kern_synch.c revision 1.358 1 1.358 riastrad /* $NetBSD: kern_synch.c,v 1.358 2023/07/17 12:54:29 riastradh Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.340 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020
5 1.260 ad * The NetBSD Foundation, Inc.
6 1.63 thorpej * All rights reserved.
7 1.63 thorpej *
8 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
9 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 1.188 yamt * Daniel Sieger.
12 1.63 thorpej *
13 1.63 thorpej * Redistribution and use in source and binary forms, with or without
14 1.63 thorpej * modification, are permitted provided that the following conditions
15 1.63 thorpej * are met:
16 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer.
18 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
19 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
20 1.63 thorpej * documentation and/or other materials provided with the distribution.
21 1.63 thorpej *
22 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
33 1.63 thorpej */
34 1.26 cgd
35 1.26 cgd /*-
36 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 1.26 cgd * The Regents of the University of California. All rights reserved.
38 1.26 cgd * (c) UNIX System Laboratories, Inc.
39 1.26 cgd * All or some portions of this file are derived from material licensed
40 1.26 cgd * to the University of California by American Telephone and Telegraph
41 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 1.26 cgd * the permission of UNIX System Laboratories, Inc.
43 1.26 cgd *
44 1.26 cgd * Redistribution and use in source and binary forms, with or without
45 1.26 cgd * modification, are permitted provided that the following conditions
46 1.26 cgd * are met:
47 1.26 cgd * 1. Redistributions of source code must retain the above copyright
48 1.26 cgd * notice, this list of conditions and the following disclaimer.
49 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.26 cgd * notice, this list of conditions and the following disclaimer in the
51 1.26 cgd * documentation and/or other materials provided with the distribution.
52 1.136 agc * 3. Neither the name of the University nor the names of its contributors
53 1.26 cgd * may be used to endorse or promote products derived from this software
54 1.26 cgd * without specific prior written permission.
55 1.26 cgd *
56 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.26 cgd * SUCH DAMAGE.
67 1.26 cgd *
68 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 1.26 cgd */
70 1.106 lukem
71 1.106 lukem #include <sys/cdefs.h>
72 1.358 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.358 2023/07/17 12:54:29 riastradh Exp $");
73 1.48 mrg
74 1.109 yamt #include "opt_kstack.h"
75 1.357 riastrad #include "opt_ddb.h"
76 1.277 darran #include "opt_dtrace.h"
77 1.26 cgd
78 1.174 ad #define __MUTEX_PRIVATE
79 1.174 ad
80 1.26 cgd #include <sys/param.h>
81 1.26 cgd #include <sys/systm.h>
82 1.26 cgd #include <sys/proc.h>
83 1.26 cgd #include <sys/kernel.h>
84 1.188 yamt #include <sys/cpu.h>
85 1.290 christos #include <sys/pserialize.h>
86 1.352 riastrad #include <sys/resource.h>
87 1.26 cgd #include <sys/resourcevar.h>
88 1.341 ad #include <sys/rwlock.h>
89 1.55 ross #include <sys/sched.h>
90 1.179 dsl #include <sys/syscall_stats.h>
91 1.174 ad #include <sys/sleepq.h>
92 1.174 ad #include <sys/lockdebug.h>
93 1.190 ad #include <sys/evcnt.h>
94 1.199 ad #include <sys/intr.h>
95 1.207 ad #include <sys/lwpctl.h>
96 1.209 ad #include <sys/atomic.h>
97 1.295 njoly #include <sys/syslog.h>
98 1.47 mrg
99 1.47 mrg #include <uvm/uvm_extern.h>
100 1.47 mrg
101 1.231 ad #include <dev/lockstat.h>
102 1.231 ad
103 1.276 darran #include <sys/dtrace_bsd.h>
104 1.279 darran int dtrace_vtime_active=0;
105 1.276 darran dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
106 1.276 darran
107 1.357 riastrad #ifdef DDB
108 1.357 riastrad #include <ddb/ddb.h>
109 1.357 riastrad #endif
110 1.357 riastrad
111 1.271 rmind static void sched_unsleep(struct lwp *, bool);
112 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
113 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
114 1.122 thorpej
115 1.174 ad syncobj_t sleep_syncobj = {
116 1.358 riastrad .sobj_name = "sleep",
117 1.313 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
118 1.313 ozaki .sobj_unsleep = sleepq_unsleep,
119 1.313 ozaki .sobj_changepri = sleepq_changepri,
120 1.313 ozaki .sobj_lendpri = sleepq_lendpri,
121 1.313 ozaki .sobj_owner = syncobj_noowner,
122 1.174 ad };
123 1.174 ad
124 1.174 ad syncobj_t sched_syncobj = {
125 1.358 riastrad .sobj_name = "sched",
126 1.313 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
127 1.313 ozaki .sobj_unsleep = sched_unsleep,
128 1.313 ozaki .sobj_changepri = sched_changepri,
129 1.313 ozaki .sobj_lendpri = sched_lendpri,
130 1.313 ozaki .sobj_owner = syncobj_noowner,
131 1.174 ad };
132 1.122 thorpej
133 1.342 ad syncobj_t kpause_syncobj = {
134 1.358 riastrad .sobj_name = "kpause",
135 1.342 ad .sobj_flag = SOBJ_SLEEPQ_NULL,
136 1.342 ad .sobj_unsleep = sleepq_unsleep,
137 1.342 ad .sobj_changepri = sleepq_changepri,
138 1.342 ad .sobj_lendpri = sleepq_lendpri,
139 1.342 ad .sobj_owner = syncobj_noowner,
140 1.342 ad };
141 1.342 ad
142 1.289 rmind /* "Lightning bolt": once a second sleep address. */
143 1.289 rmind kcondvar_t lbolt __cacheline_aligned;
144 1.223 ad
145 1.289 rmind u_int sched_pstats_ticks __cacheline_aligned;
146 1.289 rmind
147 1.289 rmind /* Preemption event counters. */
148 1.289 rmind static struct evcnt kpreempt_ev_crit __cacheline_aligned;
149 1.289 rmind static struct evcnt kpreempt_ev_klock __cacheline_aligned;
150 1.289 rmind static struct evcnt kpreempt_ev_immed __cacheline_aligned;
151 1.231 ad
152 1.237 rmind void
153 1.270 elad synch_init(void)
154 1.237 rmind {
155 1.237 rmind
156 1.237 rmind cv_init(&lbolt, "lbolt");
157 1.237 rmind
158 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
159 1.237 rmind "kpreempt", "defer: critical section");
160 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
161 1.237 rmind "kpreempt", "defer: kernel_lock");
162 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
163 1.237 rmind "kpreempt", "immediate");
164 1.237 rmind }
165 1.237 rmind
166 1.26 cgd /*
167 1.174 ad * OBSOLETE INTERFACE
168 1.174 ad *
169 1.255 skrll * General sleep call. Suspends the current LWP until a wakeup is
170 1.255 skrll * performed on the specified identifier. The LWP will then be made
171 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
172 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
173 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
174 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
175 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
176 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
177 1.26 cgd * call should be interrupted by the signal (return EINTR).
