kern_synch.c revision 1.335 1 1.335 ad /* $NetBSD: kern_synch.c,v 1.335 2020/01/08 17:38:42 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.325 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019
5 1.260 ad * The NetBSD Foundation, Inc.
6 1.63 thorpej * All rights reserved.
7 1.63 thorpej *
8 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
9 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 1.188 yamt * Daniel Sieger.
12 1.63 thorpej *
13 1.63 thorpej * Redistribution and use in source and binary forms, with or without
14 1.63 thorpej * modification, are permitted provided that the following conditions
15 1.63 thorpej * are met:
16 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer.
18 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
19 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
20 1.63 thorpej * documentation and/or other materials provided with the distribution.
21 1.63 thorpej *
22 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
33 1.63 thorpej */
34 1.26 cgd
35 1.26 cgd /*-
36 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 1.26 cgd * The Regents of the University of California. All rights reserved.
38 1.26 cgd * (c) UNIX System Laboratories, Inc.
39 1.26 cgd * All or some portions of this file are derived from material licensed
40 1.26 cgd * to the University of California by American Telephone and Telegraph
41 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 1.26 cgd * the permission of UNIX System Laboratories, Inc.
43 1.26 cgd *
44 1.26 cgd * Redistribution and use in source and binary forms, with or without
45 1.26 cgd * modification, are permitted provided that the following conditions
46 1.26 cgd * are met:
47 1.26 cgd * 1. Redistributions of source code must retain the above copyright
48 1.26 cgd * notice, this list of conditions and the following disclaimer.
49 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.26 cgd * notice, this list of conditions and the following disclaimer in the
51 1.26 cgd * documentation and/or other materials provided with the distribution.
52 1.136 agc * 3. Neither the name of the University nor the names of its contributors
53 1.26 cgd * may be used to endorse or promote products derived from this software
54 1.26 cgd * without specific prior written permission.
55 1.26 cgd *
56 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.26 cgd * SUCH DAMAGE.
67 1.26 cgd *
68 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 1.26 cgd */
70 1.106 lukem
71 1.106 lukem #include <sys/cdefs.h>
72 1.335 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.335 2020/01/08 17:38:42 ad Exp $");
73 1.48 mrg
74 1.109 yamt #include "opt_kstack.h"
75 1.277 darran #include "opt_dtrace.h"
76 1.26 cgd
77 1.174 ad #define __MUTEX_PRIVATE
78 1.174 ad
79 1.26 cgd #include <sys/param.h>
80 1.26 cgd #include <sys/systm.h>
81 1.26 cgd #include <sys/proc.h>
82 1.26 cgd #include <sys/kernel.h>
83 1.188 yamt #include <sys/cpu.h>
84 1.290 christos #include <sys/pserialize.h>
85 1.26 cgd #include <sys/resourcevar.h>
86 1.55 ross #include <sys/sched.h>
87 1.179 dsl #include <sys/syscall_stats.h>
88 1.174 ad #include <sys/sleepq.h>
89 1.174 ad #include <sys/lockdebug.h>
90 1.190 ad #include <sys/evcnt.h>
91 1.199 ad #include <sys/intr.h>
92 1.207 ad #include <sys/lwpctl.h>
93 1.209 ad #include <sys/atomic.h>
94 1.295 njoly #include <sys/syslog.h>
95 1.47 mrg
96 1.47 mrg #include <uvm/uvm_extern.h>
97 1.47 mrg
98 1.231 ad #include <dev/lockstat.h>
99 1.231 ad
100 1.276 darran #include <sys/dtrace_bsd.h>
101 1.279 darran int dtrace_vtime_active=0;
102 1.276 darran dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
103 1.276 darran
104 1.271 rmind static void sched_unsleep(struct lwp *, bool);
105 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
106 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
107 1.122 thorpej
108 1.174 ad syncobj_t sleep_syncobj = {
109 1.313 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
110 1.313 ozaki .sobj_unsleep = sleepq_unsleep,
111 1.313 ozaki .sobj_changepri = sleepq_changepri,
112 1.313 ozaki .sobj_lendpri = sleepq_lendpri,
113 1.313 ozaki .sobj_owner = syncobj_noowner,
114 1.174 ad };
115 1.174 ad
116 1.174 ad syncobj_t sched_syncobj = {
117 1.313 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
118 1.313 ozaki .sobj_unsleep = sched_unsleep,
119 1.313 ozaki .sobj_changepri = sched_changepri,
120 1.313 ozaki .sobj_lendpri = sched_lendpri,
121 1.313 ozaki .sobj_owner = syncobj_noowner,
122 1.174 ad };
123 1.122 thorpej
124 1.289 rmind /* "Lightning bolt": once a second sleep address. */
125 1.289 rmind kcondvar_t lbolt __cacheline_aligned;
126 1.223 ad
127 1.289 rmind u_int sched_pstats_ticks __cacheline_aligned;
128 1.289 rmind
129 1.289 rmind /* Preemption event counters. */
130 1.289 rmind static struct evcnt kpreempt_ev_crit __cacheline_aligned;
131 1.289 rmind static struct evcnt kpreempt_ev_klock __cacheline_aligned;
132 1.289 rmind static struct evcnt kpreempt_ev_immed __cacheline_aligned;
133 1.231 ad
134 1.237 rmind void
135 1.270 elad synch_init(void)
136 1.237 rmind {
137 1.237 rmind
138 1.237 rmind cv_init(&lbolt, "lbolt");
139 1.237 rmind
140 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
141 1.237 rmind "kpreempt", "defer: critical section");
142 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
143 1.237 rmind "kpreempt", "defer: kernel_lock");
144 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
145 1.237 rmind "kpreempt", "immediate");
146 1.237 rmind }
147 1.237 rmind
148 1.26 cgd /*
149 1.174 ad * OBSOLETE INTERFACE
150 1.174 ad *
151 1.255 skrll * General sleep call. Suspends the current LWP until a wakeup is
152 1.255 skrll * performed on the specified identifier. The LWP will then be made
153 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
154 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
155 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
156 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
157 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
158 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
159 1.26 cgd * call should be interrupted by the signal (return EINTR).
