Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.334.2.1
      1  1.334.2.1        ad /*	$NetBSD: kern_synch.c,v 1.334.2.1 2020/01/17 21:47:35 ad Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4      1.325        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019
      5      1.260        ad  *    The NetBSD Foundation, Inc.
      6       1.63   thorpej  * All rights reserved.
      7       1.63   thorpej  *
      8       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      9       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10      1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11      1.188      yamt  * Daniel Sieger.
     12       1.63   thorpej  *
     13       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     14       1.63   thorpej  * modification, are permitted provided that the following conditions
     15       1.63   thorpej  * are met:
     16       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     17       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     18       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     21       1.63   thorpej  *
     22       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     33       1.63   thorpej  */
     34       1.26       cgd 
     35       1.26       cgd /*-
     36       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     38       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     39       1.26       cgd  * All or some portions of this file are derived from material licensed
     40       1.26       cgd  * to the University of California by American Telephone and Telegraph
     41       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     43       1.26       cgd  *
     44       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     45       1.26       cgd  * modification, are permitted provided that the following conditions
     46       1.26       cgd  * are met:
     47       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     48       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     49       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     50       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     51       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     52      1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     53       1.26       cgd  *    may be used to endorse or promote products derived from this software
     54       1.26       cgd  *    without specific prior written permission.
     55       1.26       cgd  *
     56       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66       1.26       cgd  * SUCH DAMAGE.
     67       1.26       cgd  *
     68       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69       1.26       cgd  */
     70      1.106     lukem 
     71      1.106     lukem #include <sys/cdefs.h>
     72  1.334.2.1        ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.334.2.1 2020/01/17 21:47:35 ad Exp $");
     73       1.48       mrg 
     74      1.109      yamt #include "opt_kstack.h"
     75      1.277    darran #include "opt_dtrace.h"
     76       1.26       cgd 
     77      1.174        ad #define	__MUTEX_PRIVATE
     78      1.174        ad 
     79       1.26       cgd #include <sys/param.h>
     80       1.26       cgd #include <sys/systm.h>
     81       1.26       cgd #include <sys/proc.h>
     82       1.26       cgd #include <sys/kernel.h>
     83      1.188      yamt #include <sys/cpu.h>
     84      1.290  christos #include <sys/pserialize.h>
     85       1.26       cgd #include <sys/resourcevar.h>
     86       1.55      ross #include <sys/sched.h>
     87      1.179       dsl #include <sys/syscall_stats.h>
     88      1.174        ad #include <sys/sleepq.h>
     89      1.174        ad #include <sys/lockdebug.h>
     90      1.190        ad #include <sys/evcnt.h>
     91      1.199        ad #include <sys/intr.h>
     92      1.207        ad #include <sys/lwpctl.h>
     93      1.209        ad #include <sys/atomic.h>
     94      1.295     njoly #include <sys/syslog.h>
     95       1.47       mrg 
     96       1.47       mrg #include <uvm/uvm_extern.h>
     97       1.47       mrg 
     98      1.231        ad #include <dev/lockstat.h>
     99      1.231        ad 
    100      1.276    darran #include <sys/dtrace_bsd.h>
    101      1.279    darran int                             dtrace_vtime_active=0;
    102      1.276    darran dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    103      1.276    darran 
    104      1.271     rmind static void	sched_unsleep(struct lwp *, bool);
    105      1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    106      1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    107      1.122   thorpej 
    108      1.174        ad syncobj_t sleep_syncobj = {
    109      1.313     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    110      1.313     ozaki 	.sobj_unsleep	= sleepq_unsleep,
    111      1.313     ozaki 	.sobj_changepri	= sleepq_changepri,
    112      1.313     ozaki 	.sobj_lendpri	= sleepq_lendpri,
    113      1.313     ozaki 	.sobj_owner	= syncobj_noowner,
    114      1.174        ad };
    115      1.174        ad 
    116      1.174        ad syncobj_t sched_syncobj = {
    117      1.313     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    118      1.313     ozaki 	.sobj_unsleep	= sched_unsleep,
    119      1.313     ozaki 	.sobj_changepri	= sched_changepri,
    120      1.313     ozaki 	.sobj_lendpri	= sched_lendpri,
    121      1.313     ozaki 	.sobj_owner	= syncobj_noowner,
    122      1.174        ad };
    123      1.122   thorpej 
    124      1.289     rmind /* "Lightning bolt": once a second sleep address. */
    125      1.289     rmind kcondvar_t		lbolt			__cacheline_aligned;
    126      1.223        ad 
    127      1.289     rmind u_int			sched_pstats_ticks	__cacheline_aligned;
    128      1.289     rmind 
    129      1.289     rmind /* Preemption event counters. */
    130      1.289     rmind static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    131      1.289     rmind static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    132      1.289     rmind static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    133      1.231        ad 
    134      1.237     rmind void
    135      1.270      elad synch_init(void)
    136      1.237     rmind {
    137      1.237     rmind 
    138      1.237     rmind 	cv_init(&lbolt, "lbolt");
    139      1.237     rmind 
    140      1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    141      1.237     rmind 	   "kpreempt", "defer: critical section");
    142      1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    143      1.237     rmind 	   "kpreempt", "defer: kernel_lock");
    144      1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    145      1.237     rmind 	   "kpreempt", "immediate");
    146      1.237     rmind }
    147      1.237     rmind 
    148       1.26       cgd /*
    149      1.174        ad  * OBSOLETE INTERFACE
    150      1.174        ad  *
    151      1.255     skrll  * General sleep call.  Suspends the current LWP until a wakeup is
    152      1.255     skrll  * performed on the specified identifier.  The LWP will then be made
    153      1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    154      1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    155       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    156       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    157       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    158       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    159       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    160       1.26       cgd  */
    161       1.26       cgd int
    162      1.297     rmind tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
    163       1.26       cgd {
    164      1.122   thorpej 	struct lwp *l = curlwp;
    165      1.174        ad 	sleepq_t *sq;
    166      1.244        ad 	kmutex_t *mp;
    167       1.26       cgd 
    168      1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    169      1.272     pooka 	KASSERT(ident != &lbolt);
    170      1.204        ad 
    171      1.174        ad 	if (sleepq_dontsleep(l)) {
    172      1.174        ad 		(void)sleepq_abort(NULL, 0);
    173      1.174        ad 		return 0;
    174       1.26       cgd 	}
    175       1.78  sommerfe 
    176      1.204        ad 	l->l_kpriority = true;
    177      1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    178      1.244        ad 	sleepq_enter(sq, l, mp);
    179      1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    180      1.297     rmind 	return sleepq_block(timo, priority & PCATCH);
    181       1.26       cgd }
    182       1.26       cgd 
    183      1.187        ad int
    184      1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    185      1.187        ad 	kmutex_t *mtx)
    186      1.187        ad {
    187      1.187        ad 	struct lwp *l = curlwp;
    188      1.187        ad 	sleepq_t *sq;
    189      1.244        ad 	kmutex_t *mp;
    190      1.188      yamt 	int error;
    191      1.187        ad 
    192      1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    193      1.272     pooka 	KASSERT(ident != &lbolt);
    194      1.204        ad 
    195      1.187        ad 	if (sleepq_dontsleep(l)) {
    196      1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    197      1.187        ad 		return 0;
    198      1.187        ad 	}
    199      1.187        ad 
    200      1.204        ad 	l->l_kpriority = true;
    201      1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    202      1.244        ad 	sleepq_enter(sq, l, mp);
    203      1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    204      1.187        ad 	mutex_exit(mtx);
    205      1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    206      1.187        ad 
    207      1.187        ad 	if ((priority & PNORELOCK) == 0)
    208      1.187        ad 		mutex_enter(mtx);
    209      1.297     rmind 
    210      1.187        ad 	return error;
    211      1.187        ad }
    212      1.187        ad 
    213       1.26       cgd /*
    214      1.174        ad  * General sleep call for situations where a wake-up is not expected.
