Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.44.4.1
      1  1.44.4.1   thorpej /*	$NetBSD: kern_synch.c,v 1.44.4.1 1997/10/14 10:26:05 thorpej Exp $	*/
      2      1.26       cgd 
      3      1.26       cgd /*-
      4      1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
      5      1.26       cgd  *	The Regents of the University of California.  All rights reserved.
      6      1.26       cgd  * (c) UNIX System Laboratories, Inc.
      7      1.26       cgd  * All or some portions of this file are derived from material licensed
      8      1.26       cgd  * to the University of California by American Telephone and Telegraph
      9      1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10      1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     11      1.26       cgd  *
     12      1.26       cgd  * Redistribution and use in source and binary forms, with or without
     13      1.26       cgd  * modification, are permitted provided that the following conditions
     14      1.26       cgd  * are met:
     15      1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     16      1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     17      1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     18      1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     19      1.26       cgd  *    documentation and/or other materials provided with the distribution.
     20      1.26       cgd  * 3. All advertising materials mentioning features or use of this software
     21      1.26       cgd  *    must display the following acknowledgement:
     22      1.26       cgd  *	This product includes software developed by the University of
     23      1.26       cgd  *	California, Berkeley and its contributors.
     24      1.26       cgd  * 4. Neither the name of the University nor the names of its contributors
     25      1.26       cgd  *    may be used to endorse or promote products derived from this software
     26      1.26       cgd  *    without specific prior written permission.
     27      1.26       cgd  *
     28      1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29      1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30      1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31      1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32      1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33      1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34      1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35      1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36      1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37      1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38      1.26       cgd  * SUCH DAMAGE.
     39      1.26       cgd  *
     40      1.26       cgd  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
     41      1.26       cgd  */
     42      1.26       cgd 
     43      1.26       cgd #include <sys/param.h>
     44      1.26       cgd #include <sys/systm.h>
     45      1.26       cgd #include <sys/proc.h>
     46      1.26       cgd #include <sys/kernel.h>
     47      1.26       cgd #include <sys/buf.h>
     48      1.26       cgd #include <sys/signalvar.h>
     49      1.26       cgd #include <sys/resourcevar.h>
     50      1.34  christos #include <vm/vm.h>
     51      1.26       cgd #ifdef KTRACE
     52      1.26       cgd #include <sys/ktrace.h>
     53      1.26       cgd #endif
     54      1.26       cgd 
     55      1.26       cgd #include <machine/cpu.h>
     56      1.34  christos 
     57      1.26       cgd u_char	curpriority;		/* usrpri of curproc */
     58      1.26       cgd int	lbolt;			/* once a second sleep address */
     59      1.26       cgd 
     60      1.34  christos void roundrobin __P((void *));
     61      1.34  christos void schedcpu __P((void *));
     62      1.34  christos void updatepri __P((struct proc *));
     63      1.34  christos void endtsleep __P((void *));
     64      1.34  christos 
     65      1.26       cgd /*
     66      1.26       cgd  * Force switch among equal priority processes every 100ms.