160 1.26 cgd */
161 1.26 cgd int
162 1.297 rmind tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
163 1.26 cgd {
164 1.122 thorpej struct lwp *l = curlwp;
165 1.174 ad sleepq_t *sq;
166 1.244 ad kmutex_t *mp;
167 1.26 cgd
168 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
169 1.272 pooka KASSERT(ident != &lbolt);
170 1.204 ad
171 1.174 ad if (sleepq_dontsleep(l)) {
172 1.174 ad (void)sleepq_abort(NULL, 0);
173 1.174 ad return 0;
174 1.26 cgd }
175 1.78 sommerfe
176 1.204 ad l->l_kpriority = true;
177 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
178 1.244 ad sleepq_enter(sq, l, mp);
179 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
180 1.297 rmind return sleepq_block(timo, priority & PCATCH);
181 1.26 cgd }
182 1.26 cgd
183 1.187 ad int
184 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
185 1.187 ad kmutex_t *mtx)
186 1.187 ad {
187 1.187 ad struct lwp *l = curlwp;
188 1.187 ad sleepq_t *sq;
189 1.244 ad kmutex_t *mp;
190 1.188 yamt int error;
191 1.187 ad
192 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
193 1.272 pooka KASSERT(ident != &lbolt);
194 1.204 ad
195 1.187 ad if (sleepq_dontsleep(l)) {
196 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
197 1.187 ad return 0;
198 1.187 ad }
199 1.187 ad
200 1.204 ad l->l_kpriority = true;
201 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
202 1.244 ad sleepq_enter(sq, l, mp);
203 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
204 1.187 ad mutex_exit(mtx);
205 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
206 1.187 ad
207 1.187 ad if ((priority & PNORELOCK) == 0)
208 1.187 ad mutex_enter(mtx);
209 1.297 rmind
210 1.187 ad return error;
211 1.187 ad }
212 1.187 ad
213 1.26 cgd /*
214 1.174 ad * General sleep call for situations where a wake-up is not expected.
215 1.26 cgd */
216 1.174 ad int
217 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
218 1.26 cgd {
219 1.174 ad struct lwp *l = curlwp;
220 1.244 ad kmutex_t *mp;
221 1.174 ad sleepq_t *sq;
222 1.174 ad int error;
223 1.26 cgd
224 1.284 pooka KASSERT(!(timo == 0 && intr == false));
225 1.284 pooka
226 1.174 ad if (sleepq_dontsleep(l))
227 1.174 ad return sleepq_abort(NULL, 0);
228 1.26 cgd
229 1.174 ad if (mtx != NULL)
230 1.174 ad mutex_exit(mtx);
231 1.204 ad l->l_kpriority = true;
232 1.244 ad sq = sleeptab_lookup(&sleeptab, l, &mp);
233 1.244 ad sleepq_enter(sq, l, mp);
234 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
235 1.188 yamt error = sleepq_block(timo, intr);
236 1.174 ad if (mtx != NULL)
237 1.174 ad mutex_enter(mtx);
238 1.83 thorpej
239 1.174 ad return error;
240 1.139 cl }
241 1.139 cl
242 1.26 cgd /*
243 1.174 ad * OBSOLETE INTERFACE
244 1.174 ad *
245 1.255 skrll * Make all LWPs sleeping on the specified identifier runnable.
246 1.26 cgd */
247 1.26 cgd void
248 1.174 ad wakeup(wchan_t ident)
249 1.26 cgd {
250 1.174 ad sleepq_t *sq;
251 1.244 ad kmutex_t *mp;
252 1.83 thorpej
253 1.261 rmind if (__predict_false(cold))
254 1.174 ad return;
255 1.83 thorpej
256 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
257 1.244 ad sleepq_wake(sq, ident, (u_int)-1, mp);
258 1.63 thorpej }
259 1.63 thorpej
260 1.63 thorpej /*
261 1.255 skrll * General yield call. Puts the current LWP back on its run queue and
262 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
263 1.255 skrll * current LWP explicitly requests it (eg sched_yield(2)).
264 1.117 gmcgarry */
265 1.117 gmcgarry void
266 1.117 gmcgarry yield(void)
267 1.117 gmcgarry {
268 1.122 thorpej struct lwp *l = curlwp;
269 1.117 gmcgarry
270 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
271 1.174 ad lwp_lock(l);
272 1.329 ad
273 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
274 1.188 yamt KASSERT(l->l_stat == LSONPROC);
275 1.329 ad
276 1.325 ad /* Voluntary - ditch kpriority boost. */
277 1.204 ad l->l_kpriority = false;
278 1.329 ad spc_lock(l->l_cpu);
279 1.329 ad mi_switch(l);
280 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
281 1.69 thorpej }
282 1.69 thorpej
283 1.69 thorpej /*
284 1.255 skrll * General preemption call. Puts the current LWP back on its run queue
285 1.156 rpaulo * and performs an involuntary context switch.
286 1.69 thorpej */
287 1.69 thorpej void
288 1.174 ad preempt(void)
289 1.69 thorpej {
290 1.122 thorpej struct lwp *l = curlwp;
291 1.69 thorpej
292 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
293 1.174 ad lwp_lock(l);
294 1.329 ad
295 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
296 1.188 yamt KASSERT(l->l_stat == LSONPROC);
297 1.329 ad
298 1.325 ad /* Involuntary - keep kpriority boost. */
299 1.321 mlelstv l->l_pflag |= LP_PREEMPTING;
300 1.329 ad spc_lock(l->l_cpu);
301 1.329 ad mi_switch(l);
302 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
303 1.69 thorpej }
304 1.69 thorpej
305 1.234 ad /*
306 1.234 ad * Handle a request made by another agent to preempt the current LWP
307 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
308 1.234 ad *
309 1.234 ad * Character addresses for lockstat only.