    215       1.26       cgd  */
    216      1.174        ad int
    217      1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    218       1.26       cgd {
    219      1.174        ad 	struct lwp *l = curlwp;
    220      1.244        ad 	kmutex_t *mp;
    221      1.174        ad 	sleepq_t *sq;
    222      1.174        ad 	int error;
    223       1.26       cgd 
    224      1.284     pooka 	KASSERT(!(timo == 0 && intr == false));
    225      1.284     pooka 
    226      1.174        ad 	if (sleepq_dontsleep(l))
    227      1.174        ad 		return sleepq_abort(NULL, 0);
    228       1.26       cgd 
    229      1.174        ad 	if (mtx != NULL)
    230      1.174        ad 		mutex_exit(mtx);
    231      1.204        ad 	l->l_kpriority = true;
    232      1.244        ad 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    233      1.244        ad 	sleepq_enter(sq, l, mp);
    234      1.204        ad 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    235      1.188      yamt 	error = sleepq_block(timo, intr);
    236      1.174        ad 	if (mtx != NULL)
    237      1.174        ad 		mutex_enter(mtx);
    238       1.83   thorpej 
    239      1.174        ad 	return error;
    240      1.139        cl }
    241      1.139        cl 
    242       1.26       cgd /*
    243      1.174        ad  * OBSOLETE INTERFACE
    244      1.174        ad  *
    245      1.255     skrll  * Make all LWPs sleeping on the specified identifier runnable.
    246       1.26       cgd  */
    247       1.26       cgd void
    248      1.174        ad wakeup(wchan_t ident)
    249       1.26       cgd {
    250      1.174        ad 	sleepq_t *sq;
    251      1.244        ad 	kmutex_t *mp;
    252       1.83   thorpej 
    253      1.261     rmind 	if (__predict_false(cold))
    254      1.174        ad 		return;
    255       1.83   thorpej 
    256      1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    257      1.244        ad 	sleepq_wake(sq, ident, (u_int)-1, mp);
    258       1.63   thorpej }
    259       1.63   thorpej 
    260       1.63   thorpej /*
    261      1.255     skrll  * General yield call.  Puts the current LWP back on its run queue and
    262      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    263      1.255     skrll  * current LWP explicitly requests it (eg sched_yield(2)).
    264      1.117  gmcgarry  */
    265      1.117  gmcgarry void
    266      1.117  gmcgarry yield(void)
    267      1.117  gmcgarry {
    268      1.122   thorpej 	struct lwp *l = curlwp;
    269      1.117  gmcgarry 
    270      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    271      1.174        ad 	lwp_lock(l);
    272      1.329        ad 
    273      1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    274      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    275      1.329        ad 
    276      1.325        ad 	/* Voluntary - ditch kpriority boost. */
    277      1.204        ad 	l->l_kpriority = false;
    278      1.329        ad 	spc_lock(l->l_cpu);
    279      1.329        ad 	mi_switch(l);
    280      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    281       1.69   thorpej }
    282       1.69   thorpej 
    283       1.69   thorpej /*
    284      1.255     skrll  * General preemption call.  Puts the current LWP back on its run queue
    285      1.156    rpaulo  * and performs an involuntary context switch.
    286       1.69   thorpej  */
    287       1.69   thorpej void
    288      1.174        ad preempt(void)
    289       1.69   thorpej {
    290      1.122   thorpej 	struct lwp *l = curlwp;
    291       1.69   thorpej 
    292      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    293      1.174        ad 	lwp_lock(l);
    294      1.329        ad 
    295      1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    296      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    297      1.329        ad 
    298      1.325        ad 	/* Involuntary - keep kpriority boost. */
    299      1.321   mlelstv 	l->l_pflag |= LP_PREEMPTING;
    300      1.329        ad 	spc_lock(l->l_cpu);
    301      1.329        ad 	mi_switch(l);
    302      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    303       1.69   thorpej }
    304       1.69   thorpej 
    305      1.234        ad /*
    306      1.234        ad  * Handle a request made by another agent to preempt the current LWP
    307      1.234        ad  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    308      1.234        ad  *
    309      1.234        ad  * Character addresses for lockstat only.
    310      1.234        ad  */
    311      1.326        ad static char	kpreempt_is_disabled;
    312      1.231        ad static char	kernel_lock_held;
    313      1.326        ad static char	is_softint_lwp;
    314      1.326        ad static char	spl_is_raised;
    315      1.231        ad 
    316      1.231        ad bool
    317      1.231        ad kpreempt(uintptr_t where)
    318      1.231        ad {
    319      1.231        ad 	uintptr_t failed;
    320      1.231        ad 	lwp_t *l;
    321      1.264        ad 	int s, dop, lsflag;
    322      1.231        ad 
    323      1.231        ad 	l = curlwp;
    324      1.231        ad 	failed = 0;
    325      1.231        ad 	while ((dop = l->l_dopreempt) != 0) {
    326      1.231        ad 		if (l->l_stat != LSONPROC) {
    327      1.231        ad 			/*
    328      1.231        ad 			 * About to block (or die), let it happen.
    329      1.231        ad 			 * Doesn't really count as "preemption has
    330      1.231        ad 			 * been blocked", since we're going to
    331      1.231        ad 			 * context switch.
