_active=0;
102 1.276 darran dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
103 1.276 darran
104 1.271 rmind static void sched_unsleep(struct lwp *, bool);
105 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
106 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
107 1.122 thorpej
108 1.174 ad syncobj_t sleep_syncobj = {
109 1.313 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
110 1.313 ozaki .sobj_unsleep = sleepq_unsleep,
111 1.313 ozaki .sobj_changepri = sleepq_changepri,
112 1.313 ozaki .sobj_lendpri = sleepq_lendpri,
113 1.313 ozaki .sobj_owner = syncobj_noowner,
114 1.174 ad };
115 1.174 ad
116 1.174 ad syncobj_t sched_syncobj = {
117 1.313 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
118 1.313 ozaki .sobj_unsleep = sched_unsleep,
119 1.313 ozaki .sobj_changepri = sched_changepri,
120 1.313 ozaki .sobj_lendpri = sched_lendpri,
121 1.313 ozaki .sobj_owner = syncobj_noowner,
122 1.174 ad };
123 1.122 thorpej
124 1.289 rmind /* "Lightning bolt": once a second sleep address. */
125 1.289 rmind kcondvar_t lbolt __cacheline_aligned;
126 1.223 ad
127 1.289 rmind u_int sched_pstats_ticks __cacheline_aligned;
128 1.289 rmind
129 1.289 rmind /* Preemption event counters. */
130 1.289 rmind static struct evcnt kpreempt_ev_crit __cacheline_aligned;
131 1.289 rmind static struct evcnt kpreempt_ev_klock __cacheline_aligned;
132 1.289 rmind static struct evcnt kpreempt_ev_immed __cacheline_aligned;
133 1.231 ad
134 1.237 rmind void
135 1.270 elad synch_init(void)
136 1.237 rmind {
137 1.237 rmind
138 1.237 rmind cv_init(&lbolt, "lbolt");
139 1.237 rmind
140 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
141 1.237 rmind "kpreempt", "defer: critical section");
142 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
143 1.237 rmind "kpreempt", "defer: kernel_lock");
144 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
145 1.237 rmind "kpreempt", "immediate");
146 1.237 rmind }
147 1.237 rmind
148 1.26 cgd /*
149 1.174 ad * OBSOLETE INTERFACE
150 1.174 ad *
151 1.255 skrll * General sleep call. Suspends the current LWP until a wakeup is
152 1.255 skrll * performed on the specified identifier. The LWP will then be made
153 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
154 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
155 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
156 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
157 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
158 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
159 1.26 cgd * call should be interrupted by the signal (return EINTR).
160 1.26 cgd */
161 1.26 cgd int
162 1.297 rmind tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
163 1.26 cgd {
164 1.122 thorpej struct lwp *l = curlwp;
165 1.174 ad sleepq_t *sq;
166 1.244 ad kmutex_t *mp;
167 1.26 cgd
168 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
169 1.272 pooka KASSERT(ident != &lbolt);
170 1.204 ad
171 1.174 ad if (sleepq_dontsleep(l)) {
172 1.174 ad (void)sleepq_abort(NULL, 0);
173 1.174 ad return 0;
174 1.26 cgd }
175 1.78 sommerfe
176 1.204 ad l->l_kpriority = true;
177 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
178 1.244 ad sleepq_enter(sq, l, mp);
179 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
180 1.297 rmind return sleepq_block(timo, priority & PCATCH);
181 1.26 cgd }
182 1.26 cgd
183 1.187 ad int
184 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
185 1.187 ad kmutex_t *mtx)
186 1.187 ad {
187 1.187 ad struct lwp *l = curlwp;
188 1.187 ad sleepq_t *sq;
189 1.244 ad kmutex_t *mp;
190 1.188 yamt int error;
191 1.187 ad
192 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
193 1.272 pooka KASSERT(ident != &lbolt);
194 1.204 ad
195 1.187 ad if (sleepq_dontsleep(l)) {
196 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
197 1.187 ad return 0;
198 1.187 ad }
199 1.187 ad
200 1.204 ad l->l_kpriority = true;
201 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
202 1.244 ad sleepq_enter(sq, l, mp);
203 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
204 1.187 ad mutex_exit(mtx);
205 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
206 1.187 ad
207 1.187 ad if ((priority & PNORELOCK) == 0)
208 1.187 ad mutex_enter(mtx);
209 1.297 rmind
210 1.187 ad return error;
211 1.187 ad }
212 1.187 ad
213 1.26 cgd /*
214 1.174 ad * General sleep call for situations where a wake-up is not expected.
215 1.26 cgd */
216 1.174 ad int
217 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
218 1.26 cgd {
219 1.174 ad struct lwp *l = curlwp;
220 1.244 ad kmutex_t *mp;
221 1.174 ad sleepq_t *sq;
222 1.174 ad int error;
223 1.26 cgd
224 1.284 pooka KASSERT(!(timo == 0 && intr == false));
225 1.284 pooka
226 1.174 ad if (sleepq_dontsleep(l))
227 1.174 ad return sleepq_abort(NULL, 0);
228 1.26 cgd
229 1.174 ad if (mtx != NULL)
230 1.174 ad mutex_exit(mtx);
231 1.204 ad l->l_kpriority = true;
232 1.244 ad sq = sleeptab_lookup(&sleeptab, l, &mp);
233 1.244 ad sleepq_enter(sq, l, mp);
234 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
235 1.188 yamt error = sleepq_block(timo, intr);
236 1.174 ad if (mtx != NULL)
237 1.174 ad mutex_enter(mtx);
238 1.83 thorpej
239 1.174 ad return error;
240 1.139 cl }
241 1.139 cl
242 1.26 cgd /*
243 1.174 ad * OBSOLETE INTERFACE
244 1.174 ad *
245 1.255 skrll * Make all LWPs sleeping on the specified identifier runnable.
246 1.26 cgd */
247 1.26 cgd void
248 1.174 ad wakeup(wchan_t ident)
249 1.26 cgd {
250 1.174 ad sleepq_t *sq;
251 1.244 ad kmutex_t *mp;
252 1.83 thorpej
253 1.261 rmind if (__predict_false(cold))
254 1.174 ad return;
255 1.83 thorpej
256 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
257 1.244 ad sleepq_wake(sq, ident, (u_int)-1, mp);
258 1.63 thorpej }
259 1.63 thorpej
260 1.63 thorpej /*
261 1.255 skrll * General yield call. Puts the current LWP back on its run queue and
262 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
263 1.255 skrll * current LWP explicitly requests it (eg sched_yield(2)).