     67      1.26       cgd  */
     68      1.26       cgd /* ARGSUSED */
     69      1.26       cgd void
     70      1.26       cgd roundrobin(arg)
     71      1.26       cgd 	void *arg;
     72      1.26       cgd {
     73      1.26       cgd 
     74      1.26       cgd 	need_resched();
     75      1.26       cgd 	timeout(roundrobin, NULL, hz / 10);
     76      1.26       cgd }
     77      1.26       cgd 
     78      1.26       cgd /*
     79      1.26       cgd  * Constants for digital decay and forget:
     80      1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
     81      1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
     82      1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
     83      1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
     84      1.26       cgd  *
     85      1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
     86      1.26       cgd  *
     87      1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
     88      1.26       cgd  * That is, the system wants to compute a value of decay such
     89      1.26       cgd  * that the following for loop:
     90      1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
     91      1.26       cgd  * 		p_estcpu *= decay;
     92      1.26       cgd  * will compute
     93      1.26       cgd  * 	p_estcpu *= 0.1;
     94      1.26       cgd  * for all values of loadavg:
     95      1.26       cgd  *
     96      1.26       cgd  * Mathematically this loop can be expressed by saying:
     97      1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
     98      1.26       cgd  *
     99      1.26       cgd  * The system computes decay as:
    100      1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    101      1.26       cgd  *
    102      1.26       cgd  * We wish to prove that the system's computation of decay
    103      1.26       cgd  * will always fulfill the equation:
    104      1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    105      1.26       cgd  *
    106      1.26       cgd  * If we compute b as:
    107      1.26       cgd  * 	b = 2 * loadavg
    108      1.26       cgd  * then
    109      1.26       cgd  * 	decay = b / (b + 1)
    110      1.26       cgd  *
    111      1.26       cgd  * We now need to prove two things:
    112      1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    113      1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    114      1.26       cgd  *
    115      1.26       cgd  * Facts:
    116      1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    117      1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    118      1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    119      1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    120      1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    121      1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    122      1.26       cgd  *         ln(.1) =~ -2.30
    123      1.26       cgd  *
    124      1.26       cgd  * Proof of (1):
    125      1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    126      1.26       cgd  *	solving for factor,
    127      1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    128      1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    129      1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    130      1.26       cgd  *
    131      1.26       cgd  * Proof of (2):
    132      1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    133      1.26       cgd  *	solving for power,
    134      1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    135      1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    136      1.26       cgd  *
    137      1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    138      1.26       cgd  *      loadav: 1       2       3       4
    139      1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    140      1.26       cgd  */
    141      1.26       cgd 
    142      1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    143      1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    144      1.26       cgd #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    145      1.26       cgd 
    146      1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    147      1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    148      1.26       cgd 
    149      1.26       cgd /*
    150      1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    151      1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    152      1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    153      1.26       cgd  *
    154      1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    155      1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    156      1.26       cgd  *
    157      1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    158      1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    159      1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    160      1.26       cgd  */
    161      1.26       cgd #define	CCPU_SHIFT	11
    162      1.26       cgd 
    163      1.26       cgd /*
    164      1.26       cgd  * Recompute process priorities, every hz ticks.
    165      1.26       cgd  */
    166      1.26       cgd /* ARGSUSED */
    167      1.26       cgd void
    168      1.26       cgd schedcpu(arg)
    169      1.26       cgd 	void *arg;
    170      1.26       cgd {
    171      1.26       cgd 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    172      1.26       cgd 	register struct proc *p;
    173      1.26       cgd 	register int s;
    174      1.26       cgd 	register unsigned int newcpu;
    175      1.26       cgd 
    176      1.26       cgd 	wakeup((caddr_t)&lbolt);
    177      1.27   mycroft 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    178      1.26       cgd 		/*
    179      1.26       cgd 		 * Increment time in/out of memory and sleep time
    180      1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    181      1.26       cgd 		 * (remember them?) overflow takes 45 days.
    182      1.26       cgd 		 */
    183      1.26       cgd 		p->p_swtime++;
    184      1.26       cgd 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    185      1.26       cgd 			p->p_slptime++;
    186      1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    187      1.26       cgd 		/*
    188      1.26       cgd 		 * If the process has slept the entire second,
    189      1.26       cgd 		 * stop recalculating its priority until it wakes up.
    190      1.26       cgd 		 */
    191      1.26       cgd 		if (p->p_slptime > 1)
    192      1.26       cgd 			continue;
    193      1.26       cgd 		s = splstatclock();	/* prevent state changes */
    194      1.26       cgd 		/*
    195      1.26       cgd 		 * p_pctcpu is only for ps.
    196      1.26       cgd 		 */
    197      1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    198      1.26       cgd 		p->p_pctcpu += (hz == 100)?