    332      1.231        ad 			 */
    333      1.325        ad 			atomic_swap_uint(&l->l_dopreempt, 0);
    334      1.231        ad 			return true;
    335      1.231        ad 		}
    336      1.231        ad 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    337      1.231        ad 			/* Can't preempt idle loop, don't count as failure. */
    338      1.325        ad 			atomic_swap_uint(&l->l_dopreempt, 0);
    339      1.261     rmind 			return true;
    340      1.231        ad 		}
    341      1.231        ad 		if (__predict_false(l->l_nopreempt != 0)) {
    342      1.231        ad 			/* LWP holds preemption disabled, explicitly. */
    343      1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    344      1.234        ad 				kpreempt_ev_crit.ev_count++;
    345      1.231        ad 			}
    346      1.326        ad 			failed = (uintptr_t)&kpreempt_is_disabled;
    347      1.231        ad 			break;
    348      1.231        ad 		}
    349      1.231        ad 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    350      1.261     rmind 			/* Can't preempt soft interrupts yet. */
    351      1.325        ad 			atomic_swap_uint(&l->l_dopreempt, 0);
    352      1.326        ad 			failed = (uintptr_t)&is_softint_lwp;
    353      1.261     rmind 			break;
    354      1.231        ad 		}
    355      1.231        ad 		s = splsched();
    356      1.231        ad 		if (__predict_false(l->l_blcnt != 0 ||
    357      1.231        ad 		    curcpu()->ci_biglock_wanted != NULL)) {
    358      1.231        ad 			/* Hold or want kernel_lock, code is not MT safe. */
    359      1.231        ad 			splx(s);
    360      1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    361      1.234        ad 				kpreempt_ev_klock.ev_count++;
    362      1.231        ad 			}
    363      1.231        ad 			failed = (uintptr_t)&kernel_lock_held;
    364      1.231        ad 			break;
    365      1.231        ad 		}
    366      1.231        ad 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    367      1.231        ad 			/*
    368      1.231        ad 			 * It may be that the IPL is too high.
    369      1.231        ad 			 * kpreempt_enter() can schedule an
    370      1.231        ad 			 * interrupt to retry later.
    371      1.231        ad 			 */
    372      1.231        ad 			splx(s);
    373      1.326        ad 			failed = (uintptr_t)&spl_is_raised;
    374      1.231        ad 			break;
    375      1.231        ad 		}
    376      1.231        ad 		/* Do it! */
    377      1.231        ad 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    378      1.234        ad 			kpreempt_ev_immed.ev_count++;
    379      1.231        ad 		}
    380      1.231        ad 		lwp_lock(l);
    381      1.329        ad 		/* Involuntary - keep kpriority boost. */
    382      1.326        ad 		l->l_pflag |= LP_PREEMPTING;
    383      1.329        ad 		spc_lock(l->l_cpu);
    384      1.231        ad 		mi_switch(l);
    385      1.231        ad 		l->l_nopreempt++;
    386      1.231        ad 		splx(s);
    387      1.231        ad 
    388      1.231        ad 		/* Take care of any MD cleanup. */
    389      1.231        ad 		cpu_kpreempt_exit(where);
    390      1.231        ad 		l->l_nopreempt--;
    391      1.231        ad 	}
    392      1.231        ad 
    393      1.264        ad 	if (__predict_true(!failed)) {
    394      1.264        ad 		return false;
    395      1.264        ad 	}
    396      1.264        ad 
    397      1.231        ad 	/* Record preemption failure for reporting via lockstat. */
    398      1.264        ad 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    399      1.264        ad 	lsflag = 0;
    400      1.264        ad 	LOCKSTAT_ENTER(lsflag);
    401      1.264        ad 	if (__predict_false(lsflag)) {
    402      1.264        ad 		if (where == 0) {
    403      1.264        ad 			where = (uintptr_t)__builtin_return_address(0);
    404      1.264        ad 		}
    405      1.264        ad 		/* Preemption is on, might recurse, so make it atomic. */
    406      1.264        ad 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    407      1.264        ad 		    (void *)where) == NULL) {
    408      1.264        ad 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    409      1.264        ad 			l->l_pfaillock = failed;
    410      1.231        ad 		}
    411      1.231        ad 	}
    412      1.264        ad 	LOCKSTAT_EXIT(lsflag);
    413      1.264        ad 	return true;
    414      1.231        ad }
    415      1.231        ad 
    416       1.69   thorpej /*
    417      1.231        ad  * Return true if preemption is explicitly disabled.
    418      1.230        ad  */
    419      1.231        ad bool
    420      1.231        ad kpreempt_disabled(void)
    421      1.231        ad {
    422      1.261     rmind 	const lwp_t *l = curlwp;
    423      1.231        ad 
    424      1.231        ad 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    425      1.332        ad 	    (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
    426      1.332        ad 	    cpu_kpreempt_disabled();
    427      1.231        ad }
    428      1.230        ad 
    429      1.230        ad /*
    430      1.231        ad  * Disable kernel preemption.
    431      1.230        ad  */
    432      1.230        ad void
    433      1.231        ad kpreempt_disable(void)
    434      1.230        ad {
    435      1.230        ad 
    436      1.231        ad 	KPREEMPT_DISABLE(curlwp);
    437      1.230        ad }
    438      1.230        ad 
    439      1.230        ad /*
    440      1.231        ad  * Reenable kernel preemption.
    441      1.230        ad  */
    442      1.231        ad void
    443      1.231        ad kpreempt_enable(void)
    444      1.230        ad {
    445      1.230        ad 
    446      1.231        ad 	KPREEMPT_ENABLE(curlwp);
    447      1.230        ad }
    448      1.230        ad 
    449      1.230        ad /*
    450      1.188      yamt  * Compute the amount of time during which the current lwp was running.
    451      1.130   nathanw  *
    452      1.188      yamt  * - update l_rtime unless it's an idle lwp.
    453      1.188      yamt  */
    454      1.188      yamt 
    455      1.199        ad void
    456      1.212      yamt updatertime(lwp_t *l, const struct bintime *now)
    457      1.188      yamt {
    458      1.188      yamt 
    459      1.261     rmind 	if (__predict_false(l->l_flag & LW_IDLE))
    460      1.188      yamt 		return;
    461      1.188      yamt 
    462      1.212      yamt 	/* rtime += now - stime */
    463      1.212      yamt 	bintime_add(&l->l_rtime, now);
    464      1.212      yamt 	bintime_sub(&l->l_rtime, &l->l_stime);
    465      1.188      yamt }
    466      1.188      yamt 
    467      1.188      yamt /*
    468      1.245        ad  * Select next LWP from the current CPU to run..
    469      1.245        ad  */
    470      1.245        ad static inline lwp_t *
    471      1.245        ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    472      1.245        ad {
    473      1.245        ad 	lwp_t *newl;
    474      1.245        ad 
    475      1.245        ad 	/*
    476      1.245        ad 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    477      1.245        ad 	 * If no LWP is runnable, select the idle LWP.
    478      1.245        ad 	 *
    479      1.245        ad 	 * Note that spc_lwplock might not necessary be held, and
    480      1.245        ad 	 * new thread would be unlocked after setting the LWP-lock.