178 1.26 cgd */
179 1.26 cgd int
180 1.297 rmind tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
181 1.26 cgd {
182 1.122 thorpej struct lwp *l = curlwp;
183 1.174 ad sleepq_t *sq;
184 1.244 ad kmutex_t *mp;
185 1.347 ad bool catch_p;
186 1.26 cgd
187 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
188 1.272 pooka KASSERT(ident != &lbolt);
189 1.356 riastrad //KASSERT(KERNEL_LOCKED_P());
190 1.204 ad
191 1.174 ad if (sleepq_dontsleep(l)) {
192 1.174 ad (void)sleepq_abort(NULL, 0);
193 1.174 ad return 0;
194 1.26 cgd }
195 1.78 sommerfe
196 1.204 ad l->l_kpriority = true;
197 1.347 ad catch_p = priority & PCATCH;
198 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
199 1.244 ad sleepq_enter(sq, l, mp);
200 1.347 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
201 1.351 riastrad return sleepq_block(timo, catch_p, &sleep_syncobj);
202 1.26 cgd }
203 1.26 cgd
204 1.187 ad int
205 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
206 1.187 ad kmutex_t *mtx)
207 1.187 ad {
208 1.187 ad struct lwp *l = curlwp;
209 1.187 ad sleepq_t *sq;
210 1.244 ad kmutex_t *mp;
211 1.347 ad bool catch_p;
212 1.188 yamt int error;
213 1.187 ad
214 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
215 1.272 pooka KASSERT(ident != &lbolt);
216 1.204 ad
217 1.187 ad if (sleepq_dontsleep(l)) {
218 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
219 1.187 ad return 0;
220 1.187 ad }
221 1.187 ad
222 1.204 ad l->l_kpriority = true;
223 1.347 ad catch_p = priority & PCATCH;
224 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
225 1.244 ad sleepq_enter(sq, l, mp);
226 1.347 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
227 1.187 ad mutex_exit(mtx);
228 1.351 riastrad error = sleepq_block(timo, catch_p, &sleep_syncobj);
229 1.187 ad
230 1.187 ad if ((priority & PNORELOCK) == 0)
231 1.187 ad mutex_enter(mtx);
232 1.297 rmind
233 1.187 ad return error;
234 1.187 ad }
235 1.187 ad
236 1.26 cgd /*
237 1.174 ad * General sleep call for situations where a wake-up is not expected.
238 1.26 cgd */
239 1.174 ad int
240 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
241 1.26 cgd {
242 1.174 ad struct lwp *l = curlwp;
243 1.174 ad int error;
244 1.26 cgd
245 1.354 riastrad KASSERT(timo != 0 || intr);
246 1.284 pooka
247 1.174 ad if (sleepq_dontsleep(l))
248 1.174 ad return sleepq_abort(NULL, 0);
249 1.26 cgd
250 1.174 ad if (mtx != NULL)
251 1.174 ad mutex_exit(mtx);
252 1.204 ad l->l_kpriority = true;
253 1.342 ad lwp_lock(l);
254 1.342 ad KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
255 1.347 ad sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr);
256 1.351 riastrad error = sleepq_block(timo, intr, &kpause_syncobj);
257 1.174 ad if (mtx != NULL)
258 1.174 ad mutex_enter(mtx);
259 1.83 thorpej
260 1.174 ad return error;
261 1.139 cl }
262 1.139 cl
263 1.26 cgd /*
264 1.174 ad * OBSOLETE INTERFACE
265 1.174 ad *
266 1.255 skrll * Make all LWPs sleeping on the specified identifier runnable.
267 1.26 cgd */
268 1.26 cgd void
269 1.174 ad wakeup(wchan_t ident)
270 1.26 cgd {
271 1.174 ad sleepq_t *sq;
272 1.244 ad kmutex_t *mp;
273 1.83 thorpej
274 1.261 rmind if (__predict_false(cold))
275 1.174 ad return;
276 1.83 thorpej
277 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
278 1.244 ad sleepq_wake(sq, ident, (u_int)-1, mp);
279 1.63 thorpej }
280 1.63 thorpej
281 1.63 thorpej /*
282 1.255 skrll * General yield call. Puts the current LWP back on its run queue and
283 1.343 ad * performs a context switch.
284 1.117 gmcgarry */
285 1.117 gmcgarry void
286 1.117 gmcgarry yield(void)
287 1.117 gmcgarry {
288 1.122 thorpej struct lwp *l = curlwp;
289 1.117 gmcgarry
290 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
291 1.174 ad lwp_lock(l);
292 1.329 ad
293 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
294 1.188 yamt KASSERT(l->l_stat == LSONPROC);
295 1.329 ad
296 1.325 ad /* Voluntary - ditch kpriority boost. */
297 1.204 ad l->l_kpriority = false;
298 1.329 ad spc_lock(l->l_cpu);
299 1.329 ad mi_switch(l);
300 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
301 1.69 thorpej }
302 1.69 thorpej
303 1.69 thorpej /*
304 1.255 skrll * General preemption call. Puts the current LWP back on its run queue
305 1.343 ad * and performs an involuntary context switch. Different from yield()
306 1.343 ad * in that:
307 1.343 ad *
308 1.343 ad * - It's counted differently (involuntary vs. voluntary).
309 1.343 ad * - Realtime threads go to the head of their runqueue vs. tail for yield().
310 1.343 ad * - Priority boost is retained unless LWP has exceeded timeslice.
311 1.69 thorpej */
312 1.69 thorpej void
313 1.174 ad preempt(void)
314 1.69 thorpej {
315 1.122 thorpej struct lwp *l = curlwp;
316 1.69 thorpej
317 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
318 1.174 ad lwp_lock(l);
319 1.329 ad
320 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
321 1.188 yamt KASSERT(l->l_stat == LSONPROC);
322 1.329 ad
323 1.343 ad spc_lock(l->l_cpu);
324 1.343 ad /* Involuntary - keep kpriority boost unless a CPU hog. */
325 1.343 ad if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) {
326 1.343 ad l->l_kpriority = false;
327 1.343 ad }
328 1.321 mlelstv l->l_pflag |= LP_PREEMPTING;
329 1.329 ad mi_switch(l);
330 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
331 1.69 thorpej }
332 1.69 thorpej
333 1.234 ad /*
334 1.346 ad * Return true if the current LWP should yield the processor. Intended to
335 1.346 ad * be used by long-running code in kernel.
336 1.343 ad */
337 1.346 ad inline bool
338 1.346 ad preempt_needed(void)
339 1.343 ad {
340 1.343 ad lwp_t *l = curlwp;
341 1.343 ad int needed;
342 1.343 ad
343 1.343 ad KPREEMPT_DISABLE(l);
344 1.346 ad needed = l->l_cpu->ci_want_resched;
345 1.343 ad KPREEMPT_ENABLE(l);
346 1.343 ad
347 1.348 maxv return (needed != 0);
348 1.343 ad }
349 1.343 ad
350 1.343 ad /*
351 1.346 ad * A breathing point for long running code in kernel.