264 1.117 gmcgarry */
265 1.117 gmcgarry void
266 1.117 gmcgarry yield(void)
267 1.117 gmcgarry {
268 1.122 thorpej struct lwp *l = curlwp;
269 1.117 gmcgarry
270 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
271 1.174 ad lwp_lock(l);
272 1.329 ad
273 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
274 1.188 yamt KASSERT(l->l_stat == LSONPROC);
275 1.329 ad
276 1.325 ad /* Voluntary - ditch kpriority boost. */
277 1.204 ad l->l_kpriority = false;
278 1.329 ad spc_lock(l->l_cpu);
279 1.329 ad mi_switch(l);
280 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
281 1.69 thorpej }
282 1.69 thorpej
283 1.69 thorpej /*
284 1.255 skrll * General preemption call. Puts the current LWP back on its run queue
285 1.156 rpaulo * and performs an involuntary context switch.
286 1.69 thorpej */
287 1.69 thorpej void
288 1.174 ad preempt(void)
289 1.69 thorpej {
290 1.122 thorpej struct lwp *l = curlwp;
291 1.69 thorpej
292 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
293 1.174 ad lwp_lock(l);
294 1.329 ad
295 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
296 1.188 yamt KASSERT(l->l_stat == LSONPROC);
297 1.329 ad
298 1.325 ad /* Involuntary - keep kpriority boost. */
299 1.321 mlelstv l->l_pflag |= LP_PREEMPTING;
300 1.329 ad spc_lock(l->l_cpu);
301 1.329 ad mi_switch(l);
302 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
303 1.69 thorpej }
304 1.69 thorpej
305 1.234 ad /*
306 1.234 ad * Handle a request made by another agent to preempt the current LWP
307 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
308 1.234 ad *
309 1.234 ad * Character addresses for lockstat only.
310 1.234 ad */
311 1.326 ad static char kpreempt_is_disabled;
312 1.231 ad static char kernel_lock_held;
313 1.326 ad static char is_softint_lwp;
314 1.326 ad static char spl_is_raised;
315 1.231 ad
316 1.231 ad bool
317 1.231 ad kpreempt(uintptr_t where)
318 1.231 ad {
319 1.231 ad uintptr_t failed;
320 1.231 ad lwp_t *l;
321 1.264 ad int s, dop, lsflag;
322 1.231 ad
323 1.231 ad l = curlwp;
324 1.231 ad failed = 0;
325 1.231 ad while ((dop = l->l_dopreempt) != 0) {
326 1.231 ad if (l->l_stat != LSONPROC) {
327 1.231 ad /*
328 1.231 ad * About to block (or die), let it happen.
329 1.231 ad * Doesn't really count as "preemption has
330 1.231 ad * been blocked", since we're going to
331 1.231 ad * context switch.
332 1.231 ad */
333 1.325 ad atomic_swap_uint(&l->l_dopreempt, 0);
334 1.231 ad return true;
335 1.231 ad }
336 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
337 1.231 ad /* Can't preempt idle loop, don't count as failure. */
338 1.325 ad atomic_swap_uint(&l->l_dopreempt, 0);
339 1.261 rmind return true;
340 1.231 ad }
341 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
342 1.231 ad /* LWP holds preemption disabled, explicitly. */
343 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
344 1.234 ad kpreempt_ev_crit.ev_count++;
345 1.231 ad }
346 1.326 ad failed = (uintptr_t)&kpreempt_is_disabled;
347 1.231 ad break;
348 1.231 ad }
349 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
350 1.261 rmind /* Can't preempt soft interrupts yet. */
351 1.325 ad atomic_swap_uint(&l->l_dopreempt, 0);
352 1.326 ad failed = (uintptr_t)&is_softint_lwp;
353 1.261 rmind break;
354 1.231 ad }
355 1.231 ad s = splsched();
356 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
357 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
358 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
359 1.231 ad splx(s);
360 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
361 1.234 ad kpreempt_ev_klock.ev_count++;
362 1.231 ad }
363 1.231 ad failed = (uintptr_t)&kernel_lock_held;
364 1.231 ad break;
365 1.231 ad }
366 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
367 1.231 ad /*
368 1.231 ad * It may be that the IPL is too high.
369 1.231 ad * kpreempt_enter() can schedule an
370 1.231 ad * interrupt to retry later.
371 1.231 ad */
372 1.231 ad splx(s);
373 1.326 ad failed = (uintptr_t)&spl_is_raised;
374 1.231 ad break;
375 1.231 ad }
376 1.231 ad /* Do it! */
377 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
378 1.234 ad kpreempt_ev_immed.ev_count++;
379 1.231 ad }
380 1.231 ad lwp_lock(l);
381 1.329 ad /* Involuntary - keep kpriority boost. */
382 1.326 ad l->l_pflag |= LP_PREEMPTING;
383 1.329 ad spc_lock(l->l_cpu);
384 1.231 ad mi_switch(l);
385 1.231 ad l->l_nopreempt++;
386 1.231 ad splx(s);
387 1.231 ad
388 1.231 ad /* Take care of any MD cleanup. */
389 1.231 ad cpu_kpreempt_exit(where);
390 1.231 ad l->l_nopreempt--;
391 1.231 ad }
392 1.231 ad
393 1.264 ad if (__predict_true(!failed)) {
394 1.264 ad return false;
395 1.264 ad }
396 1.264 ad
397 1.231 ad /* Record preemption failure for reporting via lockstat. */
398 1.264 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
399 1.264 ad lsflag = 0;
400 1.264 ad LOCKSTAT_ENTER(lsflag);
401 1.264 ad if (__predict_false(lsflag)) {
402 1.264 ad if (where == 0) {
403 1.264 ad where = (uintptr_t)__builtin_return_address(0);
404 1.264 ad }
405 1.264 ad /* Preemption is on, might recurse, so make it atomic. */
406 1.264 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
407 1.264 ad (void *)where) == NULL) {
408 1.264 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
409 1.264 ad l->l_pfaillock = failed;
410 1.231 ad }
411 1.231 ad }
412 1.264 ad LOCKSTAT_EXIT(lsflag);
413 1.264 ad return true;
414 1.231 ad }
415 1.231 ad
416 1.69 thorpej /*
417 1.231 ad * Return true if preemption is explicitly disabled.