    481      1.245        ad 	 */
    482      1.245        ad 	newl = sched_nextlwp();
    483      1.245        ad 	if (newl != NULL) {
    484      1.245        ad 		sched_dequeue(newl);
    485      1.245        ad 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    486      1.274     rmind 		KASSERT(newl->l_cpu == ci);
    487      1.245        ad 		newl->l_stat = LSONPROC;
    488  1.334.2.1        ad 		newl->l_flag |= LW_RUNNING;
    489      1.245        ad 		lwp_setlock(newl, spc->spc_lwplock);
    490      1.334        ad 		spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
    491      1.245        ad 	} else {
    492      1.245        ad 		newl = ci->ci_data.cpu_idlelwp;
    493      1.245        ad 		newl->l_stat = LSONPROC;
    494  1.334.2.1        ad 		newl->l_flag |= LW_RUNNING;
    495      1.334        ad 		spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
    496      1.334        ad 		    SPCF_IDLE;
    497      1.245        ad 	}
    498      1.261     rmind 
    499      1.245        ad 	/*
    500      1.325        ad 	 * Only clear want_resched if there are no pending (slow) software
    501      1.325        ad 	 * interrupts.  We can do this without an atomic, because no new
    502      1.325        ad 	 * LWPs can appear in the queue due to our hold on spc_mutex, and
    503      1.325        ad 	 * the update to ci_want_resched will become globally visible before
    504      1.325        ad 	 * the release of spc_mutex becomes globally visible.
    505      1.245        ad 	 */
    506      1.245        ad 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    507      1.245        ad 	spc->spc_curpriority = lwp_eprio(newl);
    508      1.245        ad 
    509      1.245        ad 	return newl;
    510      1.245        ad }
    511      1.245        ad 
    512      1.245        ad /*
    513      1.188      yamt  * The machine independent parts of context switch.
    514      1.188      yamt  *
    515  1.334.2.1        ad  * NOTE: l->l_cpu is not changed in this routine, because an LWP never
    516  1.334.2.1        ad  * changes its own l_cpu (that would screw up curcpu on many ports and could
    517  1.334.2.1        ad  * cause all kinds of other evil stuff).  l_cpu is always changed by some
    518  1.334.2.1        ad  * other actor, when it's known the LWP is not running (the LW_RUNNING flag
    519  1.334.2.1        ad  * is checked under lock).
    520       1.26       cgd  */
    521      1.329        ad void
    522      1.199        ad mi_switch(lwp_t *l)
    523       1.26       cgd {
    524      1.246     rmind 	struct cpu_info *ci;
    525       1.76   thorpej 	struct schedstate_percpu *spc;
    526      1.188      yamt 	struct lwp *newl;
    527      1.329        ad 	int oldspl;
    528      1.212      yamt 	struct bintime bt;
    529      1.199        ad 	bool returning;
    530       1.26       cgd 
    531      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    532      1.231        ad 	KASSERT(kpreempt_disabled());
    533      1.329        ad 	KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
    534      1.174        ad 
    535      1.174        ad 	kstack_check_magic(l);
    536       1.83   thorpej 
    537      1.212      yamt 	binuptime(&bt);
    538      1.199        ad 
    539      1.304      matt 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    540  1.334.2.1        ad 	KASSERT((l->l_flag & LW_RUNNING) != 0);
    541      1.329        ad 	KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
    542      1.329        ad 	ci = curcpu();
    543      1.196        ad 	spc = &ci->ci_schedstate;
    544      1.199        ad 	returning = false;
    545      1.190        ad 	newl = NULL;
    546      1.190        ad 
    547      1.199        ad 	/*
    548      1.199        ad 	 * If we have been asked to switch to a specific LWP, then there
    549      1.199        ad 	 * is no need to inspect the run queues.  If a soft interrupt is
    550      1.199        ad 	 * blocking, then return to the interrupted thread without adjusting
    551      1.199        ad 	 * VM context or its start time: neither have been changed in order
    552      1.199        ad 	 * to take the interrupt.
    553      1.199        ad 	 */
    554      1.190        ad 	if (l->l_switchto != NULL) {
    555      1.204        ad 		if ((l->l_pflag & LP_INTR) != 0) {
    556      1.199        ad 			returning = true;
    557      1.199        ad 			softint_block(l);
    558      1.248        ad 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    559      1.212      yamt 				updatertime(l, &bt);
    560      1.199        ad 		}
    561      1.190        ad 		newl = l->l_switchto;
    562      1.190        ad 		l->l_switchto = NULL;
    563      1.190        ad 	}
    564      1.204        ad #ifndef __HAVE_FAST_SOFTINTS
    565      1.204        ad 	else if (ci->ci_data.cpu_softints != 0) {
    566      1.204        ad 		/* There are pending soft interrupts, so pick one. */
    567      1.204        ad 		newl = softint_picklwp();
    568      1.204        ad 		newl->l_stat = LSONPROC;
    569  1.334.2.1        ad 		newl->l_flag |= LW_RUNNING;
    570      1.204        ad 	}
    571      1.204        ad #endif	/* !__HAVE_FAST_SOFTINTS */
    572      1.190        ad 
    573      1.113  gmcgarry 	/*
    574      1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    575      1.113  gmcgarry 	 */
    576      1.246     rmind 	if (l->l_stat == LSONPROC && l != newl) {
    577      1.217        ad 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    578      1.329        ad 		KASSERT((l->l_flag & LW_IDLE) == 0);
    579      1.329        ad 		l->l_stat = LSRUN;
    580      1.329        ad 		lwp_setlock(l, spc->spc_mutex);
    581      1.329        ad 		sched_enqueue(l);
    582  1.334.2.1        ad 		sched_preempted(l);
    583  1.334.2.1        ad 
    584      1.329        ad 		/*
    585      1.329        ad 		 * Handle migration.  Note that "migrating LWP" may
    586      1.329        ad 		 * be reset here, if interrupt/preemption happens
    587      1.329        ad 		 * early in idle LWP.
    588      1.329        ad 		 */
    589      1.329        ad 		if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
    590      1.329        ad 			KASSERT((l->l_pflag & LP_INTR) == 0);
    591      1.329        ad 			spc->spc_migrating = l;
    592      1.329        ad 		}
    593      1.174        ad 	}
    594      1.174        ad 
    595      1.245        ad 	/* Pick new LWP to run. */
    596      1.190        ad 	if (newl == NULL) {
    597      1.245        ad 		newl = nextlwp(ci, spc);
    598      1.199        ad 	}
    599      1.199        ad 
    600      1.204        ad 	/* Items that must be updated with the CPU locked. */
    601      1.199        ad 	if (!returning) {
    602      1.326        ad 		/* Count time spent in current system call */
    603      1.326        ad 		SYSCALL_TIME_SLEEP(l);
    604      1.326        ad 
    605      1.326        ad 		updatertime(l, &bt);
    606      1.326        ad 
    607      1.204        ad 		/* Update the new LWP's start time. */
    608      1.212      yamt 		newl->l_stime = bt;
    609      1.204        ad 
    610      1.199        ad 		/*
    611      1.204        ad 		 * ci_curlwp changes when a fast soft interrupt occurs.