352 1.343 ad */
353 1.346 ad void
354 1.346 ad preempt_point(void)
355 1.343 ad {
356 1.343 ad
357 1.346 ad if (__predict_false(preempt_needed())) {
358 1.346 ad preempt();
359 1.346 ad }
360 1.343 ad }
361 1.343 ad
362 1.343 ad /*
363 1.234 ad * Handle a request made by another agent to preempt the current LWP
364 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
365 1.234 ad *
366 1.234 ad * Character addresses for lockstat only.
367 1.234 ad */
368 1.326 ad static char kpreempt_is_disabled;
369 1.231 ad static char kernel_lock_held;
370 1.326 ad static char is_softint_lwp;
371 1.326 ad static char spl_is_raised;
372 1.231 ad
373 1.231 ad bool
374 1.231 ad kpreempt(uintptr_t where)
375 1.231 ad {
376 1.231 ad uintptr_t failed;
377 1.231 ad lwp_t *l;
378 1.264 ad int s, dop, lsflag;
379 1.231 ad
380 1.231 ad l = curlwp;
381 1.231 ad failed = 0;
382 1.231 ad while ((dop = l->l_dopreempt) != 0) {
383 1.231 ad if (l->l_stat != LSONPROC) {
384 1.231 ad /*
385 1.231 ad * About to block (or die), let it happen.
386 1.231 ad * Doesn't really count as "preemption has
387 1.231 ad * been blocked", since we're going to
388 1.231 ad * context switch.
389 1.231 ad */
390 1.325 ad atomic_swap_uint(&l->l_dopreempt, 0);
391 1.231 ad return true;
392 1.231 ad }
393 1.345 ad KASSERT((l->l_flag & LW_IDLE) == 0);
394 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
395 1.231 ad /* LWP holds preemption disabled, explicitly. */
396 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
397 1.234 ad kpreempt_ev_crit.ev_count++;
398 1.231 ad }
399 1.326 ad failed = (uintptr_t)&kpreempt_is_disabled;
400 1.231 ad break;
401 1.231 ad }
402 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
403 1.261 rmind /* Can't preempt soft interrupts yet. */
404 1.325 ad atomic_swap_uint(&l->l_dopreempt, 0);
405 1.326 ad failed = (uintptr_t)&is_softint_lwp;
406 1.261 rmind break;
407 1.231 ad }
408 1.231 ad s = splsched();
409 1.338 ad if (__predict_false(l->l_blcnt != 0 ||
410 1.338 ad curcpu()->ci_biglock_wanted != NULL)) {
411 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
412 1.231 ad splx(s);
413 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
414 1.234 ad kpreempt_ev_klock.ev_count++;
415 1.231 ad }
416 1.231 ad failed = (uintptr_t)&kernel_lock_held;
417 1.231 ad break;
418 1.231 ad }
419 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
420 1.231 ad /*
421 1.231 ad * It may be that the IPL is too high.
422 1.231 ad * kpreempt_enter() can schedule an
423 1.231 ad * interrupt to retry later.
424 1.231 ad */
425 1.231 ad splx(s);
426 1.326 ad failed = (uintptr_t)&spl_is_raised;
427 1.231 ad break;
428 1.231 ad }
429 1.231 ad /* Do it! */
430 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
431 1.234 ad kpreempt_ev_immed.ev_count++;
432 1.231 ad }
433 1.231 ad lwp_lock(l);
434 1.329 ad /* Involuntary - keep kpriority boost. */
435 1.326 ad l->l_pflag |= LP_PREEMPTING;
436 1.329 ad spc_lock(l->l_cpu);
437 1.231 ad mi_switch(l);
438 1.231 ad l->l_nopreempt++;
439 1.231 ad splx(s);
440 1.231 ad
441 1.231 ad /* Take care of any MD cleanup. */
442 1.231 ad cpu_kpreempt_exit(where);
443 1.231 ad l->l_nopreempt--;
444 1.231 ad }
445 1.231 ad
446 1.264 ad if (__predict_true(!failed)) {
447 1.264 ad return false;
448 1.264 ad }
449 1.264 ad
450 1.231 ad /* Record preemption failure for reporting via lockstat. */
451 1.264 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
452 1.264 ad lsflag = 0;
453 1.264 ad LOCKSTAT_ENTER(lsflag);
454 1.264 ad if (__predict_false(lsflag)) {
455 1.264 ad if (where == 0) {
456 1.264 ad where = (uintptr_t)__builtin_return_address(0);
457 1.264 ad }
458 1.264 ad /* Preemption is on, might recurse, so make it atomic. */
459 1.264 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
460 1.264 ad (void *)where) == NULL) {
461 1.264 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
462 1.264 ad l->l_pfaillock = failed;
463 1.231 ad }
464 1.231 ad }
465 1.264 ad LOCKSTAT_EXIT(lsflag);
466 1.264 ad return true;
467 1.231 ad }
468 1.231 ad
469 1.69 thorpej /*
470 1.231 ad * Return true if preemption is explicitly disabled.
471 1.230 ad */
472 1.231 ad bool
473 1.231 ad kpreempt_disabled(void)
474 1.231 ad {
475 1.261 rmind const lwp_t *l = curlwp;
476 1.231 ad
477 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
478 1.332 ad (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
479 1.332 ad cpu_kpreempt_disabled();
480 1.231 ad }
481 1.230 ad
482 1.230 ad /*
483 1.231 ad * Disable kernel preemption.
484 1.230 ad */
485 1.230 ad void
486 1.231 ad kpreempt_disable(void)
487 1.230 ad {
488 1.230 ad
489 1.231 ad KPREEMPT_DISABLE(curlwp);
490 1.230 ad }
491 1.230 ad
492 1.230 ad /*
493 1.231 ad * Reenable kernel preemption.
494 1.230 ad */
495 1.231 ad void
496 1.231 ad kpreempt_enable(void)
497 1.230 ad {
498 1.230 ad
499 1.231 ad KPREEMPT_ENABLE(curlwp);
500 1.230 ad }
501 1.230 ad
502 1.230 ad /*
503 1.188 yamt * Compute the amount of time during which the current lwp was running.
504 1.130 nathanw *
505 1.188 yamt * - update l_rtime unless it's an idle lwp.