310 1.234 ad */
311 1.326 ad static char kpreempt_is_disabled;
312 1.231 ad static char kernel_lock_held;
313 1.326 ad static char is_softint_lwp;
314 1.326 ad static char spl_is_raised;
315 1.231 ad
316 1.231 ad bool
317 1.231 ad kpreempt(uintptr_t where)
318 1.231 ad {
319 1.231 ad uintptr_t failed;
320 1.231 ad lwp_t *l;
321 1.264 ad int s, dop, lsflag;
322 1.231 ad
323 1.231 ad l = curlwp;
324 1.231 ad failed = 0;
325 1.231 ad while ((dop = l->l_dopreempt) != 0) {
326 1.231 ad if (l->l_stat != LSONPROC) {
327 1.231 ad /*
328 1.231 ad * About to block (or die), let it happen.
329 1.231 ad * Doesn't really count as "preemption has
330 1.231 ad * been blocked", since we're going to
331 1.231 ad * context switch.
332 1.231 ad */
333 1.325 ad atomic_swap_uint(&l->l_dopreempt, 0);
334 1.231 ad return true;
335 1.231 ad }
336 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
337 1.231 ad /* Can't preempt idle loop, don't count as failure. */
338 1.325 ad atomic_swap_uint(&l->l_dopreempt, 0);
339 1.261 rmind return true;
340 1.231 ad }
341 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
342 1.231 ad /* LWP holds preemption disabled, explicitly. */
343 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
344 1.234 ad kpreempt_ev_crit.ev_count++;
345 1.231 ad }
346 1.326 ad failed = (uintptr_t)&kpreempt_is_disabled;
347 1.231 ad break;
348 1.231 ad }
349 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
350 1.261 rmind /* Can't preempt soft interrupts yet. */
351 1.325 ad atomic_swap_uint(&l->l_dopreempt, 0);
352 1.326 ad failed = (uintptr_t)&is_softint_lwp;
353 1.261 rmind break;
354 1.231 ad }
355 1.231 ad s = splsched();
356 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
357 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
358 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
359 1.231 ad splx(s);
360 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
361 1.234 ad kpreempt_ev_klock.ev_count++;
362 1.231 ad }
363 1.231 ad failed = (uintptr_t)&kernel_lock_held;
364 1.231 ad break;
365 1.231 ad }
366 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
367 1.231 ad /*
368 1.231 ad * It may be that the IPL is too high.
369 1.231 ad * kpreempt_enter() can schedule an
370 1.231 ad * interrupt to retry later.
371 1.231 ad */
372 1.231 ad splx(s);
373 1.326 ad failed = (uintptr_t)&spl_is_raised;
374 1.231 ad break;
375 1.231 ad }
376 1.231 ad /* Do it! */
377 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
378 1.234 ad kpreempt_ev_immed.ev_count++;
379 1.231 ad }
380 1.231 ad lwp_lock(l);
381 1.329 ad /* Involuntary - keep kpriority boost. */
382 1.326 ad l->l_pflag |= LP_PREEMPTING;
383 1.329 ad spc_lock(l->l_cpu);
384 1.231 ad mi_switch(l);
385 1.231 ad l->l_nopreempt++;
386 1.231 ad splx(s);
387 1.231 ad
388 1.231 ad /* Take care of any MD cleanup. */
389 1.231 ad cpu_kpreempt_exit(where);
390 1.231 ad l->l_nopreempt--;
391 1.231 ad }
392 1.231 ad
393 1.264 ad if (__predict_true(!failed)) {
394 1.264 ad return false;
395 1.264 ad }
396 1.264 ad
397 1.231 ad /* Record preemption failure for reporting via lockstat. */
398 1.264 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
399 1.264 ad lsflag = 0;
400 1.264 ad LOCKSTAT_ENTER(lsflag);
401 1.264 ad if (__predict_false(lsflag)) {
402 1.264 ad if (where == 0) {
403 1.264 ad where = (uintptr_t)__builtin_return_address(0);
404 1.264 ad }
405 1.264 ad /* Preemption is on, might recurse, so make it atomic. */
406 1.264 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
407 1.264 ad (void *)where) == NULL) {
408 1.264 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
409 1.264 ad l->l_pfaillock = failed;
410 1.231 ad }
411 1.231 ad }
412 1.264 ad LOCKSTAT_EXIT(lsflag);
413 1.264 ad return true;
414 1.231 ad }
415 1.231 ad
416 1.69 thorpej /*
417 1.231 ad * Return true if preemption is explicitly disabled.
418 1.230 ad */
419 1.231 ad bool
420 1.231 ad kpreempt_disabled(void)
421 1.231 ad {
422 1.261 rmind const lwp_t *l = curlwp;
423 1.231 ad
424 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
425 1.332 ad (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
426 1.332 ad cpu_kpreempt_disabled();
427 1.231 ad }
428 1.230 ad
429 1.230 ad /*
430 1.231 ad * Disable kernel preemption.
431 1.230 ad */
432 1.230 ad void
433 1.231 ad kpreempt_disable(void)
434 1.230 ad {
435 1.230 ad
436 1.231 ad KPREEMPT_DISABLE(curlwp);
437 1.230 ad }
438 1.230 ad
439 1.230 ad /*
440 1.231 ad * Reenable kernel preemption.
441 1.230 ad */
442 1.231 ad void
443 1.231 ad kpreempt_enable(void)
444 1.230 ad {
445 1.230 ad
446 1.231 ad KPREEMPT_ENABLE(curlwp);
447 1.230 ad }
448 1.230 ad
449 1.230 ad /*
450 1.188 yamt * Compute the amount of time during which the current lwp was running.
451 1.130 nathanw *
452 1.188 yamt * - update l_rtime unless it's an idle lwp.
453 1.188 yamt */
454 1.188 yamt
455 1.199 ad void
456 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
457 1.188 yamt {
458 1.188 yamt
459 1.261 rmind if (__predict_false(l->l_flag & LW_IDLE))
460 1.188 yamt return;
461 1.188 yamt
462 1.212 yamt /* rtime += now - stime */
463 1.212 yamt bintime_add(&l->l_rtime, now);
464 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
465 1.188 yamt }
466 1.188 yamt
467 1.188 yamt /*
468 1.245 ad * Select next LWP from the current CPU to run..
469 1.245 ad */
470 1.245 ad static inline lwp_t *
471 1.245 ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
472 1.245 ad {
473 1.245 ad lwp_t *newl;
474 1.245 ad
475 1.245 ad /*
476 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
477 1.245 ad * If no LWP is runnable, select the idle LWP.