    612      1.327        ad 		 * We use ci_onproc to keep track of which kernel or
    613      1.204        ad 		 * user thread is running 'underneath' the software
    614      1.204        ad 		 * interrupt.  This is important for time accounting,
    615      1.204        ad 		 * itimers and forcing user threads to preempt (aston).
    616      1.199        ad 		 */
    617      1.327        ad 		ci->ci_onproc = newl;
    618      1.188      yamt 	}
    619      1.188      yamt 
    620      1.241        ad 	/*
    621      1.325        ad 	 * Preemption related tasks.  Must be done holding spc_mutex.  Clear
    622      1.325        ad 	 * l_dopreempt without an atomic - it's only ever set non-zero by
    623      1.325        ad 	 * sched_resched_cpu() which also holds spc_mutex, and only ever
    624      1.325        ad 	 * cleared by the LWP itself (us) with atomics when not under lock.
    625      1.241        ad 	 */
    626      1.231        ad 	l->l_dopreempt = 0;
    627      1.231        ad 	if (__predict_false(l->l_pfailaddr != 0)) {
    628      1.231        ad 		LOCKSTAT_FLAG(lsflag);
    629      1.231        ad 		LOCKSTAT_ENTER(lsflag);
    630      1.231        ad 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    631      1.231        ad 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    632      1.231        ad 		    1, l->l_pfailtime, l->l_pfailaddr);
    633      1.231        ad 		LOCKSTAT_EXIT(lsflag);
    634      1.231        ad 		l->l_pfailtime = 0;
    635      1.231        ad 		l->l_pfaillock = 0;
    636      1.231        ad 		l->l_pfailaddr = 0;
    637      1.231        ad 	}
    638      1.231        ad 
    639      1.188      yamt 	if (l != newl) {
    640      1.188      yamt 		struct lwp *prevlwp;
    641      1.174        ad 
    642      1.209        ad 		/* Release all locks, but leave the current LWP locked */
    643      1.246     rmind 		if (l->l_mutex == spc->spc_mutex) {
    644      1.209        ad 			/*
    645      1.209        ad 			 * Drop spc_lwplock, if the current LWP has been moved
    646      1.209        ad 			 * to the run queue (it is now locked by spc_mutex).
    647      1.209        ad 			 */
    648      1.217        ad 			mutex_spin_exit(spc->spc_lwplock);
    649      1.188      yamt 		} else {
    650      1.209        ad 			/*
    651      1.209        ad 			 * Otherwise, drop the spc_mutex, we are done with the
    652      1.209        ad 			 * run queues.
    653      1.209        ad 			 */
    654      1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    655      1.188      yamt 		}
    656      1.188      yamt 
    657      1.330        ad 		/* We're down to only one lock, so do debug checks. */
    658      1.330        ad 		LOCKDEBUG_BARRIER(l->l_mutex, 1);
    659      1.330        ad 
    660  1.334.2.1        ad 		/* Count the context switch. */
    661  1.334.2.1        ad 		CPU_COUNT(CPU_COUNT_NSWTCH, 1);
    662      1.209        ad 		l->l_ncsw++;
    663  1.334.2.1        ad 		if ((l->l_pflag & LP_PREEMPTING) != 0) {
    664      1.321   mlelstv 			l->l_nivcsw++;
    665  1.334.2.1        ad 			l->l_pflag &= ~LP_PREEMPTING;
    666  1.334.2.1        ad 		}
    667      1.209        ad 
    668      1.209        ad 		/*
    669      1.209        ad 		 * Increase the count of spin-mutexes before the release
    670  1.334.2.1        ad 		 * of the last lock - we must remain at IPL_SCHED after
    671  1.334.2.1        ad 		 * releasing the lock.
    672      1.209        ad 		 */
    673      1.287      matt 		KASSERTMSG(ci->ci_mtx_count == -1,
    674      1.301     rmind 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
    675      1.301     rmind 		    "(block with spin-mutex held)",
    676      1.291       jym 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    677      1.209        ad 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    678  1.334.2.1        ad 		ci->ci_mtx_count = -2;
    679      1.188      yamt 
    680      1.209        ad 		/* Update status for lwpctl, if present. */
    681  1.334.2.1        ad 		if (l->l_lwpctl != NULL) {
    682  1.334.2.1        ad 			l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
    683  1.334.2.1        ad 			    LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
    684  1.334.2.1        ad 		}
    685      1.209        ad 
    686      1.199        ad 		/*
    687  1.334.2.1        ad 		 * If curlwp is a soft interrupt LWP, there's nobody on the
    688  1.334.2.1        ad 		 * other side to unlock - we're returning into an assembly
    689  1.334.2.1        ad 		 * trampoline.  Unlock now.  This is safe because this is a
    690  1.334.2.1        ad 		 * kernel LWP and is bound to current CPU: the worst anyone
    691  1.334.2.1        ad 		 * else will do to it, is to put it back onto this CPU's run
    692  1.334.2.1        ad 		 * queue (and the CPU is busy here right now!).
    693      1.199        ad 		 */
    694  1.334.2.1        ad 		if (returning) {
    695  1.334.2.1        ad 			/* Keep IPL_SCHED after this; MD code will fix up. */
    696  1.334.2.1        ad 			l->l_flag &= ~LW_RUNNING;
    697  1.334.2.1        ad 			lwp_unlock(l);
    698  1.334.2.1        ad 		} else {
    699  1.334.2.1        ad 			/* A normal LWP: save old VM context. */
    700      1.199        ad 			pmap_deactivate(l);
    701      1.209        ad 		}
    702      1.207        ad 
    703      1.276    darran 		/*
    704      1.276    darran 		 * If DTrace has set the active vtime enum to anything
    705      1.276    darran 		 * other than INACTIVE (0), then it should have set the
    706      1.276    darran 		 * function to call.
    707      1.276    darran 		 */
    708      1.278    darran 		if (__predict_false(dtrace_vtime_active)) {
    709      1.276    darran 			(*dtrace_vtime_switch_func)(newl);
    710      1.276    darran 		}
    711      1.276    darran 
    712      1.318     ozaki 		/*
    713      1.318     ozaki 		 * We must ensure not to come here from inside a read section.
    714      1.318     ozaki 		 */
    715      1.318     ozaki 		KASSERT(pserialize_not_in_read_section());
    716      1.318     ozaki 
    717      1.188      yamt 		/* Switch to the new LWP.. */
    718      1.305   mlelstv #ifdef MULTIPROCESSOR
    719      1.304      matt 		KASSERT(curlwp == ci->ci_curlwp);
    720      1.305   mlelstv #endif
    721      1.304      matt 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    722      1.204        ad 		prevlwp = cpu_switchto(l, newl, returning);
    723      1.207        ad 		ci = curcpu();
    724      1.305   mlelstv #ifdef MULTIPROCESSOR
    725      1.304      matt 		KASSERT(curlwp == ci->ci_curlwp);
    726      1.305   mlelstv #endif
    727      1.304      matt 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
    728      1.304      matt 		    l, curlwp, prevlwp);
    729  1.334.2.1        ad 		KASSERT(prevlwp != NULL);
    730  1.334.2.1        ad 		KASSERT(l->l_cpu == ci);
    731  1.334.2.1        ad 		KASSERT(ci->ci_mtx_count == -2);
    732  1.334.2.1        ad 
    733  1.334.2.1        ad 		/*
    734  1.334.2.1        ad 		 * Immediately mark the previous LWP as no longer running,
    735  1.334.2.1        ad 		 * and unlock it.  We'll still be at IPL_SCHED afterwards.