506 1.188 yamt */
507 1.188 yamt
508 1.199 ad void
509 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
510 1.188 yamt {
511 1.357 riastrad static bool backwards = false;
512 1.188 yamt
513 1.261 rmind if (__predict_false(l->l_flag & LW_IDLE))
514 1.188 yamt return;
515 1.188 yamt
516 1.357 riastrad if (__predict_false(bintimecmp(now, &l->l_stime, <)) && !backwards) {
517 1.357 riastrad char caller[128];
518 1.357 riastrad
519 1.357 riastrad #ifdef DDB
520 1.357 riastrad db_symstr(caller, sizeof(caller),
521 1.357 riastrad (db_expr_t)(intptr_t)__builtin_return_address(0),
522 1.357 riastrad DB_STGY_PROC);
523 1.357 riastrad #else
524 1.357 riastrad snprintf(caller, sizeof(caller), "%p",
525 1.357 riastrad __builtin_return_address(0));
526 1.357 riastrad #endif
527 1.357 riastrad backwards = true;
528 1.357 riastrad printf("WARNING: lwp %ld (%s%s%s) flags 0x%x:"
529 1.357 riastrad " timecounter went backwards"
530 1.357 riastrad " from (%jd + 0x%016"PRIx64"/2^64) sec"
531 1.357 riastrad " to (%jd + 0x%016"PRIx64"/2^64) sec"
532 1.357 riastrad " in %s\n",
533 1.357 riastrad (long)l->l_lid,
534 1.357 riastrad l->l_proc->p_comm,
535 1.357 riastrad l->l_name ? " " : "",
536 1.357 riastrad l->l_name ? l->l_name : "",
537 1.357 riastrad l->l_pflag,
538 1.357 riastrad (intmax_t)l->l_stime.sec, l->l_stime.frac,
539 1.357 riastrad (intmax_t)now->sec, now->frac,
540 1.357 riastrad caller);
541 1.357 riastrad }
542 1.357 riastrad
543 1.212 yamt /* rtime += now - stime */
544 1.212 yamt bintime_add(&l->l_rtime, now);
545 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
546 1.188 yamt }
547 1.188 yamt
548 1.188 yamt /*
549 1.245 ad * Select next LWP from the current CPU to run..
550 1.245 ad */
551 1.245 ad static inline lwp_t *
552 1.245 ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
553 1.245 ad {
554 1.245 ad lwp_t *newl;
555 1.245 ad
556 1.245 ad /*
557 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
558 1.245 ad * If no LWP is runnable, select the idle LWP.
559 1.245 ad *
560 1.340 ad * On arrival here LWPs on a run queue are locked by spc_mutex which
561 1.340 ad * is currently held. Idle LWPs are always locked by spc_lwplock,
562 1.340 ad * which may or may not be held here. On exit from this code block,
563 1.340 ad * in all cases newl is locked by spc_lwplock.
564 1.245 ad */
565 1.245 ad newl = sched_nextlwp();
566 1.245 ad if (newl != NULL) {
567 1.245 ad sched_dequeue(newl);
568 1.245 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
569 1.274 rmind KASSERT(newl->l_cpu == ci);
570 1.340 ad newl->l_stat = LSONPROC;
571 1.340 ad newl->l_pflag |= LP_RUNNING;
572 1.340 ad spc->spc_curpriority = lwp_eprio(newl);
573 1.340 ad spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
574 1.245 ad lwp_setlock(newl, spc->spc_lwplock);
575 1.245 ad } else {
576 1.340 ad /*
577 1.345 ad * The idle LWP does not get set to LSONPROC, because
578 1.345 ad * otherwise it screws up the output from top(1) etc.
579 1.340 ad */
580 1.245 ad newl = ci->ci_data.cpu_idlelwp;
581 1.340 ad newl->l_pflag |= LP_RUNNING;
582 1.340 ad spc->spc_curpriority = PRI_IDLE;
583 1.334 ad spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
584 1.334 ad SPCF_IDLE;
585 1.245 ad }
586 1.261 rmind
587 1.245 ad /*
588 1.325 ad * Only clear want_resched if there are no pending (slow) software
589 1.325 ad * interrupts. We can do this without an atomic, because no new
590 1.325 ad * LWPs can appear in the queue due to our hold on spc_mutex, and
591 1.325 ad * the update to ci_want_resched will become globally visible before
592 1.325 ad * the release of spc_mutex becomes globally visible.
593 1.245 ad */
594 1.353 martin if (ci->ci_data.cpu_softints == 0)
595 1.353 martin ci->ci_want_resched = 0;
596 1.245 ad
597 1.245 ad return newl;
598 1.245 ad }
599 1.245 ad
600 1.245 ad /*
601 1.188 yamt * The machine independent parts of context switch.
602 1.188 yamt *
603 1.335 ad * NOTE: l->l_cpu is not changed in this routine, because an LWP never
604 1.335 ad * changes its own l_cpu (that would screw up curcpu on many ports and could
605 1.335 ad * cause all kinds of other evil stuff). l_cpu is always changed by some
606 1.339 ad * other actor, when it's known the LWP is not running (the LP_RUNNING flag
607 1.335 ad * is checked under lock).
608 1.26 cgd */
609 1.329 ad void
610 1.199 ad mi_switch(lwp_t *l)
611 1.26 cgd {
612 1.246 rmind struct cpu_info *ci;
613 1.76 thorpej struct schedstate_percpu *spc;
614 1.188 yamt struct lwp *newl;
615 1.339 ad kmutex_t *lock;
616 1.329 ad int oldspl;
617 1.212 yamt struct bintime bt;
618 1.199 ad bool returning;
619 1.26 cgd
620 1.188 yamt KASSERT(lwp_locked(l, NULL));
621 1.231 ad KASSERT(kpreempt_disabled());
622 1.329 ad KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
623 1.337 ad KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
624 1.174 ad
625 1.174 ad kstack_check_magic(l);
626 1.83 thorpej
627 1.212 yamt binuptime(&bt);
628 1.199 ad
629 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
630 1.339 ad KASSERT((l->l_pflag & LP_RUNNING) != 0);
631 1.329 ad KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
632 1.329 ad ci = curcpu();
633 1.196 ad spc = &ci->ci_schedstate;
634 1.199 ad returning = false;
635 1.190 ad newl = NULL;
636 1.190 ad
637 1.199 ad /*
638 1.199 ad * If we have been asked to switch to a specific LWP, then there
639 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
640 1.199 ad * blocking, then return to the interrupted thread without adjusting
641 1.199 ad * VM context or its start time: neither have been changed in order
642 1.199 ad * to take the interrupt.
643 1.199 ad */
644 1.190 ad if (l->l_switchto != NULL) {
645 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
646 1.199 ad returning = true;
647 1.199 ad softint_block(l);
648 1.248 ad if ((l->l_pflag & LP_TIMEINTR) != 0)
649 1.212 yamt updatertime(l, &bt);
650 1.199 ad }
651 1.190 ad newl = l->l_switchto;
652 1.190 ad l->l_switchto = NULL;
653 1.190 ad }
654 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
655 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
656 1.204 ad /* There are pending soft interrupts, so pick one. */
657 1.204 ad newl = softint_picklwp();
658 1.204 ad newl->l_stat = LSONPROC;
659 1.339 ad newl->l_pflag |= LP_RUNNING;
660 1.204 ad }
661 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
662 1.190 ad
663 1.113 gmcgarry /*
664 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
665 1.113 gmcgarry */
666 1.246 rmind if (l->l_stat == LSONPROC && l != newl) {
667 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
668 1.329 ad KASSERT((l->l_flag & LW_IDLE) == 0);
669 1.329 ad l->l_stat = LSRUN;
670 1.329 ad lwp_setlock(l, spc->spc_mutex);
671 1.329 ad sched_enqueue(l);
672 1.336 ad sched_preempted(l);
673 1.336 ad
674 1.329 ad /*
675 1.329 ad * Handle migration. Note that "migrating LWP" may
676 1.329 ad * be reset here, if interrupt/preemption happens
677 1.329 ad * early in idle LWP.