418 1.230 ad */
419 1.231 ad bool
420 1.231 ad kpreempt_disabled(void)
421 1.231 ad {
422 1.261 rmind const lwp_t *l = curlwp;
423 1.231 ad
424 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
425 1.332 ad (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
426 1.332 ad cpu_kpreempt_disabled();
427 1.231 ad }
428 1.230 ad
429 1.230 ad /*
430 1.231 ad * Disable kernel preemption.
431 1.230 ad */
432 1.230 ad void
433 1.231 ad kpreempt_disable(void)
434 1.230 ad {
435 1.230 ad
436 1.231 ad KPREEMPT_DISABLE(curlwp);
437 1.230 ad }
438 1.230 ad
439 1.230 ad /*
440 1.231 ad * Reenable kernel preemption.
441 1.230 ad */
442 1.231 ad void
443 1.231 ad kpreempt_enable(void)
444 1.230 ad {
445 1.230 ad
446 1.231 ad KPREEMPT_ENABLE(curlwp);
447 1.230 ad }
448 1.230 ad
449 1.230 ad /*
450 1.188 yamt * Compute the amount of time during which the current lwp was running.
451 1.130 nathanw *
452 1.188 yamt * - update l_rtime unless it's an idle lwp.
453 1.188 yamt */
454 1.188 yamt
455 1.199 ad void
456 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
457 1.188 yamt {
458 1.188 yamt
459 1.261 rmind if (__predict_false(l->l_flag & LW_IDLE))
460 1.188 yamt return;
461 1.188 yamt
462 1.212 yamt /* rtime += now - stime */
463 1.212 yamt bintime_add(&l->l_rtime, now);
464 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
465 1.188 yamt }
466 1.188 yamt
467 1.188 yamt /*
468 1.245 ad * Select next LWP from the current CPU to run..
469 1.245 ad */
470 1.245 ad static inline lwp_t *
471 1.245 ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
472 1.245 ad {
473 1.245 ad lwp_t *newl;
474 1.245 ad
475 1.245 ad /*
476 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
477 1.245 ad * If no LWP is runnable, select the idle LWP.
478 1.245 ad *
479 1.245 ad * Note that spc_lwplock might not necessary be held, and
480 1.245 ad * new thread would be unlocked after setting the LWP-lock.
481 1.245 ad */
482 1.245 ad newl = sched_nextlwp();
483 1.245 ad if (newl != NULL) {
484 1.245 ad sched_dequeue(newl);
485 1.245 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
486 1.274 rmind KASSERT(newl->l_cpu == ci);
487 1.245 ad newl->l_stat = LSONPROC;
488 1.248 ad newl->l_pflag |= LP_RUNNING;
489 1.245 ad lwp_setlock(newl, spc->spc_lwplock);
490 1.334 ad spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
491 1.245 ad } else {
492 1.245 ad newl = ci->ci_data.cpu_idlelwp;
493 1.245 ad newl->l_stat = LSONPROC;
494 1.248 ad newl->l_pflag |= LP_RUNNING;
495 1.334 ad spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
496 1.334 ad SPCF_IDLE;
497 1.245 ad }
498 1.261 rmind
499 1.245 ad /*
500 1.325 ad * Only clear want_resched if there are no pending (slow) software
501 1.325 ad * interrupts. We can do this without an atomic, because no new
502 1.325 ad * LWPs can appear in the queue due to our hold on spc_mutex, and
503 1.325 ad * the update to ci_want_resched will become globally visible before
504 1.325 ad * the release of spc_mutex becomes globally visible.
505 1.245 ad */
506 1.245 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
507 1.245 ad spc->spc_curpriority = lwp_eprio(newl);
508 1.245 ad
509 1.245 ad return newl;
510 1.245 ad }
511 1.245 ad
512 1.245 ad /*
513 1.188 yamt * The machine independent parts of context switch.
514 1.188 yamt *
515 1.329 ad * NOTE: do not use l->l_cpu in this routine. The caller may have enqueued
516 1.329 ad * itself onto another CPU's run queue, so l->l_cpu may point elsewhere.
517 1.26 cgd */
518 1.329 ad void
519 1.199 ad mi_switch(lwp_t *l)
520 1.26 cgd {
521 1.246 rmind struct cpu_info *ci;
522 1.76 thorpej struct schedstate_percpu *spc;
523 1.188 yamt struct lwp *newl;
524 1.329 ad int oldspl;
525 1.212 yamt struct bintime bt;
526 1.199 ad bool returning;
527 1.26 cgd
528 1.188 yamt KASSERT(lwp_locked(l, NULL));
529 1.231 ad KASSERT(kpreempt_disabled());
530 1.329 ad KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
531 1.174 ad
532 1.174 ad kstack_check_magic(l);
533 1.83 thorpej
534 1.212 yamt binuptime(&bt);
535 1.199 ad
536 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
537 1.267 yamt KASSERT((l->l_pflag & LP_RUNNING) != 0);
538 1.329 ad KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
539 1.329 ad ci = curcpu();
540 1.196 ad spc = &ci->ci_schedstate;
541 1.199 ad returning = false;
542 1.190 ad newl = NULL;
543 1.190 ad
544 1.199 ad /*
545 1.199 ad * If we have been asked to switch to a specific LWP, then there
546 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
547 1.199 ad * blocking, then return to the interrupted thread without adjusting
548 1.199 ad * VM context or its start time: neither have been changed in order
549 1.199 ad * to take the interrupt.