    736  1.334.2.1        ad 		 */
    737  1.334.2.1        ad 		KASSERT((prevlwp->l_flag & LW_RUNNING) != 0);
    738  1.334.2.1        ad 		prevlwp->l_flag &= ~LW_RUNNING;
    739  1.334.2.1        ad 		lwp_unlock(prevlwp);
    740      1.207        ad 
    741      1.188      yamt 		/*
    742      1.209        ad 		 * Switched away - we have new curlwp.
    743      1.209        ad 		 * Restore VM context and IPL.
    744      1.188      yamt 		 */
    745      1.209        ad 		pmap_activate(l);
    746      1.288     rmind 		pcu_switchpoint(l);
    747      1.265     rmind 
    748      1.209        ad 		/* Update status for lwpctl, if present. */
    749      1.219        ad 		if (l->l_lwpctl != NULL) {
    750      1.209        ad 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    751      1.219        ad 			l->l_lwpctl->lc_pctr++;
    752      1.219        ad 		}
    753      1.174        ad 
    754      1.300      yamt 		/*
    755  1.334.2.1        ad 		 * Normalize the spin mutex count and restore the previous
    756  1.334.2.1        ad 		 * SPL.  Note that, unless the caller disabled preemption,
    757  1.334.2.1        ad 		 * we can be preempted at any time after this splx().
    758      1.300      yamt 		 */
    759      1.331        ad 		KASSERT(l->l_cpu == ci);
    760  1.334.2.1        ad 		KASSERT(ci->ci_mtx_count == -1);
    761  1.334.2.1        ad 		ci->ci_mtx_count = 0;
    762      1.329        ad 		splx(oldspl);
    763      1.188      yamt 	} else {
    764      1.188      yamt 		/* Nothing to do - just unlock and return. */
    765      1.246     rmind 		mutex_spin_exit(spc->spc_mutex);
    766      1.321   mlelstv 		l->l_pflag &= ~LP_PREEMPTING;
    767      1.188      yamt 		lwp_unlock(l);
    768      1.122   thorpej 	}
    769      1.110    briggs 
    770      1.188      yamt 	KASSERT(l == curlwp);
    771      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    772      1.188      yamt 
    773      1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    774      1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    775       1.26       cgd }
    776       1.26       cgd 
    777       1.26       cgd /*
    778      1.271     rmind  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    779      1.174        ad  *
    780      1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    781       1.26       cgd  */
    782       1.26       cgd void
    783      1.122   thorpej setrunnable(struct lwp *l)
    784       1.26       cgd {
    785      1.122   thorpej 	struct proc *p = l->l_proc;
    786      1.205        ad 	struct cpu_info *ci;
    787      1.326        ad 	kmutex_t *oldlock;
    788       1.26       cgd 
    789      1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    790      1.324     kamil 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
    791      1.229        ad 	KASSERT(mutex_owned(p->p_lock));
    792      1.183        ad 	KASSERT(lwp_locked(l, NULL));
    793      1.205        ad 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    794       1.83   thorpej 
    795      1.122   thorpej 	switch (l->l_stat) {
    796      1.122   thorpej 	case LSSTOP:
    797       1.33   mycroft 		/*
    798       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    799       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    800       1.33   mycroft 		 */
    801      1.310  christos 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
    802      1.174        ad 			signotify(l);
    803      1.174        ad 		p->p_nrlwps++;
    804       1.26       cgd 		break;
    805      1.174        ad 	case LSSUSPENDED:
    806      1.326        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    807      1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    808      1.174        ad 		p->p_nrlwps++;
    809      1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    810      1.122   thorpej 		break;
    811      1.174        ad 	case LSSLEEP:
    812      1.174        ad 		KASSERT(l->l_wchan != NULL);
    813       1.26       cgd 		break;
    814      1.326        ad 	case LSIDL:
    815      1.326        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    816      1.326        ad 		break;
    817      1.174        ad 	default:
    818      1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    819       1.26       cgd 	}
    820      1.139        cl 
    821      1.174        ad 	/*
    822      1.286     pooka 	 * If the LWP was sleeping, start it again.
    823      1.174        ad 	 */
    824      1.174        ad 	if (l->l_wchan != NULL) {
    825      1.174        ad 		l->l_stat = LSSLEEP;
    826      1.183        ad 		/* lwp_unsleep() will release the lock. */
    827      1.221        ad 		lwp_unsleep(l, true);
    828      1.174        ad 		return;
    829      1.174        ad 	}
    830      1.139        cl 
    831      1.174        ad 	/*
    832      1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    833      1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    834      1.174        ad 	 */
    835  1.334.2.1        ad 	if ((l->l_flag & LW_RUNNING) != 0) {
    836      1.174        ad 		l->l_stat = LSONPROC;
    837      1.174        ad 		l->l_slptime = 0;
    838      1.174        ad 		lwp_unlock(l);
    839      1.174        ad 		return;
    840      1.174        ad 	}
    841      1.122   thorpej 
    842      1.174        ad 	/*
    843      1.205        ad 	 * Look for a CPU to run.
    844      1.205        ad 	 * Set the LWP runnable.
    845      1.174        ad 	 */
    846      1.205        ad 	ci = sched_takecpu(l);
    847      1.205        ad 	l->l_cpu = ci;
    848      1.236        ad 	spc_lock(ci);
    849      1.326        ad 	oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
    850      1.188      yamt 	sched_setrunnable(l);
    851      1.174        ad 	l->l_stat = LSRUN;
    852      1.122   thorpej 	l->l_slptime = 0;
    853      1.326        ad 	sched_enqueue(l);
    854      1.326        ad 	sched_resched_lwp(l, true);
    855      1.326        ad 	/* SPC & LWP now unlocked. */
    856      1.326        ad 	mutex_spin_exit(oldlock);
    857       1.26       cgd }
    858       1.26       cgd 
    859       1.26       cgd /*
    860      1.174        ad  * suspendsched:
    861      1.174        ad  *
    862      1.266      yamt  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    863      1.174        ad  */
    864       1.94    bouyer void
    865      1.174        ad suspendsched(void)
    866       1.94    bouyer {
    867      1.174        ad 	CPU_INFO_ITERATOR cii;
    868      1.174        ad 	struct cpu_info *ci;
    869      1.122   thorpej 	struct lwp *l;
    870      1.174        ad 	struct proc *p;
    871       1.94    bouyer 
    872       1.94    bouyer 	/*
    873      1.174        ad 	 * We do this by process in order not to violate the locking rules.