678 1.329 ad */
679 1.329 ad if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
680 1.329 ad KASSERT((l->l_pflag & LP_INTR) == 0);
681 1.329 ad spc->spc_migrating = l;
682 1.329 ad }
683 1.174 ad }
684 1.174 ad
685 1.245 ad /* Pick new LWP to run. */
686 1.190 ad if (newl == NULL) {
687 1.245 ad newl = nextlwp(ci, spc);
688 1.199 ad }
689 1.199 ad
690 1.204 ad /* Items that must be updated with the CPU locked. */
691 1.199 ad if (!returning) {
692 1.326 ad /* Count time spent in current system call */
693 1.326 ad SYSCALL_TIME_SLEEP(l);
694 1.326 ad
695 1.326 ad updatertime(l, &bt);
696 1.326 ad
697 1.204 ad /* Update the new LWP's start time. */
698 1.212 yamt newl->l_stime = bt;
699 1.204 ad
700 1.199 ad /*
701 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
702 1.327 ad * We use ci_onproc to keep track of which kernel or
703 1.204 ad * user thread is running 'underneath' the software
704 1.204 ad * interrupt. This is important for time accounting,
705 1.204 ad * itimers and forcing user threads to preempt (aston).
706 1.199 ad */
707 1.327 ad ci->ci_onproc = newl;
708 1.188 yamt }
709 1.188 yamt
710 1.241 ad /*
711 1.325 ad * Preemption related tasks. Must be done holding spc_mutex. Clear
712 1.325 ad * l_dopreempt without an atomic - it's only ever set non-zero by
713 1.325 ad * sched_resched_cpu() which also holds spc_mutex, and only ever
714 1.325 ad * cleared by the LWP itself (us) with atomics when not under lock.
715 1.241 ad */
716 1.231 ad l->l_dopreempt = 0;
717 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
718 1.231 ad LOCKSTAT_FLAG(lsflag);
719 1.231 ad LOCKSTAT_ENTER(lsflag);
720 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
721 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
722 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
723 1.231 ad LOCKSTAT_EXIT(lsflag);
724 1.231 ad l->l_pfailtime = 0;
725 1.231 ad l->l_pfaillock = 0;
726 1.231 ad l->l_pfailaddr = 0;
727 1.231 ad }
728 1.231 ad
729 1.188 yamt if (l != newl) {
730 1.188 yamt struct lwp *prevlwp;
731 1.174 ad
732 1.209 ad /* Release all locks, but leave the current LWP locked */
733 1.246 rmind if (l->l_mutex == spc->spc_mutex) {
734 1.209 ad /*
735 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
736 1.209 ad * to the run queue (it is now locked by spc_mutex).
737 1.209 ad */
738 1.217 ad mutex_spin_exit(spc->spc_lwplock);
739 1.188 yamt } else {
740 1.209 ad /*
741 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
742 1.209 ad * run queues.
743 1.209 ad */
744 1.188 yamt mutex_spin_exit(spc->spc_mutex);
745 1.188 yamt }
746 1.188 yamt
747 1.330 ad /* We're down to only one lock, so do debug checks. */
748 1.330 ad LOCKDEBUG_BARRIER(l->l_mutex, 1);
749 1.330 ad
750 1.335 ad /* Count the context switch. */
751 1.335 ad CPU_COUNT(CPU_COUNT_NSWTCH, 1);
752 1.209 ad l->l_ncsw++;
753 1.335 ad if ((l->l_pflag & LP_PREEMPTING) != 0) {
754 1.321 mlelstv l->l_nivcsw++;
755 1.335 ad l->l_pflag &= ~LP_PREEMPTING;
756 1.335 ad }
757 1.209 ad
758 1.209 ad /*
759 1.209 ad * Increase the count of spin-mutexes before the release
760 1.335 ad * of the last lock - we must remain at IPL_SCHED after
761 1.335 ad * releasing the lock.
762 1.209 ad */
763 1.287 matt KASSERTMSG(ci->ci_mtx_count == -1,
764 1.301 rmind "%s: cpu%u: ci_mtx_count (%d) != -1 "
765 1.301 rmind "(block with spin-mutex held)",
766 1.291 jym __func__, cpu_index(ci), ci->ci_mtx_count);
767 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
768 1.335 ad ci->ci_mtx_count = -2;
769 1.188 yamt
770 1.209 ad /* Update status for lwpctl, if present. */
771 1.335 ad if (l->l_lwpctl != NULL) {
772 1.335 ad l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
773 1.335 ad LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
774 1.335 ad }
775 1.209 ad
776 1.199 ad /*
777 1.335 ad * If curlwp is a soft interrupt LWP, there's nobody on the
778 1.335 ad * other side to unlock - we're returning into an assembly
779 1.335 ad * trampoline. Unlock now. This is safe because this is a
780 1.335 ad * kernel LWP and is bound to current CPU: the worst anyone
781 1.335 ad * else will do to it, is to put it back onto this CPU's run
782 1.335 ad * queue (and the CPU is busy here right now!).
783 1.199 ad */
784 1.335 ad if (returning) {
785 1.335 ad /* Keep IPL_SCHED after this; MD code will fix up. */
786 1.339 ad l->l_pflag &= ~LP_RUNNING;
787 1.335 ad lwp_unlock(l);
788 1.335 ad } else {
789 1.335 ad /* A normal LWP: save old VM context. */
790 1.199 ad pmap_deactivate(l);
791 1.209 ad }
792 1.207 ad
793 1.276 darran /*
794 1.276 darran * If DTrace has set the active vtime enum to anything
795 1.276 darran * other than INACTIVE (0), then it should have set the
796 1.276 darran * function to call.
797 1.276 darran */
798 1.278 darran if (__predict_false(dtrace_vtime_active)) {
799 1.276 darran (*dtrace_vtime_switch_func)(newl);
800 1.276 darran }
801 1.276 darran
802 1.318 ozaki /*
803 1.318 ozaki * We must ensure not to come here from inside a read section.