550 1.199 ad */
551 1.190 ad if (l->l_switchto != NULL) {
552 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
553 1.199 ad returning = true;
554 1.199 ad softint_block(l);
555 1.248 ad if ((l->l_pflag & LP_TIMEINTR) != 0)
556 1.212 yamt updatertime(l, &bt);
557 1.199 ad }
558 1.190 ad newl = l->l_switchto;
559 1.190 ad l->l_switchto = NULL;
560 1.190 ad }
561 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
562 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
563 1.204 ad /* There are pending soft interrupts, so pick one. */
564 1.204 ad newl = softint_picklwp();
565 1.204 ad newl->l_stat = LSONPROC;
566 1.248 ad newl->l_pflag |= LP_RUNNING;
567 1.204 ad }
568 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
569 1.190 ad
570 1.113 gmcgarry /*
571 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
572 1.113 gmcgarry */
573 1.246 rmind if (l->l_stat == LSONPROC && l != newl) {
574 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
575 1.329 ad KASSERT((l->l_flag & LW_IDLE) == 0);
576 1.329 ad l->l_stat = LSRUN;
577 1.329 ad lwp_setlock(l, spc->spc_mutex);
578 1.329 ad sched_enqueue(l);
579 1.329 ad /*
580 1.329 ad * Handle migration. Note that "migrating LWP" may
581 1.329 ad * be reset here, if interrupt/preemption happens
582 1.329 ad * early in idle LWP.
583 1.329 ad */
584 1.329 ad if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
585 1.329 ad KASSERT((l->l_pflag & LP_INTR) == 0);
586 1.329 ad spc->spc_migrating = l;
587 1.329 ad }
588 1.174 ad }
589 1.174 ad
590 1.245 ad /* Pick new LWP to run. */
591 1.190 ad if (newl == NULL) {
592 1.245 ad newl = nextlwp(ci, spc);
593 1.199 ad }
594 1.199 ad
595 1.204 ad /* Items that must be updated with the CPU locked. */
596 1.199 ad if (!returning) {
597 1.326 ad /* Count time spent in current system call */
598 1.326 ad SYSCALL_TIME_SLEEP(l);
599 1.326 ad
600 1.326 ad updatertime(l, &bt);
601 1.326 ad
602 1.204 ad /* Update the new LWP's start time. */
603 1.212 yamt newl->l_stime = bt;
604 1.204 ad
605 1.199 ad /*
606 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
607 1.327 ad * We use ci_onproc to keep track of which kernel or
608 1.204 ad * user thread is running 'underneath' the software
609 1.204 ad * interrupt. This is important for time accounting,
610 1.204 ad * itimers and forcing user threads to preempt (aston).
611 1.199 ad */
612 1.327 ad ci->ci_onproc = newl;
613 1.188 yamt }
614 1.188 yamt
615 1.241 ad /*
616 1.325 ad * Preemption related tasks. Must be done holding spc_mutex. Clear
617 1.325 ad * l_dopreempt without an atomic - it's only ever set non-zero by
618 1.325 ad * sched_resched_cpu() which also holds spc_mutex, and only ever
619 1.325 ad * cleared by the LWP itself (us) with atomics when not under lock.
620 1.241 ad */
621 1.231 ad l->l_dopreempt = 0;
622 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
623 1.231 ad LOCKSTAT_FLAG(lsflag);
624 1.231 ad LOCKSTAT_ENTER(lsflag);
625 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
626 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
627 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
628 1.231 ad LOCKSTAT_EXIT(lsflag);
629 1.231 ad l->l_pfailtime = 0;
630 1.231 ad l->l_pfaillock = 0;
631 1.231 ad l->l_pfailaddr = 0;
632 1.231 ad }
633 1.231 ad
634 1.188 yamt if (l != newl) {
635 1.188 yamt struct lwp *prevlwp;
636 1.174 ad
637 1.209 ad /* Release all locks, but leave the current LWP locked */
638 1.246 rmind if (l->l_mutex == spc->spc_mutex) {
639 1.209 ad /*
640 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
641 1.209 ad * to the run queue (it is now locked by spc_mutex).
642 1.209 ad */
643 1.217 ad mutex_spin_exit(spc->spc_lwplock);
644 1.188 yamt } else {
645 1.209 ad /*
646 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
647 1.209 ad * run queues.
648 1.209 ad */
649 1.188 yamt mutex_spin_exit(spc->spc_mutex);
650 1.188 yamt }
651 1.188 yamt
652 1.330 ad /* We're down to only one lock, so do debug checks. */
653 1.330 ad LOCKDEBUG_BARRIER(l->l_mutex, 1);
654 1.330 ad
655 1.209 ad /*
656 1.253 skrll * Mark that context switch is going to be performed
657 1.209 ad * for this LWP, to protect it from being switched
658 1.209 ad * to on another CPU.
659 1.209 ad */
660 1.209 ad KASSERT(l->l_ctxswtch == 0);
661 1.209 ad l->l_ctxswtch = 1;
662 1.209 ad l->l_ncsw++;
663 1.321 mlelstv if ((l->l_pflag & LP_PREEMPTING) != 0)
664 1.321 mlelstv l->l_nivcsw++;
665 1.267 yamt KASSERT((l->l_pflag & LP_RUNNING) != 0);
666 1.326 ad l->l_pflag &= ~(LP_RUNNING | LP_PREEMPTING);
667 1.209 ad
668 1.209 ad /*
669 1.209 ad * Increase the count of spin-mutexes before the release
670 1.209 ad * of the last lock - we must remain at IPL_SCHED during
671 1.209 ad * the context switch.
672 1.209 ad */
673 1.287 matt KASSERTMSG(ci->ci_mtx_count == -1,
674 1.301 rmind "%s: cpu%u: ci_mtx_count (%d) != -1 "
675 1.301 rmind "(block with spin-mutex held)",
676 1.291 jym __func__, cpu_index(ci), ci->ci_mtx_count);
677 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
678 1.209 ad ci->ci_mtx_count--;
679 1.209 ad lwp_unlock(l);
680 1.209 ad
681 1.218 ad /* Count the context switch on this CPU. */
682 1.333 ad CPU_COUNT(CPU_COUNT_NSWTCH, 1);
683 1.188 yamt
684 1.209 ad /* Update status for lwpctl, if present. */
685 1.209 ad if (l->l_lwpctl != NULL)
686 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
687 1.209 ad
688 1.199 ad /*
689 1.199 ad * Save old VM context, unless a soft interrupt
690 1.199 ad * handler is blocking.
691 1.199 ad */
692 1.199 ad if (!returning)
693 1.199 ad pmap_deactivate(l);
694 1.188 yamt
695 1.209 ad /*
696 1.275 skrll * We may need to spin-wait if 'newl' is still
697 1.209 ad * context switching on another CPU.