    199      1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    200      1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    201      1.26       cgd 				<< (FSHIFT - CCPU_SHIFT)) / hz;
    202      1.26       cgd #else
    203      1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    204      1.26       cgd 			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
    205      1.26       cgd #endif
    206      1.26       cgd 		p->p_cpticks = 0;
    207      1.39        ws 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu)
    208      1.39        ws 		    + p->p_nice - NZERO;
    209      1.26       cgd 		p->p_estcpu = min(newcpu, UCHAR_MAX);
    210      1.26       cgd 		resetpriority(p);
    211      1.26       cgd 		if (p->p_priority >= PUSER) {
    212      1.26       cgd #define	PPQ	(128 / NQS)		/* priorities per queue */
    213      1.26       cgd 			if ((p != curproc) &&
    214      1.26       cgd 			    p->p_stat == SRUN &&
    215      1.26       cgd 			    (p->p_flag & P_INMEM) &&
    216      1.26       cgd 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    217      1.43       cgd 				remrunqueue(p);
    218      1.26       cgd 				p->p_priority = p->p_usrpri;
    219      1.26       cgd 				setrunqueue(p);
    220      1.26       cgd 			} else
    221      1.26       cgd 				p->p_priority = p->p_usrpri;
    222      1.26       cgd 		}
    223      1.26       cgd 		splx(s);
    224      1.26       cgd 	}
    225      1.26       cgd 	vmmeter();
    226      1.26       cgd 	timeout(schedcpu, (void *)0, hz);
    227      1.26       cgd }
    228      1.26       cgd 
    229      1.26       cgd /*
    230      1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    231      1.26       cgd  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    232      1.26       cgd  * least six times the loadfactor will decay p_estcpu to zero.
    233      1.26       cgd  */
    234      1.26       cgd void
    235      1.26       cgd updatepri(p)
    236      1.26       cgd 	register struct proc *p;
    237      1.26       cgd {
    238      1.26       cgd 	register unsigned int newcpu = p->p_estcpu;
    239      1.26       cgd 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    240      1.26       cgd 
    241      1.26       cgd 	if (p->p_slptime > 5 * loadfac)
    242      1.26       cgd 		p->p_estcpu = 0;
    243      1.26       cgd 	else {
    244      1.26       cgd 		p->p_slptime--;	/* the first time was done in schedcpu */
    245      1.26       cgd 		while (newcpu && --p->p_slptime)
    246      1.26       cgd 			newcpu = (int) decay_cpu(loadfac, newcpu);
    247      1.26       cgd 		p->p_estcpu = min(newcpu, UCHAR_MAX);
    248      1.26       cgd 	}
    249      1.26       cgd 	resetpriority(p);
    250      1.26       cgd }
    251      1.26       cgd 
    252      1.26       cgd /*
    253      1.26       cgd  * We're only looking at 7 bits of the address; everything is
    254      1.26       cgd  * aligned to 4, lots of things are aligned to greater powers
    255      1.26       cgd  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    256      1.26       cgd  */
    257      1.26       cgd #define TABLESIZE	128
    258      1.30       cgd #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
    259      1.26       cgd struct slpque {
    260      1.26       cgd 	struct proc *sq_head;
    261      1.26       cgd 	struct proc **sq_tailp;
    262      1.26       cgd } slpque[TABLESIZE];
    263      1.26       cgd 
    264      1.26       cgd /*
    265      1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    266      1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    267      1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    268      1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    269      1.26       cgd  * This priority will typically be 0, or the lowest priority
    270      1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    271      1.26       cgd  * higher to block network software interrupts after panics.
    272      1.26       cgd  */
    273      1.26       cgd int safepri;
    274      1.26       cgd 
    275      1.26       cgd /*
    276      1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    277      1.26       cgd  * performed on the specified identifier.  The process will then be made
    278      1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    279      1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    280      1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    281      1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    282      1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    283      1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    284      1.26       cgd  * call should be interrupted by the signal (return EINTR).
    285      1.26       cgd  */
    286      1.26       cgd int
    287      1.26       cgd tsleep(ident, priority, wmesg, timo)
    288      1.26       cgd 	void *ident;
    289      1.26       cgd 	int priority, timo;
    290  1.44.4.1   thorpej 	const char *wmesg;
    291      1.26       cgd {
    292      1.26       cgd 	register struct proc *p = curproc;
    293      1.26       cgd 	register struct slpque *qp;
    294      1.26       cgd 	register s;
    295      1.26       cgd 	int sig, catch = priority & PCATCH;
    296      1.26       cgd 	extern int cold;
    297      1.26       cgd 	void endtsleep __P((void *));
    298      1.26       cgd 
    299      1.26       cgd 	if (cold || panicstr) {
    300      1.26       cgd 		/*
    301      1.26       cgd 		 * After a panic, or during autoconfiguration,
    302      1.26       cgd 		 * just give interrupts a chance, then just return;
    303      1.26       cgd 		 * don't run any other procs or panic below,
    304      1.26       cgd 		 * in case this is the idle process and already asleep.