804 1.318 ozaki */
805 1.318 ozaki KASSERT(pserialize_not_in_read_section());
806 1.318 ozaki
807 1.188 yamt /* Switch to the new LWP.. */
808 1.305 mlelstv #ifdef MULTIPROCESSOR
809 1.304 matt KASSERT(curlwp == ci->ci_curlwp);
810 1.305 mlelstv #endif
811 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
812 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
813 1.207 ad ci = curcpu();
814 1.305 mlelstv #ifdef MULTIPROCESSOR
815 1.304 matt KASSERT(curlwp == ci->ci_curlwp);
816 1.305 mlelstv #endif
817 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
818 1.304 matt l, curlwp, prevlwp);
819 1.335 ad KASSERT(prevlwp != NULL);
820 1.335 ad KASSERT(l->l_cpu == ci);
821 1.335 ad KASSERT(ci->ci_mtx_count == -2);
822 1.335 ad
823 1.335 ad /*
824 1.339 ad * Immediately mark the previous LWP as no longer running
825 1.350 riastrad * and unlock (to keep lock wait times short as possible).
826 1.339 ad * We'll still be at IPL_SCHED afterwards. If a zombie,
827 1.339 ad * don't touch after clearing LP_RUNNING as it could be
828 1.339 ad * reaped by another CPU. Issue a memory barrier to ensure
829 1.339 ad * this.
830 1.350 riastrad *
831 1.350 riastrad * atomic_store_release matches atomic_load_acquire in
832 1.350 riastrad * lwp_free.
833 1.335 ad */
834 1.339 ad KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
835 1.339 ad lock = prevlwp->l_mutex;
836 1.339 ad if (__predict_false(prevlwp->l_stat == LSZOMB)) {
837 1.350 riastrad atomic_store_release(&prevlwp->l_pflag,
838 1.350 riastrad prevlwp->l_pflag & ~LP_RUNNING);
839 1.350 riastrad } else {
840 1.350 riastrad prevlwp->l_pflag &= ~LP_RUNNING;
841 1.339 ad }
842 1.339 ad mutex_spin_exit(lock);
843 1.207 ad
844 1.188 yamt /*
845 1.209 ad * Switched away - we have new curlwp.
846 1.209 ad * Restore VM context and IPL.
847 1.188 yamt */
848 1.209 ad pmap_activate(l);
849 1.288 rmind pcu_switchpoint(l);
850 1.265 rmind
851 1.209 ad /* Update status for lwpctl, if present. */
852 1.219 ad if (l->l_lwpctl != NULL) {
853 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
854 1.219 ad l->l_lwpctl->lc_pctr++;
855 1.219 ad }
856 1.174 ad
857 1.300 yamt /*
858 1.335 ad * Normalize the spin mutex count and restore the previous
859 1.335 ad * SPL. Note that, unless the caller disabled preemption,
860 1.335 ad * we can be preempted at any time after this splx().
861 1.300 yamt */
862 1.331 ad KASSERT(l->l_cpu == ci);
863 1.335 ad KASSERT(ci->ci_mtx_count == -1);
864 1.335 ad ci->ci_mtx_count = 0;
865 1.329 ad splx(oldspl);
866 1.188 yamt } else {
867 1.188 yamt /* Nothing to do - just unlock and return. */
868 1.246 rmind mutex_spin_exit(spc->spc_mutex);
869 1.321 mlelstv l->l_pflag &= ~LP_PREEMPTING;
870 1.188 yamt lwp_unlock(l);
871 1.122 thorpej }
872 1.110 briggs
873 1.188 yamt KASSERT(l == curlwp);
874 1.345 ad KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0);
875 1.188 yamt
876 1.180 dsl SYSCALL_TIME_WAKEUP(l);
877 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
878 1.26 cgd }
879 1.26 cgd
880 1.26 cgd /*
881 1.271 rmind * setrunnable: change LWP state to be runnable, placing it on the run queue.
882 1.174 ad *
883 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
884 1.26 cgd */
885 1.26 cgd void
886 1.122 thorpej setrunnable(struct lwp *l)
887 1.26 cgd {
888 1.122 thorpej struct proc *p = l->l_proc;
889 1.205 ad struct cpu_info *ci;
890 1.326 ad kmutex_t *oldlock;
891 1.26 cgd
892 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
893 1.324 kamil KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
894 1.229 ad KASSERT(mutex_owned(p->p_lock));
895 1.183 ad KASSERT(lwp_locked(l, NULL));
896 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
897 1.83 thorpej
898 1.122 thorpej switch (l->l_stat) {
899 1.122 thorpej case LSSTOP:
900 1.33 mycroft /*
901 1.33 mycroft * If we're being traced (possibly because someone attached us
902 1.33 mycroft * while we were stopped), check for a signal from the debugger.
903 1.33 mycroft */
904 1.310 christos if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
905 1.174 ad signotify(l);
906 1.174 ad p->p_nrlwps++;
907 1.26 cgd break;
908 1.174 ad case LSSUSPENDED:
909 1.326 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
910 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
911 1.174 ad p->p_nrlwps++;
912 1.192 rmind cv_broadcast(&p->p_lwpcv);
913 1.122 thorpej break;
914 1.174 ad case LSSLEEP:
915 1.174 ad KASSERT(l->l_wchan != NULL);
916 1.26 cgd break;
917 1.326 ad case LSIDL:
918 1.326 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
919 1.326 ad break;
920 1.174 ad default:
921 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
922 1.26 cgd }
923 1.139 cl
924 1.174 ad /*
925 1.286 pooka * If the LWP was sleeping, start it again.
926 1.174 ad */
927 1.174 ad if (l->l_wchan != NULL) {
928 1.174 ad l->l_stat = LSSLEEP;
929 1.183 ad /* lwp_unsleep() will release the lock. */
930 1.221 ad lwp_unsleep(l, true);
931 1.174 ad return;
932 1.174 ad }
933 1.139 cl
934 1.174 ad /*
935 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
936 1.174 ad * about to call mi_switch(), in which case it will yield.
937 1.174 ad */
938 1.339 ad if ((l->l_pflag & LP_RUNNING) != 0) {
939 1.174 ad l->l_stat = LSONPROC;
940 1.174 ad l->l_slptime = 0;
941 1.174 ad lwp_unlock(l);
942 1.174 ad return;
943 1.174 ad }
944 1.122 thorpej
945 1.174 ad /*
946 1.205 ad * Look for a CPU to run.
947 1.205 ad * Set the LWP runnable.
948 1.174 ad */
949 1.205 ad ci = sched_takecpu(l);
950 1.205 ad l->l_cpu = ci;
951 1.236 ad spc_lock(ci);
952 1.326 ad oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
953 1.188 yamt sched_setrunnable(l);
954 1.174 ad l->l_stat = LSRUN;
955 1.122 thorpej l->l_slptime = 0;
956 1.326 ad sched_enqueue(l);
957 1.326 ad sched_resched_lwp(l, true);
958 1.326 ad /* SPC & LWP now unlocked. */
959 1.326 ad mutex_spin_exit(oldlock);
960 1.26 cgd }
961 1.26 cgd
962 1.26 cgd /*
963 1.174 ad * suspendsched:
964 1.174 ad *
965 1.266 yamt * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
966 1.174 ad */
967 1.94 bouyer void
968 1.174 ad suspendsched(void)
969 1.94 bouyer {
970 1.174 ad CPU_INFO_ITERATOR cii;
971 1.174 ad struct cpu_info *ci;
972 1.122 thorpej struct lwp *l;
973 1.174 ad struct proc *p;
974 1.94 bouyer
975 1.94 bouyer /*
976 1.174 ad * We do this by process in order not to violate the locking rules.