698 1.209 ad */
699 1.261 rmind if (__predict_false(newl->l_ctxswtch != 0)) {
700 1.209 ad u_int count;
701 1.209 ad count = SPINLOCK_BACKOFF_MIN;
702 1.209 ad while (newl->l_ctxswtch)
703 1.209 ad SPINLOCK_BACKOFF(count);
704 1.209 ad }
705 1.329 ad membar_enter();
706 1.207 ad
707 1.276 darran /*
708 1.276 darran * If DTrace has set the active vtime enum to anything
709 1.276 darran * other than INACTIVE (0), then it should have set the
710 1.276 darran * function to call.
711 1.276 darran */
712 1.278 darran if (__predict_false(dtrace_vtime_active)) {
713 1.276 darran (*dtrace_vtime_switch_func)(newl);
714 1.276 darran }
715 1.276 darran
716 1.318 ozaki /*
717 1.318 ozaki * We must ensure not to come here from inside a read section.
718 1.318 ozaki */
719 1.318 ozaki KASSERT(pserialize_not_in_read_section());
720 1.318 ozaki
721 1.188 yamt /* Switch to the new LWP.. */
722 1.305 mlelstv #ifdef MULTIPROCESSOR
723 1.304 matt KASSERT(curlwp == ci->ci_curlwp);
724 1.305 mlelstv #endif
725 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
726 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
727 1.207 ad ci = curcpu();
728 1.305 mlelstv #ifdef MULTIPROCESSOR
729 1.304 matt KASSERT(curlwp == ci->ci_curlwp);
730 1.305 mlelstv #endif
731 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
732 1.304 matt l, curlwp, prevlwp);
733 1.207 ad
734 1.188 yamt /*
735 1.209 ad * Switched away - we have new curlwp.
736 1.209 ad * Restore VM context and IPL.
737 1.188 yamt */
738 1.209 ad pmap_activate(l);
739 1.288 rmind pcu_switchpoint(l);
740 1.265 rmind
741 1.188 yamt if (prevlwp != NULL) {
742 1.209 ad /* Normalize the count of the spin-mutexes */
743 1.209 ad ci->ci_mtx_count++;
744 1.209 ad /* Unmark the state of context switch */
745 1.209 ad membar_exit();
746 1.209 ad prevlwp->l_ctxswtch = 0;
747 1.188 yamt }
748 1.209 ad
749 1.209 ad /* Update status for lwpctl, if present. */
750 1.219 ad if (l->l_lwpctl != NULL) {
751 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
752 1.219 ad l->l_lwpctl->lc_pctr++;
753 1.219 ad }
754 1.174 ad
755 1.300 yamt /*
756 1.329 ad * Note that, unless the caller disabled preemption, we can
757 1.329 ad * be preempted at any time after this splx().
758 1.300 yamt */
759 1.331 ad KASSERT(l->l_cpu == ci);
760 1.329 ad splx(oldspl);
761 1.188 yamt } else {
762 1.188 yamt /* Nothing to do - just unlock and return. */
763 1.246 rmind mutex_spin_exit(spc->spc_mutex);
764 1.321 mlelstv l->l_pflag &= ~LP_PREEMPTING;
765 1.330 ad /* We're down to only one lock, so do debug checks. */
766 1.330 ad LOCKDEBUG_BARRIER(l->l_mutex, 1);
767 1.188 yamt lwp_unlock(l);
768 1.122 thorpej }
769 1.110 briggs
770 1.188 yamt KASSERT(l == curlwp);
771 1.188 yamt KASSERT(l->l_stat == LSONPROC);
772 1.188 yamt
773 1.180 dsl SYSCALL_TIME_WAKEUP(l);
774 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
775 1.26 cgd }
776 1.26 cgd
777 1.26 cgd /*
778 1.245 ad * The machine independent parts of context switch to oblivion.
779 1.245 ad * Does not return. Call with the LWP unlocked.
780 1.245 ad */
781 1.245 ad void
782 1.245 ad lwp_exit_switchaway(lwp_t *l)
783 1.245 ad {
784 1.245 ad struct cpu_info *ci;
785 1.245 ad struct lwp *newl;
786 1.245 ad struct bintime bt;
787 1.245 ad
788 1.245 ad ci = l->l_cpu;
789 1.245 ad
790 1.245 ad KASSERT(kpreempt_disabled());
791 1.245 ad KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
792 1.245 ad KASSERT(ci == curcpu());
793 1.245 ad LOCKDEBUG_BARRIER(NULL, 0);
794 1.245 ad
795 1.245 ad kstack_check_magic(l);
796 1.245 ad
797 1.245 ad /* Count time spent in current system call */
798 1.245 ad SYSCALL_TIME_SLEEP(l);
799 1.245 ad binuptime(&bt);
800 1.245 ad updatertime(l, &bt);
801 1.245 ad
802 1.245 ad /* Must stay at IPL_SCHED even after releasing run queue lock. */
803 1.245 ad (void)splsched();
804 1.245 ad
805 1.245 ad /*
806 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
807 1.245 ad * If no LWP is runnable, select the idle LWP.
808 1.245 ad *
809 1.245 ad * Note that spc_lwplock might not necessary be held, and
810 1.245 ad * new thread would be unlocked after setting the LWP-lock.
811 1.245 ad */
812 1.245 ad spc_lock(ci);
813 1.245 ad #ifndef __HAVE_FAST_SOFTINTS
814 1.245 ad if (ci->ci_data.cpu_softints != 0) {
815 1.245 ad /* There are pending soft interrupts, so pick one. */
816 1.245 ad newl = softint_picklwp();
817 1.245 ad newl->l_stat = LSONPROC;
818 1.248 ad newl->l_pflag |= LP_RUNNING;
819 1.245 ad } else
820 1.245 ad #endif /* !__HAVE_FAST_SOFTINTS */
821 1.245 ad {
822 1.245 ad newl = nextlwp(ci, &ci->ci_schedstate);
823 1.245 ad }
824 1.245 ad
825 1.245 ad /* Update the new LWP's start time. */
826 1.245 ad newl->l_stime = bt;
827 1.248 ad l->l_pflag &= ~LP_RUNNING;
828 1.245 ad
829 1.245 ad /*
830 1.245 ad * ci_curlwp changes when a fast soft interrupt occurs.