    874       1.94    bouyer 	 */
    875      1.228        ad 	mutex_enter(proc_lock);
    876      1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    877      1.229        ad 		mutex_enter(p->p_lock);
    878      1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    879      1.229        ad 			mutex_exit(p->p_lock);
    880       1.94    bouyer 			continue;
    881      1.174        ad 		}
    882      1.174        ad 
    883      1.309  pgoyette 		if (p->p_stat != SSTOP) {
    884      1.309  pgoyette 			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
    885      1.309  pgoyette 				p->p_pptr->p_nstopchild++;
    886      1.309  pgoyette 				p->p_waited = 0;
    887      1.309  pgoyette 			}
    888      1.309  pgoyette 			p->p_stat = SSTOP;
    889      1.309  pgoyette 		}
    890      1.174        ad 
    891      1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    892      1.174        ad 			if (l == curlwp)
    893      1.174        ad 				continue;
    894      1.174        ad 
    895      1.174        ad 			lwp_lock(l);
    896      1.122   thorpej 
    897       1.97     enami 			/*
    898      1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    899      1.174        ad 			 * when it tries to return to user mode.  We want to
    900      1.174        ad 			 * try and get to get as many LWPs as possible to
    901      1.174        ad 			 * the user / kernel boundary, so that they will
    902      1.174        ad 			 * release any locks that they hold.
    903       1.97     enami 			 */
    904      1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    905      1.174        ad 
    906      1.174        ad 			if (l->l_stat == LSSLEEP &&
    907      1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    908      1.174        ad 				/* setrunnable() will release the lock. */
    909      1.174        ad 				setrunnable(l);
    910      1.174        ad 				continue;
    911      1.174        ad 			}
    912      1.174        ad 
    913      1.174        ad 			lwp_unlock(l);
    914       1.94    bouyer 		}
    915      1.174        ad 
    916      1.229        ad 		mutex_exit(p->p_lock);
    917       1.94    bouyer 	}
    918      1.228        ad 	mutex_exit(proc_lock);
    919      1.174        ad 
    920      1.174        ad 	/*
    921      1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    922      1.326        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    923      1.326        ad 	 *
    924      1.326        ad 	 * Unusually, we don't hold any other scheduler object locked, which
    925      1.326        ad 	 * would keep preemption off for sched_resched_cpu(), so disable it
    926      1.326        ad 	 * explicitly.
    927      1.174        ad 	 */
    928      1.326        ad 	kpreempt_disable();
    929      1.204        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    930      1.204        ad 		spc_lock(ci);
    931      1.326        ad 		sched_resched_cpu(ci, PRI_KERNEL, true);
    932      1.326        ad 		/* spc now unlocked */
    933      1.204        ad 	}
    934      1.326        ad 	kpreempt_enable();
    935      1.174        ad }
    936      1.174        ad 
    937      1.174        ad /*
    938      1.174        ad  * sched_unsleep:
    939      1.174        ad  *
    940      1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    941      1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    942      1.174        ad  *	it's not a valid action for running or idle LWPs.
    943      1.174        ad  */
    944      1.271     rmind static void
    945      1.221        ad sched_unsleep(struct lwp *l, bool cleanup)
    946      1.174        ad {
    947      1.174        ad 
    948      1.174        ad 	lwp_unlock(l);
    949      1.174        ad 	panic("sched_unsleep");
    950      1.174        ad }
    951      1.174        ad 
    952      1.250     rmind static void
    953      1.326        ad sched_changepri(struct lwp *l, pri_t pri)
    954      1.188      yamt {
    955      1.326        ad 	struct schedstate_percpu *spc;
    956      1.326        ad 	struct cpu_info *ci;
    957      1.188      yamt 
    958      1.250     rmind 	KASSERT(lwp_locked(l, NULL));
    959      1.188      yamt 
    960      1.326        ad 	ci = l->l_cpu;
    961      1.326        ad 	spc = &ci->ci_schedstate;
    962      1.174        ad 
    963      1.271     rmind 	if (l->l_stat == LSRUN) {
    964      1.326        ad 		KASSERT(lwp_locked(l, spc->spc_mutex));
    965      1.204        ad 		sched_dequeue(l);
    966      1.204        ad 		l->l_priority = pri;
    967      1.326        ad 		sched_enqueue(l);
    968      1.326        ad 		sched_resched_lwp(l, false);
    969      1.326        ad 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
    970      1.326        ad 		/* On priority drop, only evict realtime LWPs. */
    971      1.326        ad 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    972      1.326        ad 		l->l_priority = pri;
    973      1.326        ad 		spc_lock(ci);
    974      1.326        ad 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
    975      1.326        ad 		/* spc now unlocked */
    976      1.204        ad 	} else {
    977      1.174        ad 		l->l_priority = pri;
    978      1.157      yamt 	}
    979      1.184      yamt }
    980      1.184      yamt 
    981      1.188      yamt static void
    982      1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
    983      1.184      yamt {
    984      1.326        ad 	struct schedstate_percpu *spc;
    985      1.326        ad 	struct cpu_info *ci;
    986      1.184      yamt 
    987      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    988      1.184      yamt 
    989      1.326        ad 	ci = l->l_cpu;
    990      1.326        ad 	spc = &ci->ci_schedstate;
    991      1.326        ad 
    992      1.271     rmind 	if (l->l_stat == LSRUN) {
    993      1.326        ad 		KASSERT(lwp_locked(l, spc->spc_mutex));
    994      1.204        ad 		sched_dequeue(l);
    995      1.204        ad 		l->l_inheritedprio = pri;
    996      1.311  christos 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
    997      1.326        ad 		sched_enqueue(l);
    998      1.326        ad 		sched_resched_lwp(l, false);
    999      1.326        ad 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
   1000      1.326        ad 		/* On priority drop, only evict realtime LWPs. */
   1001      1.326        ad 		KASSERT(lwp_locked(l, spc->spc_lwplock));
   1002      1.326        ad 		l->l_inheritedprio = pri;
   1003      1.326        ad 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1004      1.326        ad 		spc_lock(ci);
   1005      1.326        ad 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
   1006      1.326        ad 		/* spc now unlocked */
   1007      1.204        ad 	} else {
   1008      1.184      yamt 		l->l_inheritedprio = pri;
   1009      1.311  christos 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1010      1.184      yamt 	}
   1011      1.184      yamt }
   1012      1.184      yamt 
   1013      1.184      yamt struct lwp *
   1014      1.184      yamt syncobj_noowner(wchan_t wchan)
   1015      1.184      yamt {
   1016      1.184      yamt 
   1017      1.184      yamt 	return NULL;
   1018      1.151      yamt }
   1019      1.151      yamt 
   1020      1.250     rmind /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1021      1.281     rmind const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1022      1.281     rmind 
   1023      1.281     rmind /*
   1024      1.281     rmind  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1025      1.281     rmind  * 5 second intervals.