478 1.245 ad *
479 1.245 ad * Note that spc_lwplock might not necessary be held, and
480 1.245 ad * new thread would be unlocked after setting the LWP-lock.
481 1.245 ad */
482 1.245 ad newl = sched_nextlwp();
483 1.245 ad if (newl != NULL) {
484 1.245 ad sched_dequeue(newl);
485 1.245 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
486 1.274 rmind KASSERT(newl->l_cpu == ci);
487 1.245 ad newl->l_stat = LSONPROC;
488 1.335 ad newl->l_flag |= LW_RUNNING;
489 1.245 ad lwp_setlock(newl, spc->spc_lwplock);
490 1.334 ad spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
491 1.245 ad } else {
492 1.245 ad newl = ci->ci_data.cpu_idlelwp;
493 1.245 ad newl->l_stat = LSONPROC;
494 1.335 ad newl->l_flag |= LW_RUNNING;
495 1.334 ad spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
496 1.334 ad SPCF_IDLE;
497 1.245 ad }
498 1.261 rmind
499 1.245 ad /*
500 1.325 ad * Only clear want_resched if there are no pending (slow) software
501 1.325 ad * interrupts. We can do this without an atomic, because no new
502 1.325 ad * LWPs can appear in the queue due to our hold on spc_mutex, and
503 1.325 ad * the update to ci_want_resched will become globally visible before
504 1.325 ad * the release of spc_mutex becomes globally visible.
505 1.245 ad */
506 1.245 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
507 1.245 ad spc->spc_curpriority = lwp_eprio(newl);
508 1.245 ad
509 1.245 ad return newl;
510 1.245 ad }
511 1.245 ad
512 1.245 ad /*
513 1.188 yamt * The machine independent parts of context switch.
514 1.188 yamt *
515 1.335 ad * NOTE: l->l_cpu is not changed in this routine, because an LWP never
516 1.335 ad * changes its own l_cpu (that would screw up curcpu on many ports and could
517 1.335 ad * cause all kinds of other evil stuff). l_cpu is always changed by some
518 1.335 ad * other actor, when it's known the LWP is not running (the LW_RUNNING flag
519 1.335 ad * is checked under lock).
520 1.26 cgd */
521 1.329 ad void
522 1.199 ad mi_switch(lwp_t *l)
523 1.26 cgd {
524 1.246 rmind struct cpu_info *ci;
525 1.76 thorpej struct schedstate_percpu *spc;
526 1.188 yamt struct lwp *newl;
527 1.329 ad int oldspl;
528 1.212 yamt struct bintime bt;
529 1.199 ad bool returning;
530 1.26 cgd
531 1.188 yamt KASSERT(lwp_locked(l, NULL));
532 1.231 ad KASSERT(kpreempt_disabled());
533 1.329 ad KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
534 1.174 ad
535 1.174 ad kstack_check_magic(l);
536 1.83 thorpej
537 1.212 yamt binuptime(&bt);
538 1.199 ad
539 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
540 1.335 ad KASSERT((l->l_flag & LW_RUNNING) != 0);
541 1.329 ad KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
542 1.329 ad ci = curcpu();
543 1.196 ad spc = &ci->ci_schedstate;
544 1.199 ad returning = false;
545 1.190 ad newl = NULL;
546 1.190 ad
547 1.199 ad /*
548 1.199 ad * If we have been asked to switch to a specific LWP, then there
549 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
550 1.199 ad * blocking, then return to the interrupted thread without adjusting
551 1.199 ad * VM context or its start time: neither have been changed in order
552 1.199 ad * to take the interrupt.
553 1.199 ad */
554 1.190 ad if (l->l_switchto != NULL) {
555 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
556 1.199 ad returning = true;
557 1.199 ad softint_block(l);
558 1.248 ad if ((l->l_pflag & LP_TIMEINTR) != 0)
559 1.212 yamt updatertime(l, &bt);
560 1.199 ad }
561 1.190 ad newl = l->l_switchto;
562 1.190 ad l->l_switchto = NULL;
563 1.190 ad }
564 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
565 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
566 1.204 ad /* There are pending soft interrupts, so pick one. */
567 1.204 ad newl = softint_picklwp();
568 1.204 ad newl->l_stat = LSONPROC;
569 1.335 ad newl->l_flag |= LW_RUNNING;
570 1.204 ad }
571 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
572 1.190 ad
573 1.113 gmcgarry /*
574 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
575 1.113 gmcgarry */
576 1.246 rmind if (l->l_stat == LSONPROC && l != newl) {
577 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
578 1.329 ad KASSERT((l->l_flag & LW_IDLE) == 0);
579 1.329 ad l->l_stat = LSRUN;
580 1.329 ad lwp_setlock(l, spc->spc_mutex);
581 1.329 ad sched_enqueue(l);
582 1.329 ad /*
583 1.329 ad * Handle migration. Note that "migrating LWP" may
584 1.329 ad * be reset here, if interrupt/preemption happens
585 1.329 ad * early in idle LWP.
586 1.329 ad */
587 1.329 ad if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
588 1.329 ad KASSERT((l->l_pflag & LP_INTR) == 0);
589 1.329 ad spc->spc_migrating = l;
590 1.329 ad }
591 1.174 ad }
592 1.174 ad
593 1.245 ad /* Pick new LWP to run. */
594 1.190 ad if (newl == NULL) {
595 1.245 ad newl = nextlwp(ci, spc);
596 1.199 ad }
597 1.199 ad
598 1.204 ad /* Items that must be updated with the CPU locked. */
599 1.199 ad if (!returning) {
600 1.326 ad /* Count time spent in current system call */
601 1.326 ad SYSCALL_TIME_SLEEP(l);
602 1.326 ad
603 1.326 ad updatertime(l, &bt);
604 1.326 ad
605 1.204 ad /* Update the new LWP's start time. */
606 1.212 yamt newl->l_stime = bt;
607 1.204 ad
608 1.199 ad /*
609 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
610 1.327 ad * We use ci_onproc to keep track of which kernel or
611 1.204 ad * user thread is running 'underneath' the software
612 1.204 ad * interrupt. This is important for time accounting,
613 1.204 ad * itimers and forcing user threads to preempt (aston).