831 1.327 ad * We use ci_onproc to keep track of which kernel or
832 1.245 ad * user thread is running 'underneath' the software
833 1.245 ad * interrupt. This is important for time accounting,
834 1.245 ad * itimers and forcing user threads to preempt (aston).
835 1.245 ad */
836 1.327 ad ci->ci_onproc = newl;
837 1.245 ad
838 1.245 ad /* Unlock the run queue. */
839 1.245 ad spc_unlock(ci);
840 1.245 ad
841 1.245 ad /* Count the context switch on this CPU. */
842 1.333 ad CPU_COUNT(CPU_COUNT_NSWTCH, 1);
843 1.245 ad
844 1.245 ad /* Update status for lwpctl, if present. */
845 1.245 ad if (l->l_lwpctl != NULL)
846 1.247 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
847 1.245 ad
848 1.245 ad /*
849 1.275 skrll * We may need to spin-wait if 'newl' is still
850 1.245 ad * context switching on another CPU.
851 1.245 ad */
852 1.261 rmind if (__predict_false(newl->l_ctxswtch != 0)) {
853 1.245 ad u_int count;
854 1.245 ad count = SPINLOCK_BACKOFF_MIN;
855 1.245 ad while (newl->l_ctxswtch)
856 1.245 ad SPINLOCK_BACKOFF(count);
857 1.245 ad }
858 1.329 ad membar_enter();
859 1.245 ad
860 1.279 darran /*
861 1.279 darran * If DTrace has set the active vtime enum to anything
862 1.279 darran * other than INACTIVE (0), then it should have set the
863 1.279 darran * function to call.
864 1.279 darran */
865 1.279 darran if (__predict_false(dtrace_vtime_active)) {
866 1.279 darran (*dtrace_vtime_switch_func)(newl);
867 1.279 darran }
868 1.276 darran
869 1.245 ad /* Switch to the new LWP.. */
870 1.245 ad (void)cpu_switchto(NULL, newl, false);
871 1.245 ad
872 1.251 uwe for (;;) continue; /* XXX: convince gcc about "noreturn" */
873 1.245 ad /* NOTREACHED */
874 1.245 ad }
875 1.245 ad
876 1.245 ad /*
877 1.271 rmind * setrunnable: change LWP state to be runnable, placing it on the run queue.
878 1.174 ad *
879 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
880 1.26 cgd */
881 1.26 cgd void
882 1.122 thorpej setrunnable(struct lwp *l)
883 1.26 cgd {
884 1.122 thorpej struct proc *p = l->l_proc;
885 1.205 ad struct cpu_info *ci;
886 1.326 ad kmutex_t *oldlock;
887 1.26 cgd
888 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
889 1.324 kamil KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
890 1.229 ad KASSERT(mutex_owned(p->p_lock));
891 1.183 ad KASSERT(lwp_locked(l, NULL));
892 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
893 1.83 thorpej
894 1.122 thorpej switch (l->l_stat) {
895 1.122 thorpej case LSSTOP:
896 1.33 mycroft /*
897 1.33 mycroft * If we're being traced (possibly because someone attached us
898 1.33 mycroft * while we were stopped), check for a signal from the debugger.
899 1.33 mycroft */
900 1.310 christos if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
901 1.174 ad signotify(l);
902 1.174 ad p->p_nrlwps++;
903 1.26 cgd break;
904 1.174 ad case LSSUSPENDED:
905 1.326 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
906 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
907 1.174 ad p->p_nrlwps++;
908 1.192 rmind cv_broadcast(&p->p_lwpcv);
909 1.122 thorpej break;
910 1.174 ad case LSSLEEP:
911 1.174 ad KASSERT(l->l_wchan != NULL);
912 1.26 cgd break;
913 1.326 ad case LSIDL:
914 1.326 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
915 1.326 ad break;
916 1.174 ad default:
917 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
918 1.26 cgd }
919 1.139 cl
920 1.174 ad /*
921 1.286 pooka * If the LWP was sleeping, start it again.
922 1.174 ad */
923 1.174 ad if (l->l_wchan != NULL) {
924 1.174 ad l->l_stat = LSSLEEP;
925 1.183 ad /* lwp_unsleep() will release the lock. */
926 1.221 ad lwp_unsleep(l, true);
927 1.174 ad return;
928 1.174 ad }
929 1.139 cl
930 1.174 ad /*
931 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
932 1.174 ad * about to call mi_switch(), in which case it will yield.
933 1.174 ad */
934 1.248 ad if ((l->l_pflag & LP_RUNNING) != 0) {
935 1.174 ad l->l_stat = LSONPROC;
936 1.174 ad l->l_slptime = 0;
937 1.174 ad lwp_unlock(l);
938 1.174 ad return;
939 1.174 ad }
940 1.122 thorpej
941 1.174 ad /*
942 1.205 ad * Look for a CPU to run.
943 1.205 ad * Set the LWP runnable.
944 1.174 ad */
945 1.205 ad ci = sched_takecpu(l);
946 1.205 ad l->l_cpu = ci;
947 1.236 ad spc_lock(ci);
948 1.326 ad oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
949 1.188 yamt sched_setrunnable(l);
950 1.174 ad l->l_stat = LSRUN;
951 1.122 thorpej l->l_slptime = 0;
952 1.326 ad sched_enqueue(l);
953 1.326 ad sched_resched_lwp(l, true);
954 1.326 ad /* SPC & LWP now unlocked. */
955 1.326 ad mutex_spin_exit(oldlock);
956 1.26 cgd }
957 1.26 cgd
958 1.26 cgd /*
959 1.174 ad * suspendsched:
960 1.174 ad *
961 1.266 yamt * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
962 1.174 ad */
963 1.94 bouyer void
964 1.174 ad suspendsched(void)
965 1.94 bouyer {
966 1.174 ad CPU_INFO_ITERATOR cii;
967 1.174 ad struct cpu_info *ci;
968 1.122 thorpej struct lwp *l;
969 1.174 ad struct proc *p;
970 1.94 bouyer
971 1.94 bouyer /*
972 1.174 ad * We do this by process in order not to violate the locking rules.