977 1.94 bouyer */
978 1.349 ad mutex_enter(&proc_lock);
979 1.174 ad PROCLIST_FOREACH(p, &allproc) {
980 1.229 ad mutex_enter(p->p_lock);
981 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
982 1.229 ad mutex_exit(p->p_lock);
983 1.94 bouyer continue;
984 1.174 ad }
985 1.174 ad
986 1.309 pgoyette if (p->p_stat != SSTOP) {
987 1.309 pgoyette if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
988 1.309 pgoyette p->p_pptr->p_nstopchild++;
989 1.309 pgoyette p->p_waited = 0;
990 1.309 pgoyette }
991 1.309 pgoyette p->p_stat = SSTOP;
992 1.309 pgoyette }
993 1.174 ad
994 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
995 1.174 ad if (l == curlwp)
996 1.174 ad continue;
997 1.174 ad
998 1.174 ad lwp_lock(l);
999 1.122 thorpej
1000 1.97 enami /*
1001 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
1002 1.174 ad * when it tries to return to user mode. We want to
1003 1.174 ad * try and get to get as many LWPs as possible to
1004 1.174 ad * the user / kernel boundary, so that they will
1005 1.174 ad * release any locks that they hold.
1006 1.97 enami */
1007 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1008 1.174 ad
1009 1.174 ad if (l->l_stat == LSSLEEP &&
1010 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1011 1.174 ad /* setrunnable() will release the lock. */
1012 1.174 ad setrunnable(l);
1013 1.174 ad continue;
1014 1.174 ad }
1015 1.174 ad
1016 1.174 ad lwp_unlock(l);
1017 1.94 bouyer }
1018 1.174 ad
1019 1.229 ad mutex_exit(p->p_lock);
1020 1.94 bouyer }
1021 1.349 ad mutex_exit(&proc_lock);
1022 1.174 ad
1023 1.174 ad /*
1024 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1025 1.326 ad * They'll trap into the kernel and suspend themselves in userret().
1026 1.326 ad *
1027 1.326 ad * Unusually, we don't hold any other scheduler object locked, which
1028 1.326 ad * would keep preemption off for sched_resched_cpu(), so disable it
1029 1.326 ad * explicitly.
1030 1.174 ad */
1031 1.326 ad kpreempt_disable();
1032 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1033 1.204 ad spc_lock(ci);
1034 1.326 ad sched_resched_cpu(ci, PRI_KERNEL, true);
1035 1.326 ad /* spc now unlocked */
1036 1.204 ad }
1037 1.326 ad kpreempt_enable();
1038 1.174 ad }
1039 1.174 ad
1040 1.174 ad /*
1041 1.174 ad * sched_unsleep:
1042 1.174 ad *
1043 1.174 ad * The is called when the LWP has not been awoken normally but instead
1044 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1045 1.174 ad * it's not a valid action for running or idle LWPs.
1046 1.174 ad */
1047 1.271 rmind static void
1048 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1049 1.174 ad {
1050 1.174 ad
1051 1.174 ad lwp_unlock(l);
1052 1.174 ad panic("sched_unsleep");
1053 1.174 ad }
1054 1.174 ad
1055 1.250 rmind static void
1056 1.326 ad sched_changepri(struct lwp *l, pri_t pri)
1057 1.188 yamt {
1058 1.326 ad struct schedstate_percpu *spc;
1059 1.326 ad struct cpu_info *ci;
1060 1.188 yamt
1061 1.250 rmind KASSERT(lwp_locked(l, NULL));
1062 1.188 yamt
1063 1.326 ad ci = l->l_cpu;
1064 1.326 ad spc = &ci->ci_schedstate;
1065 1.174 ad
1066 1.271 rmind if (l->l_stat == LSRUN) {
1067 1.326 ad KASSERT(lwp_locked(l, spc->spc_mutex));
1068 1.204 ad sched_dequeue(l);
1069 1.204 ad l->l_priority = pri;
1070 1.326 ad sched_enqueue(l);
1071 1.326 ad sched_resched_lwp(l, false);
1072 1.326 ad } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1073 1.326 ad /* On priority drop, only evict realtime LWPs. */
1074 1.326 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
1075 1.326 ad l->l_priority = pri;
1076 1.326 ad spc_lock(ci);
1077 1.326 ad sched_resched_cpu(ci, spc->spc_maxpriority, true);
1078 1.326 ad /* spc now unlocked */
1079 1.204 ad } else {
1080 1.174 ad l->l_priority = pri;
1081 1.157 yamt }
1082 1.184 yamt }
1083 1.184 yamt
1084 1.188 yamt static void
1085 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1086 1.184 yamt {
1087 1.326 ad struct schedstate_percpu *spc;
1088 1.326 ad struct cpu_info *ci;
1089 1.184 yamt
1090 1.188 yamt KASSERT(lwp_locked(l, NULL));
1091 1.184 yamt
1092 1.326 ad ci = l->l_cpu;
1093 1.326 ad spc = &ci->ci_schedstate;
1094 1.326 ad
1095 1.271 rmind if (l->l_stat == LSRUN) {
1096 1.326 ad KASSERT(lwp_locked(l, spc->spc_mutex));
1097 1.204 ad sched_dequeue(l);
1098 1.204 ad l->l_inheritedprio = pri;
1099 1.311 christos l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1100 1.326 ad sched_enqueue(l);
1101 1.326 ad sched_resched_lwp(l, false);
1102 1.326 ad } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1103 1.326 ad /* On priority drop, only evict realtime LWPs. */
1104 1.326 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
1105 1.326 ad l->l_inheritedprio = pri;
1106 1.326 ad l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1107 1.326 ad spc_lock(ci);
1108 1.326 ad sched_resched_cpu(ci, spc->spc_maxpriority, true);
1109 1.326 ad /* spc now unlocked */
1110 1.204 ad } else {
1111 1.184 yamt l->l_inheritedprio = pri;
1112 1.311 christos l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1113 1.184 yamt }
1114 1.184 yamt }
1115 1.184 yamt
1116 1.184 yamt struct lwp *
1117 1.184 yamt syncobj_noowner(wchan_t wchan)
1118 1.184 yamt {
1119 1.184 yamt
1120 1.184 yamt return NULL;
1121 1.151 yamt }
1122 1.151 yamt
1123 1.250 rmind /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1124 1.281 rmind const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1125 1.281 rmind
1126 1.281 rmind /*
1127 1.281 rmind * Constants for averages over 1, 5 and 15 minutes when sampling at
1128 1.281 rmind * 5 second intervals.
1129 1.281 rmind */
1130 1.281 rmind static const fixpt_t cexp[ ] = {
1131 1.281 rmind 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1132 1.281 rmind 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1133 1.281 rmind 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1134 1.281 rmind };
1135 1.134 matt
1136 1.134 matt /*
1137 1.188 yamt * sched_pstats:
1138 1.188 yamt *
1139 1.281 rmind * => Update process statistics and check CPU resource allocation.