614 1.199 ad */
615 1.327 ad ci->ci_onproc = newl;
616 1.188 yamt }
617 1.188 yamt
618 1.241 ad /*
619 1.325 ad * Preemption related tasks. Must be done holding spc_mutex. Clear
620 1.325 ad * l_dopreempt without an atomic - it's only ever set non-zero by
621 1.325 ad * sched_resched_cpu() which also holds spc_mutex, and only ever
622 1.325 ad * cleared by the LWP itself (us) with atomics when not under lock.
623 1.241 ad */
624 1.231 ad l->l_dopreempt = 0;
625 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
626 1.231 ad LOCKSTAT_FLAG(lsflag);
627 1.231 ad LOCKSTAT_ENTER(lsflag);
628 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
629 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
630 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
631 1.231 ad LOCKSTAT_EXIT(lsflag);
632 1.231 ad l->l_pfailtime = 0;
633 1.231 ad l->l_pfaillock = 0;
634 1.231 ad l->l_pfailaddr = 0;
635 1.231 ad }
636 1.231 ad
637 1.188 yamt if (l != newl) {
638 1.188 yamt struct lwp *prevlwp;
639 1.174 ad
640 1.209 ad /* Release all locks, but leave the current LWP locked */
641 1.246 rmind if (l->l_mutex == spc->spc_mutex) {
642 1.209 ad /*
643 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
644 1.209 ad * to the run queue (it is now locked by spc_mutex).
645 1.209 ad */
646 1.217 ad mutex_spin_exit(spc->spc_lwplock);
647 1.188 yamt } else {
648 1.209 ad /*
649 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
650 1.209 ad * run queues.
651 1.209 ad */
652 1.188 yamt mutex_spin_exit(spc->spc_mutex);
653 1.188 yamt }
654 1.188 yamt
655 1.330 ad /* We're down to only one lock, so do debug checks. */
656 1.330 ad LOCKDEBUG_BARRIER(l->l_mutex, 1);
657 1.330 ad
658 1.335 ad /* Count the context switch. */
659 1.335 ad CPU_COUNT(CPU_COUNT_NSWTCH, 1);
660 1.209 ad l->l_ncsw++;
661 1.335 ad if ((l->l_pflag & LP_PREEMPTING) != 0) {
662 1.321 mlelstv l->l_nivcsw++;
663 1.335 ad l->l_pflag &= ~LP_PREEMPTING;
664 1.335 ad }
665 1.209 ad
666 1.209 ad /*
667 1.209 ad * Increase the count of spin-mutexes before the release
668 1.335 ad * of the last lock - we must remain at IPL_SCHED after
669 1.335 ad * releasing the lock.
670 1.209 ad */
671 1.287 matt KASSERTMSG(ci->ci_mtx_count == -1,
672 1.301 rmind "%s: cpu%u: ci_mtx_count (%d) != -1 "
673 1.301 rmind "(block with spin-mutex held)",
674 1.291 jym __func__, cpu_index(ci), ci->ci_mtx_count);
675 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
676 1.335 ad ci->ci_mtx_count = -2;
677 1.188 yamt
678 1.209 ad /* Update status for lwpctl, if present. */
679 1.335 ad if (l->l_lwpctl != NULL) {
680 1.335 ad l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
681 1.335 ad LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
682 1.335 ad }
683 1.209 ad
684 1.199 ad /*
685 1.335 ad * If curlwp is a soft interrupt LWP, there's nobody on the
686 1.335 ad * other side to unlock - we're returning into an assembly
687 1.335 ad * trampoline. Unlock now. This is safe because this is a
688 1.335 ad * kernel LWP and is bound to current CPU: the worst anyone
689 1.335 ad * else will do to it, is to put it back onto this CPU's run
690 1.335 ad * queue (and the CPU is busy here right now!).
691 1.199 ad */
692 1.335 ad if (returning) {
693 1.335 ad /* Keep IPL_SCHED after this; MD code will fix up. */
694 1.335 ad l->l_flag &= ~LW_RUNNING;
695 1.335 ad lwp_unlock(l);
696 1.335 ad } else {
697 1.335 ad /* A normal LWP: save old VM context. */
698 1.199 ad pmap_deactivate(l);
699 1.209 ad }
700 1.207 ad
701 1.276 darran /*
702 1.276 darran * If DTrace has set the active vtime enum to anything
703 1.276 darran * other than INACTIVE (0), then it should have set the
704 1.276 darran * function to call.
705 1.276 darran */
706 1.278 darran if (__predict_false(dtrace_vtime_active)) {
707 1.276 darran (*dtrace_vtime_switch_func)(newl);
708 1.276 darran }
709 1.276 darran
710 1.318 ozaki /*
711 1.318 ozaki * We must ensure not to come here from inside a read section.
712 1.318 ozaki */
713 1.318 ozaki KASSERT(pserialize_not_in_read_section());
714 1.318 ozaki
715 1.188 yamt /* Switch to the new LWP.. */
716 1.305 mlelstv #ifdef MULTIPROCESSOR
717 1.304 matt KASSERT(curlwp == ci->ci_curlwp);
718 1.305 mlelstv #endif
719 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
720 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
721 1.207 ad ci = curcpu();
722 1.305 mlelstv #ifdef MULTIPROCESSOR
723 1.304 matt KASSERT(curlwp == ci->ci_curlwp);
724 1.305 mlelstv #endif
725 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
726 1.304 matt l, curlwp, prevlwp);
727 1.335 ad KASSERT(prevlwp != NULL);
728 1.335 ad KASSERT(l->l_cpu == ci);
729 1.335 ad KASSERT(ci->ci_mtx_count == -2);
730 1.335 ad
731 1.335 ad /*
732 1.335 ad * Immediately mark the previous LWP as no longer running,
733 1.335 ad * and unlock it. We'll still be at IPL_SCHED afterwards.