973 1.94 bouyer */
974 1.228 ad mutex_enter(proc_lock);
975 1.174 ad PROCLIST_FOREACH(p, &allproc) {
976 1.229 ad mutex_enter(p->p_lock);
977 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
978 1.229 ad mutex_exit(p->p_lock);
979 1.94 bouyer continue;
980 1.174 ad }
981 1.174 ad
982 1.309 pgoyette if (p->p_stat != SSTOP) {
983 1.309 pgoyette if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
984 1.309 pgoyette p->p_pptr->p_nstopchild++;
985 1.309 pgoyette p->p_waited = 0;
986 1.309 pgoyette }
987 1.309 pgoyette p->p_stat = SSTOP;
988 1.309 pgoyette }
989 1.174 ad
990 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
991 1.174 ad if (l == curlwp)
992 1.174 ad continue;
993 1.174 ad
994 1.174 ad lwp_lock(l);
995 1.122 thorpej
996 1.97 enami /*
997 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
998 1.174 ad * when it tries to return to user mode. We want to
999 1.174 ad * try and get to get as many LWPs as possible to
1000 1.174 ad * the user / kernel boundary, so that they will
1001 1.174 ad * release any locks that they hold.
1002 1.97 enami */
1003 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1004 1.174 ad
1005 1.174 ad if (l->l_stat == LSSLEEP &&
1006 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1007 1.174 ad /* setrunnable() will release the lock. */
1008 1.174 ad setrunnable(l);
1009 1.174 ad continue;
1010 1.174 ad }
1011 1.174 ad
1012 1.174 ad lwp_unlock(l);
1013 1.94 bouyer }
1014 1.174 ad
1015 1.229 ad mutex_exit(p->p_lock);
1016 1.94 bouyer }
1017 1.228 ad mutex_exit(proc_lock);
1018 1.174 ad
1019 1.174 ad /*
1020 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1021 1.326 ad * They'll trap into the kernel and suspend themselves in userret().
1022 1.326 ad *
1023 1.326 ad * Unusually, we don't hold any other scheduler object locked, which
1024 1.326 ad * would keep preemption off for sched_resched_cpu(), so disable it
1025 1.326 ad * explicitly.
1026 1.174 ad */
1027 1.326 ad kpreempt_disable();
1028 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1029 1.204 ad spc_lock(ci);
1030 1.326 ad sched_resched_cpu(ci, PRI_KERNEL, true);
1031 1.326 ad /* spc now unlocked */
1032 1.204 ad }
1033 1.326 ad kpreempt_enable();
1034 1.174 ad }
1035 1.174 ad
1036 1.174 ad /*
1037 1.174 ad * sched_unsleep:
1038 1.174 ad *
1039 1.174 ad * The is called when the LWP has not been awoken normally but instead
1040 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1041 1.174 ad * it's not a valid action for running or idle LWPs.
1042 1.174 ad */
1043 1.271 rmind static void
1044 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1045 1.174 ad {
1046 1.174 ad
1047 1.174 ad lwp_unlock(l);
1048 1.174 ad panic("sched_unsleep");
1049 1.174 ad }
1050 1.174 ad
1051 1.250 rmind static void
1052 1.326 ad sched_changepri(struct lwp *l, pri_t pri)
1053 1.188 yamt {
1054 1.326 ad struct schedstate_percpu *spc;
1055 1.326 ad struct cpu_info *ci;
1056 1.188 yamt
1057 1.250 rmind KASSERT(lwp_locked(l, NULL));
1058 1.188 yamt
1059 1.326 ad ci = l->l_cpu;
1060 1.326 ad spc = &ci->ci_schedstate;
1061 1.174 ad
1062 1.271 rmind if (l->l_stat == LSRUN) {
1063 1.326 ad KASSERT(lwp_locked(l, spc->spc_mutex));
1064 1.204 ad sched_dequeue(l);
1065 1.204 ad l->l_priority = pri;
1066 1.326 ad sched_enqueue(l);
1067 1.326 ad sched_resched_lwp(l, false);
1068 1.326 ad } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1069 1.326 ad /* On priority drop, only evict realtime LWPs. */
1070 1.326 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
1071 1.326 ad l->l_priority = pri;
1072 1.326 ad spc_lock(ci);
1073 1.326 ad sched_resched_cpu(ci, spc->spc_maxpriority, true);
1074 1.326 ad /* spc now unlocked */
1075 1.204 ad } else {
1076 1.174 ad l->l_priority = pri;
1077 1.157 yamt }
1078 1.184 yamt }
1079 1.184 yamt
1080 1.188 yamt static void
1081 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1082 1.184 yamt {
1083 1.326 ad struct schedstate_percpu *spc;
1084 1.326 ad struct cpu_info *ci;
1085 1.184 yamt
1086 1.188 yamt KASSERT(lwp_locked(l, NULL));
1087 1.184 yamt
1088 1.326 ad ci = l->l_cpu;
1089 1.326 ad spc = &ci->ci_schedstate;
1090 1.326 ad
1091 1.271 rmind if (l->l_stat == LSRUN) {
1092 1.326 ad KASSERT(lwp_locked(l, spc->spc_mutex));
1093 1.204 ad sched_dequeue(l);
1094 1.204 ad l->l_inheritedprio = pri;
1095 1.311 christos l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1096 1.326 ad sched_enqueue(l);
1097 1.326 ad sched_resched_lwp(l, false);
1098 1.326 ad } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1099 1.326 ad /* On priority drop, only evict realtime LWPs. */
1100 1.326 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
1101 1.326 ad l->l_inheritedprio = pri;
1102 1.326 ad l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1103 1.326 ad spc_lock(ci);
1104 1.326 ad sched_resched_cpu(ci, spc->spc_maxpriority, true);
1105 1.326 ad /* spc now unlocked */
1106 1.204 ad } else {
1107 1.184 yamt l->l_inheritedprio = pri;
1108 1.311 christos l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1109 1.184 yamt }
1110 1.184 yamt }
1111 1.184 yamt
1112 1.184 yamt struct lwp *
1113 1.184 yamt syncobj_noowner(wchan_t wchan)
1114 1.184 yamt {
1115 1.184 yamt
1116 1.184 yamt return NULL;
1117 1.151 yamt }
1118 1.151 yamt
1119 1.250 rmind /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1120 1.281 rmind const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1121 1.281 rmind
1122 1.281 rmind /*
1123 1.281 rmind * Constants for averages over 1, 5 and 15 minutes when sampling at
1124 1.281 rmind * 5 second intervals.