1140 1.281 rmind * => Call scheduler-specific hook to eventually adjust LWP priorities.
1141 1.281 rmind * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1142 1.130 nathanw */
1143 1.113 gmcgarry void
1144 1.281 rmind sched_pstats(void)
1145 1.113 gmcgarry {
1146 1.281 rmind struct loadavg *avg = &averunnable;
1147 1.249 rmind const int clkhz = (stathz != 0 ? stathz : hz);
1148 1.357 riastrad static bool backwardslwp = false;
1149 1.357 riastrad static bool backwardsproc = false;
1150 1.281 rmind static u_int lavg_count = 0;
1151 1.188 yamt struct proc *p;
1152 1.281 rmind int nrun;
1153 1.113 gmcgarry
1154 1.188 yamt sched_pstats_ticks++;
1155 1.281 rmind if (++lavg_count >= 5) {
1156 1.281 rmind lavg_count = 0;
1157 1.281 rmind nrun = 0;
1158 1.281 rmind }
1159 1.349 ad mutex_enter(&proc_lock);
1160 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1161 1.281 rmind struct lwp *l;
1162 1.281 rmind struct rlimit *rlim;
1163 1.296 dholland time_t runtm;
1164 1.281 rmind int sig;
1165 1.281 rmind
1166 1.271 rmind /* Increment sleep time (if sleeping), ignore overflow. */
1167 1.229 ad mutex_enter(p->p_lock);
1168 1.212 yamt runtm = p->p_rtime.sec;
1169 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1170 1.281 rmind fixpt_t lpctcpu;
1171 1.281 rmind u_int lcpticks;
1172 1.281 rmind
1173 1.249 rmind if (__predict_false((l->l_flag & LW_IDLE) != 0))
1174 1.188 yamt continue;
1175 1.188 yamt lwp_lock(l);
1176 1.357 riastrad if (__predict_false(l->l_rtime.sec < 0) &&
1177 1.357 riastrad !backwardslwp) {
1178 1.357 riastrad backwardslwp = true;
1179 1.357 riastrad printf("WARNING: lwp %ld (%s%s%s): "
1180 1.357 riastrad "negative runtime: "
1181 1.357 riastrad "(%jd + 0x%016"PRIx64"/2^64) sec\n",
1182 1.357 riastrad (long)l->l_lid,
1183 1.357 riastrad l->l_proc->p_comm,
1184 1.357 riastrad l->l_name ? " " : "",
1185 1.357 riastrad l->l_name ? l->l_name : "",
1186 1.357 riastrad (intmax_t)l->l_rtime.sec,
1187 1.357 riastrad l->l_rtime.frac);
1188 1.357 riastrad }
1189 1.212 yamt runtm += l->l_rtime.sec;
1190 1.188 yamt l->l_swtime++;
1191 1.242 rmind sched_lwp_stats(l);
1192 1.281 rmind
1193 1.281 rmind /* For load average calculation. */
1194 1.282 rmind if (__predict_false(lavg_count == 0) &&
1195 1.282 rmind (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1196 1.281 rmind switch (l->l_stat) {
1197 1.281 rmind case LSSLEEP:
1198 1.281 rmind if (l->l_slptime > 1) {
1199 1.281 rmind break;
1200 1.281 rmind }
1201 1.323 mrg /* FALLTHROUGH */
1202 1.281 rmind case LSRUN:
1203 1.281 rmind case LSONPROC:
1204 1.281 rmind case LSIDL:
1205 1.281 rmind nrun++;
1206 1.281 rmind }
1207 1.281 rmind }
1208 1.282 rmind lwp_unlock(l);
1209 1.282 rmind
1210 1.282 rmind l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1211 1.282 rmind if (l->l_slptime != 0)
1212 1.282 rmind continue;
1213 1.282 rmind
1214 1.282 rmind lpctcpu = l->l_pctcpu;
1215 1.282 rmind lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1216 1.282 rmind lpctcpu += ((FSCALE - ccpu) *
1217 1.282 rmind (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1218 1.282 rmind l->l_pctcpu = lpctcpu;
1219 1.188 yamt }
1220 1.249 rmind /* Calculating p_pctcpu only for ps(1) */
1221 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1222 1.174 ad
1223 1.303 christos if (__predict_false(runtm < 0)) {
1224 1.357 riastrad if (!backwardsproc) {
1225 1.357 riastrad backwardsproc = true;
1226 1.357 riastrad printf("WARNING: pid %ld (%s): "
1227 1.357 riastrad "negative runtime; "
1228 1.357 riastrad "monotonic clock has gone backwards\n",
1229 1.357 riastrad (long)p->p_pid, p->p_comm);
1230 1.303 christos }
1231 1.303 christos mutex_exit(p->p_lock);
1232 1.303 christos continue;
1233 1.303 christos }
1234 1.303 christos
1235 1.188 yamt /*
1236 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1237 1.293 apb * If over the hard limit, kill it with SIGKILL.
1238 1.293 apb * If over the soft limit, send SIGXCPU and raise
1239 1.293 apb * the soft limit a little.
1240 1.188 yamt */
1241 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1242 1.188 yamt sig = 0;
1243 1.249 rmind if (__predict_false(runtm >= rlim->rlim_cur)) {
1244 1.293 apb if (runtm >= rlim->rlim_max) {
1245 1.188 yamt sig = SIGKILL;
1246 1.312 christos log(LOG_NOTICE,
1247 1.312 christos "pid %d, command %s, is killed: %s\n",
1248 1.312 christos p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1249 1.293 apb uprintf("pid %d, command %s, is killed: %s\n",
1250 1.312 christos p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1251 1.293 apb } else {
1252 1.188 yamt sig = SIGXCPU;
1253 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1254 1.188 yamt rlim->rlim_cur += 5;
1255 1.188 yamt }
1256 1.188 yamt }
1257 1.229 ad mutex_exit(p->p_lock);
1258 1.303 christos if (__predict_false(sig)) {
1259 1.259 rmind KASSERT((p->p_flag & PK_SYSTEM) == 0);
1260 1.188 yamt psignal(p, sig);
1261 1.259 rmind }
1262 1.174 ad }
1263 1.281 rmind
1264 1.281 rmind /* Load average calculation. */
1265 1.281 rmind if (__predict_false(lavg_count == 0)) {
1266 1.281 rmind int i;
1267 1.283 martin CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1268 1.281 rmind for (i = 0; i < __arraycount(cexp); i++) {
1269 1.281 rmind avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1270 1.281 rmind nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1271 1.281 rmind }
1272 1.281 rmind }
1273 1.281 rmind
1274 1.281 rmind /* Lightning bolt. */
1275 1.273 pooka cv_broadcast(&lbolt);
1276 1.325 ad
1277 1.349 ad mutex_exit(&proc_lock);
1278 1.113 gmcgarry }
1279