734 1.335 ad */
735 1.335 ad KASSERT((prevlwp->l_flag & LW_RUNNING) != 0);
736 1.335 ad prevlwp->l_flag &= ~LW_RUNNING;
737 1.335 ad lwp_unlock(prevlwp);
738 1.207 ad
739 1.188 yamt /*
740 1.209 ad * Switched away - we have new curlwp.
741 1.209 ad * Restore VM context and IPL.
742 1.188 yamt */
743 1.209 ad pmap_activate(l);
744 1.288 rmind pcu_switchpoint(l);
745 1.265 rmind
746 1.209 ad /* Update status for lwpctl, if present. */
747 1.219 ad if (l->l_lwpctl != NULL) {
748 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
749 1.219 ad l->l_lwpctl->lc_pctr++;
750 1.219 ad }
751 1.174 ad
752 1.300 yamt /*
753 1.335 ad * Normalize the spin mutex count and restore the previous
754 1.335 ad * SPL. Note that, unless the caller disabled preemption,
755 1.335 ad * we can be preempted at any time after this splx().
756 1.300 yamt */
757 1.331 ad KASSERT(l->l_cpu == ci);
758 1.335 ad KASSERT(ci->ci_mtx_count == -1);
759 1.335 ad ci->ci_mtx_count = 0;
760 1.329 ad splx(oldspl);
761 1.188 yamt } else {
762 1.188 yamt /* Nothing to do - just unlock and return. */
763 1.246 rmind mutex_spin_exit(spc->spc_mutex);
764 1.321 mlelstv l->l_pflag &= ~LP_PREEMPTING;
765 1.188 yamt lwp_unlock(l);
766 1.122 thorpej }
767 1.110 briggs
768 1.188 yamt KASSERT(l == curlwp);
769 1.188 yamt KASSERT(l->l_stat == LSONPROC);
770 1.188 yamt
771 1.180 dsl SYSCALL_TIME_WAKEUP(l);
772 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
773 1.26 cgd }
774 1.26 cgd
775 1.26 cgd /*
776 1.271 rmind * setrunnable: change LWP state to be runnable, placing it on the run queue.
777 1.174 ad *
778 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
779 1.26 cgd */
780 1.26 cgd void
781 1.122 thorpej setrunnable(struct lwp *l)
782 1.26 cgd {
783 1.122 thorpej struct proc *p = l->l_proc;
784 1.205 ad struct cpu_info *ci;
785 1.326 ad kmutex_t *oldlock;
786 1.26 cgd
787 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
788 1.324 kamil KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
789 1.229 ad KASSERT(mutex_owned(p->p_lock));
790 1.183 ad KASSERT(lwp_locked(l, NULL));
791 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
792 1.83 thorpej
793 1.122 thorpej switch (l->l_stat) {
794 1.122 thorpej case LSSTOP:
795 1.33 mycroft /*
796 1.33 mycroft * If we're being traced (possibly because someone attached us
797 1.33 mycroft * while we were stopped), check for a signal from the debugger.
798 1.33 mycroft */
799 1.310 christos if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
800 1.174 ad signotify(l);
801 1.174 ad p->p_nrlwps++;
802 1.26 cgd break;
803 1.174 ad case LSSUSPENDED:
804 1.326 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
805 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
806 1.174 ad p->p_nrlwps++;
807 1.192 rmind cv_broadcast(&p->p_lwpcv);
808 1.122 thorpej break;
809 1.174 ad case LSSLEEP:
810 1.174 ad KASSERT(l->l_wchan != NULL);
811 1.26 cgd break;
812 1.326 ad case LSIDL:
813 1.326 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
814 1.326 ad break;
815 1.174 ad default:
816 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
817 1.26 cgd }
818 1.139 cl
819 1.174 ad /*
820 1.286 pooka * If the LWP was sleeping, start it again.
821 1.174 ad */
822 1.174 ad if (l->l_wchan != NULL) {
823 1.174 ad l->l_stat = LSSLEEP;
824 1.183 ad /* lwp_unsleep() will release the lock. */
825 1.221 ad lwp_unsleep(l, true);
826 1.174 ad return;
827 1.174 ad }
828 1.139 cl
829 1.174 ad /*
830 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
831 1.174 ad * about to call mi_switch(), in which case it will yield.
832 1.174 ad */
833 1.335 ad if ((l->l_flag & LW_RUNNING) != 0) {
834 1.174 ad l->l_stat = LSONPROC;
835 1.174 ad l->l_slptime = 0;
836 1.174 ad lwp_unlock(l);
837 1.174 ad return;
838 1.174 ad }
839 1.122 thorpej
840 1.174 ad /*
841 1.205 ad * Look for a CPU to run.
842 1.205 ad * Set the LWP runnable.
843 1.174 ad */
844 1.205 ad ci = sched_takecpu(l);
845 1.205 ad l->l_cpu = ci;
846 1.236 ad spc_lock(ci);
847 1.326 ad oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
848 1.188 yamt sched_setrunnable(l);
849 1.174 ad l->l_stat = LSRUN;
850 1.122 thorpej l->l_slptime = 0;
851 1.326 ad sched_enqueue(l);
852 1.326 ad sched_resched_lwp(l, true);
853 1.326 ad /* SPC & LWP now unlocked. */
854 1.326 ad mutex_spin_exit(oldlock);
855 1.26 cgd }
856 1.26 cgd
857 1.26 cgd /*
858 1.174 ad * suspendsched:
859 1.174 ad *
860 1.266 yamt * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
861 1.174 ad */
862 1.94 bouyer void
863 1.174 ad suspendsched(void)
864 1.94 bouyer {
865 1.174 ad CPU_INFO_ITERATOR cii;
866 1.174 ad struct cpu_info *ci;
867 1.122 thorpej struct lwp *l;
868 1.174 ad struct proc *p;
869 1.94 bouyer
870 1.94 bouyer /*
871 1.174 ad * We do this by process in order not to violate the locking rules.