1125 1.281 rmind */
1126 1.281 rmind static const fixpt_t cexp[ ] = {
1127 1.281 rmind 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1128 1.281 rmind 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1129 1.281 rmind 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1130 1.281 rmind };
1131 1.134 matt
1132 1.134 matt /*
1133 1.188 yamt * sched_pstats:
1134 1.188 yamt *
1135 1.281 rmind * => Update process statistics and check CPU resource allocation.
1136 1.281 rmind * => Call scheduler-specific hook to eventually adjust LWP priorities.
1137 1.281 rmind * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1138 1.130 nathanw */
1139 1.113 gmcgarry void
1140 1.281 rmind sched_pstats(void)
1141 1.113 gmcgarry {
1142 1.281 rmind extern struct loadavg averunnable;
1143 1.281 rmind struct loadavg *avg = &averunnable;
1144 1.249 rmind const int clkhz = (stathz != 0 ? stathz : hz);
1145 1.281 rmind static bool backwards = false;
1146 1.281 rmind static u_int lavg_count = 0;
1147 1.188 yamt struct proc *p;
1148 1.281 rmind int nrun;
1149 1.113 gmcgarry
1150 1.188 yamt sched_pstats_ticks++;
1151 1.281 rmind if (++lavg_count >= 5) {
1152 1.281 rmind lavg_count = 0;
1153 1.281 rmind nrun = 0;
1154 1.281 rmind }
1155 1.228 ad mutex_enter(proc_lock);
1156 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1157 1.281 rmind struct lwp *l;
1158 1.281 rmind struct rlimit *rlim;
1159 1.296 dholland time_t runtm;
1160 1.281 rmind int sig;
1161 1.281 rmind
1162 1.271 rmind /* Increment sleep time (if sleeping), ignore overflow. */
1163 1.229 ad mutex_enter(p->p_lock);
1164 1.212 yamt runtm = p->p_rtime.sec;
1165 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1166 1.281 rmind fixpt_t lpctcpu;
1167 1.281 rmind u_int lcpticks;
1168 1.281 rmind
1169 1.249 rmind if (__predict_false((l->l_flag & LW_IDLE) != 0))
1170 1.188 yamt continue;
1171 1.188 yamt lwp_lock(l);
1172 1.212 yamt runtm += l->l_rtime.sec;
1173 1.188 yamt l->l_swtime++;
1174 1.242 rmind sched_lwp_stats(l);
1175 1.281 rmind
1176 1.281 rmind /* For load average calculation. */
1177 1.282 rmind if (__predict_false(lavg_count == 0) &&
1178 1.282 rmind (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1179 1.281 rmind switch (l->l_stat) {
1180 1.281 rmind case LSSLEEP:
1181 1.281 rmind if (l->l_slptime > 1) {
1182 1.281 rmind break;
1183 1.281 rmind }
1184 1.323 mrg /* FALLTHROUGH */
1185 1.281 rmind case LSRUN:
1186 1.281 rmind case LSONPROC:
1187 1.281 rmind case LSIDL:
1188 1.281 rmind nrun++;
1189 1.281 rmind }
1190 1.281 rmind }
1191 1.282 rmind lwp_unlock(l);
1192 1.282 rmind
1193 1.282 rmind l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1194 1.282 rmind if (l->l_slptime != 0)
1195 1.282 rmind continue;
1196 1.282 rmind
1197 1.282 rmind lpctcpu = l->l_pctcpu;
1198 1.282 rmind lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1199 1.282 rmind lpctcpu += ((FSCALE - ccpu) *
1200 1.282 rmind (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1201 1.282 rmind l->l_pctcpu = lpctcpu;
1202 1.188 yamt }
1203 1.249 rmind /* Calculating p_pctcpu only for ps(1) */
1204 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1205 1.174 ad
1206 1.303 christos if (__predict_false(runtm < 0)) {
1207 1.303 christos if (!backwards) {
1208 1.303 christos backwards = true;
1209 1.303 christos printf("WARNING: negative runtime; "
1210 1.303 christos "monotonic clock has gone backwards\n");
1211 1.303 christos }
1212 1.303 christos mutex_exit(p->p_lock);
1213 1.303 christos continue;
1214 1.303 christos }
1215 1.303 christos
1216 1.188 yamt /*
1217 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1218 1.293 apb * If over the hard limit, kill it with SIGKILL.
1219 1.293 apb * If over the soft limit, send SIGXCPU and raise
1220 1.293 apb * the soft limit a little.
1221 1.188 yamt */
1222 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1223 1.188 yamt sig = 0;
1224 1.249 rmind if (__predict_false(runtm >= rlim->rlim_cur)) {
1225 1.293 apb if (runtm >= rlim->rlim_max) {
1226 1.188 yamt sig = SIGKILL;
1227 1.312 christos log(LOG_NOTICE,
1228 1.312 christos "pid %d, command %s, is killed: %s\n",
1229 1.312 christos p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1230 1.293 apb uprintf("pid %d, command %s, is killed: %s\n",
1231 1.312 christos p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1232 1.293 apb } else {
1233 1.188 yamt sig = SIGXCPU;
1234 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1235 1.188 yamt rlim->rlim_cur += 5;
1236 1.188 yamt }
1237 1.188 yamt }
1238 1.229 ad mutex_exit(p->p_lock);
1239 1.303 christos if (__predict_false(sig)) {
1240 1.259 rmind KASSERT((p->p_flag & PK_SYSTEM) == 0);
1241 1.188 yamt psignal(p, sig);
1242 1.259 rmind }
1243 1.174 ad }
1244 1.281 rmind
1245 1.281 rmind /* Load average calculation. */
1246 1.281 rmind if (__predict_false(lavg_count == 0)) {
1247 1.281 rmind int i;
1248 1.283 martin CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1249 1.281 rmind for (i = 0; i < __arraycount(cexp); i++) {
1250 1.281 rmind avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1251 1.281 rmind nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1252 1.281 rmind }
1253 1.281 rmind }
1254 1.281 rmind
1255 1.281 rmind /* Lightning bolt. */
1256 1.273 pooka cv_broadcast(&lbolt);
1257 1.325 ad
1258 1.325 ad mutex_exit(proc_lock);
1259 1.113 gmcgarry }
1260