   1026      1.281     rmind  */
   1027      1.281     rmind static const fixpt_t cexp[ ] = {
   1028      1.281     rmind 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1029      1.281     rmind 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1030      1.281     rmind 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1031      1.281     rmind };
   1032      1.134      matt 
   1033      1.134      matt /*
   1034      1.188      yamt  * sched_pstats:
   1035      1.188      yamt  *
   1036      1.281     rmind  * => Update process statistics and check CPU resource allocation.
   1037      1.281     rmind  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1038      1.281     rmind  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1039      1.130   nathanw  */
   1040      1.113  gmcgarry void
   1041      1.281     rmind sched_pstats(void)
   1042      1.113  gmcgarry {
   1043      1.281     rmind 	extern struct loadavg averunnable;
   1044      1.281     rmind 	struct loadavg *avg = &averunnable;
   1045      1.249     rmind 	const int clkhz = (stathz != 0 ? stathz : hz);
   1046      1.281     rmind 	static bool backwards = false;
   1047      1.281     rmind 	static u_int lavg_count = 0;
   1048      1.188      yamt 	struct proc *p;
   1049      1.281     rmind 	int nrun;
   1050      1.113  gmcgarry 
   1051      1.188      yamt 	sched_pstats_ticks++;
   1052      1.281     rmind 	if (++lavg_count >= 5) {
   1053      1.281     rmind 		lavg_count = 0;
   1054      1.281     rmind 		nrun = 0;
   1055      1.281     rmind 	}
   1056      1.228        ad 	mutex_enter(proc_lock);
   1057      1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
   1058      1.281     rmind 		struct lwp *l;
   1059      1.281     rmind 		struct rlimit *rlim;
   1060      1.296  dholland 		time_t runtm;
   1061      1.281     rmind 		int sig;
   1062      1.281     rmind 
   1063      1.271     rmind 		/* Increment sleep time (if sleeping), ignore overflow. */
   1064      1.229        ad 		mutex_enter(p->p_lock);
   1065      1.212      yamt 		runtm = p->p_rtime.sec;
   1066      1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1067      1.281     rmind 			fixpt_t lpctcpu;
   1068      1.281     rmind 			u_int lcpticks;
   1069      1.281     rmind 
   1070      1.249     rmind 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1071      1.188      yamt 				continue;
   1072      1.188      yamt 			lwp_lock(l);
   1073      1.212      yamt 			runtm += l->l_rtime.sec;
   1074      1.188      yamt 			l->l_swtime++;
   1075      1.242     rmind 			sched_lwp_stats(l);
   1076      1.281     rmind 
   1077      1.281     rmind 			/* For load average calculation. */
   1078      1.282     rmind 			if (__predict_false(lavg_count == 0) &&
   1079      1.282     rmind 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1080      1.281     rmind 				switch (l->l_stat) {
   1081      1.281     rmind 				case LSSLEEP:
   1082      1.281     rmind 					if (l->l_slptime > 1) {
   1083      1.281     rmind 						break;
   1084      1.281     rmind 					}
   1085      1.323       mrg 					/* FALLTHROUGH */
   1086      1.281     rmind 				case LSRUN:
   1087      1.281     rmind 				case LSONPROC:
   1088      1.281     rmind 				case LSIDL:
   1089      1.281     rmind 					nrun++;
   1090      1.281     rmind 				}
   1091      1.281     rmind 			}
   1092      1.282     rmind 			lwp_unlock(l);
   1093      1.282     rmind 
   1094      1.282     rmind 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1095      1.282     rmind 			if (l->l_slptime != 0)
   1096      1.282     rmind 				continue;
   1097      1.282     rmind 
   1098      1.282     rmind 			lpctcpu = l->l_pctcpu;
   1099      1.282     rmind 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1100      1.282     rmind 			lpctcpu += ((FSCALE - ccpu) *
   1101      1.282     rmind 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1102      1.282     rmind 			l->l_pctcpu = lpctcpu;
   1103      1.188      yamt 		}
   1104      1.249     rmind 		/* Calculating p_pctcpu only for ps(1) */
   1105      1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1106      1.174        ad 
   1107      1.303  christos 		if (__predict_false(runtm < 0)) {
   1108      1.303  christos 			if (!backwards) {
   1109      1.303  christos 				backwards = true;
   1110      1.303  christos 				printf("WARNING: negative runtime; "
   1111      1.303  christos 				    "monotonic clock has gone backwards\n");
   1112      1.303  christos 			}
   1113      1.303  christos 			mutex_exit(p->p_lock);
   1114      1.303  christos 			continue;
   1115      1.303  christos 		}
   1116      1.303  christos 
   1117      1.188      yamt 		/*
   1118      1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
   1119      1.293       apb 		 * If over the hard limit, kill it with SIGKILL.
   1120      1.293       apb 		 * If over the soft limit, send SIGXCPU and raise
   1121      1.293       apb 		 * the soft limit a little.
   1122      1.188      yamt 		 */
   1123      1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1124      1.188      yamt 		sig = 0;
   1125      1.249     rmind 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1126      1.293       apb 			if (runtm >= rlim->rlim_max) {
   1127      1.188      yamt 				sig = SIGKILL;
   1128      1.312  christos 				log(LOG_NOTICE,
   1129      1.312  christos 				    "pid %d, command %s, is killed: %s\n",
   1130      1.312  christos 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1131      1.293       apb 				uprintf("pid %d, command %s, is killed: %s\n",
   1132      1.312  christos 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
   1133      1.293       apb 			} else {
   1134      1.188      yamt 				sig = SIGXCPU;
   1135      1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
   1136      1.188      yamt 					rlim->rlim_cur += 5;
   1137      1.188      yamt 			}
   1138      1.188      yamt 		}
   1139      1.229        ad 		mutex_exit(p->p_lock);
   1140      1.303  christos 		if (__predict_false(sig)) {
   1141      1.259     rmind 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1142      1.188      yamt 			psignal(p, sig);
   1143      1.259     rmind 		}
   1144      1.174        ad 	}
   1145      1.281     rmind 
   1146      1.281     rmind 	/* Load average calculation. */
   1147      1.281     rmind 	if (__predict_false(lavg_count == 0)) {
   1148      1.281     rmind 		int i;
   1149      1.283    martin 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1150      1.281     rmind 		for (i = 0; i < __arraycount(cexp); i++) {
   1151      1.281     rmind 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1152      1.281     rmind 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1153      1.281     rmind 		}
   1154      1.281     rmind 	}
   1155      1.281     rmind 
   1156      1.281     rmind 	/* Lightning bolt. */
   1157      1.273     pooka 	cv_broadcast(&lbolt);
   1158      1.325        ad 
   1159      1.325        ad 	mutex_exit(proc_lock);
   1160      1.113  gmcgarry }
   1161