872 1.94 bouyer */
873 1.228 ad mutex_enter(proc_lock);
874 1.174 ad PROCLIST_FOREACH(p, &allproc) {
875 1.229 ad mutex_enter(p->p_lock);
876 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
877 1.229 ad mutex_exit(p->p_lock);
878 1.94 bouyer continue;
879 1.174 ad }
880 1.174 ad
881 1.309 pgoyette if (p->p_stat != SSTOP) {
882 1.309 pgoyette if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
883 1.309 pgoyette p->p_pptr->p_nstopchild++;
884 1.309 pgoyette p->p_waited = 0;
885 1.309 pgoyette }
886 1.309 pgoyette p->p_stat = SSTOP;
887 1.309 pgoyette }
888 1.174 ad
889 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
890 1.174 ad if (l == curlwp)
891 1.174 ad continue;
892 1.174 ad
893 1.174 ad lwp_lock(l);
894 1.122 thorpej
895 1.97 enami /*
896 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
897 1.174 ad * when it tries to return to user mode. We want to
898 1.174 ad * try and get to get as many LWPs as possible to
899 1.174 ad * the user / kernel boundary, so that they will
900 1.174 ad * release any locks that they hold.
901 1.97 enami */
902 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
903 1.174 ad
904 1.174 ad if (l->l_stat == LSSLEEP &&
905 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
906 1.174 ad /* setrunnable() will release the lock. */
907 1.174 ad setrunnable(l);
908 1.174 ad continue;
909 1.174 ad }
910 1.174 ad
911 1.174 ad lwp_unlock(l);
912 1.94 bouyer }
913 1.174 ad
914 1.229 ad mutex_exit(p->p_lock);
915 1.94 bouyer }
916 1.228 ad mutex_exit(proc_lock);
917 1.174 ad
918 1.174 ad /*
919 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
920 1.326 ad * They'll trap into the kernel and suspend themselves in userret().
921 1.326 ad *
922 1.326 ad * Unusually, we don't hold any other scheduler object locked, which
923 1.326 ad * would keep preemption off for sched_resched_cpu(), so disable it
924 1.326 ad * explicitly.
925 1.174 ad */
926 1.326 ad kpreempt_disable();
927 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
928 1.204 ad spc_lock(ci);
929 1.326 ad sched_resched_cpu(ci, PRI_KERNEL, true);
930 1.326 ad /* spc now unlocked */
931 1.204 ad }
932 1.326 ad kpreempt_enable();
933 1.174 ad }
934 1.174 ad
935 1.174 ad /*
936 1.174 ad * sched_unsleep:
937 1.174 ad *
938 1.174 ad * The is called when the LWP has not been awoken normally but instead
939 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
940 1.174 ad * it's not a valid action for running or idle LWPs.
941 1.174 ad */
942 1.271 rmind static void
943 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
944 1.174 ad {
945 1.174 ad
946 1.174 ad lwp_unlock(l);
947 1.174 ad panic("sched_unsleep");
948 1.174 ad }
949 1.174 ad
950 1.250 rmind static void
951 1.326 ad sched_changepri(struct lwp *l, pri_t pri)
952 1.188 yamt {
953 1.326 ad struct schedstate_percpu *spc;
954 1.326 ad struct cpu_info *ci;
955 1.188 yamt
956 1.250 rmind KASSERT(lwp_locked(l, NULL));
957 1.188 yamt
958 1.326 ad ci = l->l_cpu;
959 1.326 ad spc = &ci->ci_schedstate;
960 1.174 ad
961 1.271 rmind if (l->l_stat == LSRUN) {
962 1.326 ad KASSERT(lwp_locked(l, spc->spc_mutex));
963 1.204 ad sched_dequeue(l);
964 1.204 ad l->l_priority = pri;
965 1.326 ad sched_enqueue(l);
966 1.326 ad sched_resched_lwp(l, false);
967 1.326 ad } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
968 1.326 ad /* On priority drop, only evict realtime LWPs. */
969 1.326 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
970 1.326 ad l->l_priority = pri;
971 1.326 ad spc_lock(ci);
972 1.326 ad sched_resched_cpu(ci, spc->spc_maxpriority, true);
973 1.326 ad /* spc now unlocked */
974 1.204 ad } else {
975 1.174 ad l->l_priority = pri;
976 1.157 yamt }
977 1.184 yamt }
978 1.184 yamt
979 1.188 yamt static void
980 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
981 1.184 yamt {
982 1.326 ad struct schedstate_percpu *spc;
983 1.326 ad struct cpu_info *ci;
984 1.184 yamt
985 1.188 yamt KASSERT(lwp_locked(l, NULL));
986 1.184 yamt
987 1.326 ad ci = l->l_cpu;
988 1.326 ad spc = &ci->ci_schedstate;
989 1.326 ad
990 1.271 rmind if (l->l_stat == LSRUN) {
991 1.326 ad KASSERT(lwp_locked(l, spc->spc_mutex));
992 1.204 ad sched_dequeue(l);
993 1.204 ad l->l_inheritedprio = pri;
994 1.311 christos l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
995 1.326 ad sched_enqueue(l);
996 1.326 ad sched_resched_lwp(l, false);
997 1.326 ad } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
998 1.326 ad /* On priority drop, only evict realtime LWPs. */
999 1.326 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
1000 1.326 ad l->l_inheritedprio = pri;
1001 1.326 ad l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1002 1.326 ad spc_lock(ci);
1003 1.326 ad sched_resched_cpu(ci, spc->spc_maxpriority, true);
1004 1.326 ad /* spc now unlocked */
1005 1.204 ad } else {
1006 1.184 yamt l->l_inheritedprio = pri;
1007 1.311 christos l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1008 1.184 yamt }
1009 1.184 yamt }
1010 1.184 yamt
1011 1.184 yamt struct lwp *
1012 1.184 yamt syncobj_noowner(wchan_t wchan)
1013 1.184 yamt {
1014 1.184 yamt
1015 1.184 yamt return NULL;
1016 1.151 yamt }
1017 1.151 yamt
1018 1.250 rmind /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1019 1.281 rmind const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1020 1.281 rmind
1021 1.281 rmind /*
1022 1.281 rmind * Constants for averages over 1, 5 and 15 minutes when sampling at
1023 1.281 rmind * 5 second intervals.
1024 1.281 rmind */
1025 1.281 rmind static const fixpt_t cexp[ ] = {
1026 1.281 rmind 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1027 1.281 rmind 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1028 1.281 rmind 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1029 1.281 rmind };
1030 1.134 matt
1031 1.134 matt /*
1032 1.188 yamt * sched_pstats:
1033 1.188 yamt *
1034 1.281 rmind * => Update process statistics and check CPU resource allocation.
1035 1.281 rmind * => Call scheduler-specific hook to eventually adjust LWP priorities.
1036 1.281 rmind * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1037 1.130 nathanw */
1038 1.113 gmcgarry void
1039 1.281 rmind sched_pstats(void)
1040 1.113 gmcgarry {
1041 1.281 rmind extern struct loadavg averunnable;
1042 1.281 rmind struct loadavg *avg = &averunnable;
1043 1.249 rmind const int clkhz = (stathz != 0 ? stathz : hz);
1044 1.281 rmind static bool backwards = false;
1045 1.281 rmind static u_int lavg_count = 0;
1046 1.188 yamt struct proc *p;
1047 1.281 rmind int nrun;
1048 1.113 gmcgarry
1049 1.188 yamt sched_pstats_ticks++;
1050 1.281 rmind if (++lavg_count >= 5) {
1051 1.281 rmind lavg_count = 0;
1052 1.281 rmind nrun = 0;
1053 1.281 rmind }
1054 1.228 ad mutex_enter(proc_lock);
1055 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1056 1.281 rmind struct lwp *l;
1057 1.281 rmind struct rlimit *rlim;
1058 1.296 dholland time_t runtm;
1059 1.281 rmind int sig;
1060 1.281 rmind
1061 1.271 rmind /* Increment sleep time (if sleeping), ignore overflow. */
1062 1.229 ad mutex_enter(p->p_lock);
1063 1.212 yamt runtm = p->p_rtime.sec;
1064 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1065 1.281 rmind fixpt_t lpctcpu;
1066 1.281 rmind u_int lcpticks;
1067 1.281 rmind
1068 1.249 rmind if (__predict_false((l->l_flag & LW_IDLE) != 0))
1069 1.188 yamt continue;
1070 1.188 yamt lwp_lock(l);
1071 1.212 yamt runtm += l->l_rtime.sec;
1072 1.188 yamt l->l_swtime++;
1073 1.242 rmind sched_lwp_stats(l);
1074 1.281 rmind
1075 1.281 rmind /* For load average calculation. */
1076 1.282 rmind if (__predict_false(lavg_count == 0) &&
1077 1.282 rmind (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1078 1.281 rmind switch (l->l_stat) {
1079 1.281 rmind case LSSLEEP:
1080 1.281 rmind if (l->l_slptime > 1) {
1081 1.281 rmind break;
1082 1.281 rmind }
1083 1.323 mrg /* FALLTHROUGH */
1084 1.281 rmind case LSRUN:
1085 1.281 rmind case LSONPROC:
1086 1.281 rmind case LSIDL:
1087 1.281 rmind nrun++;
1088 1.281 rmind }
1089 1.281 rmind }
1090 1.282 rmind lwp_unlock(l);
1091 1.282 rmind
1092 1.282 rmind l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1093 1.282 rmind if (l->l_slptime != 0)
1094 1.282 rmind continue;
1095 1.282 rmind
1096 1.282 rmind lpctcpu = l->l_pctcpu;
1097 1.282 rmind lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1098 1.282 rmind lpctcpu += ((FSCALE - ccpu) *
1099 1.282 rmind (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1100 1.282 rmind l->l_pctcpu = lpctcpu;
1101 1.188 yamt }
1102 1.249 rmind /* Calculating p_pctcpu only for ps(1) */
1103 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1104 1.174 ad
1105 1.303 christos if (__predict_false(runtm < 0)) {
1106 1.303 christos if (!backwards) {
1107 1.303 christos backwards = true;
1108 1.303 christos printf("WARNING: negative runtime; "
1109 1.303 christos "monotonic clock has gone backwards\n");
1110 1.303 christos }
1111 1.303 christos mutex_exit(p->p_lock);
1112 1.303 christos continue;
1113 1.303 christos }
1114 1.303 christos
1115 1.188 yamt /*
1116 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1117 1.293 apb * If over the hard limit, kill it with SIGKILL.
1118 1.293 apb * If over the soft limit, send SIGXCPU and raise
1119 1.293 apb * the soft limit a little.
1120 1.188 yamt */
1121 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1122 1.188 yamt sig = 0;
1123 1.249 rmind if (__predict_false(runtm >= rlim->rlim_cur)) {
1124 1.293 apb if (runtm >= rlim->rlim_max) {
1125 1.188 yamt sig = SIGKILL;
1126 1.312 christos log(LOG_NOTICE,
1127 1.312 christos "pid %d, command %s, is killed: %s\n",
1128 1.312 christos p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1129 1.293 apb uprintf("pid %d, command %s, is killed: %s\n",
1130 1.312 christos p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1131 1.293 apb } else {
1132 1.188 yamt sig = SIGXCPU;
1133 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1134 1.188 yamt rlim->rlim_cur += 5;
1135 1.188 yamt }
1136 1.188 yamt }
1137 1.229 ad mutex_exit(p->p_lock);
1138 1.303 christos if (__predict_false(sig)) {
1139 1.259 rmind KASSERT((p->p_flag & PK_SYSTEM) == 0);
1140 1.188 yamt psignal(p, sig);
1141 1.259 rmind }
1142 1.174 ad }
1143 1.281 rmind
1144 1.281 rmind /* Load average calculation. */
1145 1.281 rmind if (__predict_false(lavg_count == 0)) {
1146 1.281 rmind int i;
1147 1.283 martin CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1148 1.281 rmind for (i = 0; i < __arraycount(cexp); i++) {
1149 1.281 rmind avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1150 1.281 rmind nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1151 1.281 rmind }
1152 1.281 rmind }
1153 1.281 rmind
1154 1.281 rmind /* Lightning bolt. */
1155 1.273 pooka cv_broadcast(&lbolt);
1156 1.325 ad
1157 1.325 ad mutex_exit(proc_lock);
1158 1.113 gmcgarry }
1159