    305      1.26       cgd 		 */
    306      1.42       cgd 		s = splhigh();
    307      1.26       cgd 		splx(safepri);
    308      1.26       cgd 		splx(s);
    309      1.26       cgd 		return (0);
    310      1.26       cgd 	}
    311      1.42       cgd 
    312      1.42       cgd #ifdef KTRACE
    313      1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    314      1.42       cgd 		ktrcsw(p->p_tracep, 1, 0);
    315      1.42       cgd #endif
    316      1.42       cgd 	s = splhigh();
    317      1.42       cgd 
    318      1.26       cgd #ifdef DIAGNOSTIC
    319      1.26       cgd 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
    320      1.26       cgd 		panic("tsleep");
    321      1.26       cgd #endif
    322      1.26       cgd 	p->p_wchan = ident;
    323      1.26       cgd 	p->p_wmesg = wmesg;
    324      1.26       cgd 	p->p_slptime = 0;
    325      1.26       cgd 	p->p_priority = priority & PRIMASK;
    326      1.26       cgd 	qp = &slpque[LOOKUP(ident)];
    327      1.26       cgd 	if (qp->sq_head == 0)
    328      1.26       cgd 		qp->sq_head = p;
    329      1.26       cgd 	else
    330      1.26       cgd 		*qp->sq_tailp = p;
    331      1.26       cgd 	*(qp->sq_tailp = &p->p_forw) = 0;
    332      1.26       cgd 	if (timo)
    333      1.26       cgd 		timeout(endtsleep, (void *)p, timo);
    334      1.26       cgd 	/*
    335      1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    336      1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    337      1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    338      1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    339      1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    340      1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    341      1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    342      1.26       cgd 	 */
    343      1.26       cgd 	if (catch) {
    344      1.26       cgd 		p->p_flag |= P_SINTR;
    345      1.34  christos 		if ((sig = CURSIG(p)) != 0) {
    346      1.26       cgd 			if (p->p_wchan)
    347      1.26       cgd 				unsleep(p);
    348      1.26       cgd 			p->p_stat = SRUN;
    349      1.26       cgd 			goto resume;
    350      1.26       cgd 		}
    351      1.26       cgd 		if (p->p_wchan == 0) {
    352      1.26       cgd 			catch = 0;
    353      1.26       cgd 			goto resume;
    354      1.26       cgd 		}
    355      1.26       cgd 	} else
    356      1.26       cgd 		sig = 0;
    357      1.26       cgd 	p->p_stat = SSLEEP;
    358      1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    359      1.26       cgd 	mi_switch();
    360      1.26       cgd #ifdef	DDB
    361      1.26       cgd 	/* handy breakpoint location after process "wakes" */
    362      1.26       cgd 	asm(".globl bpendtsleep ; bpendtsleep:");
    363      1.26       cgd #endif
    364      1.26       cgd resume:
    365      1.26       cgd 	curpriority = p->p_usrpri;
    366      1.26       cgd 	splx(s);
    367      1.26       cgd 	p->p_flag &= ~P_SINTR;
    368      1.26       cgd 	if (p->p_flag & P_TIMEOUT) {
    369      1.26       cgd 		p->p_flag &= ~P_TIMEOUT;
    370      1.26       cgd 		if (sig == 0) {
    371      1.26       cgd #ifdef KTRACE
    372      1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    373      1.26       cgd 				ktrcsw(p->p_tracep, 0, 0);
    374      1.26       cgd #endif
    375      1.26       cgd 			return (EWOULDBLOCK);
    376      1.26       cgd 		}
    377      1.26       cgd 	} else if (timo)
    378      1.26       cgd 		untimeout(endtsleep, (void *)p);
    379      1.34  christos 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    380      1.26       cgd #ifdef KTRACE
    381      1.26       cgd 		if (KTRPOINT(p, KTR_CSW))
    382      1.26       cgd 			ktrcsw(p->p_tracep, 0, 0);
    383      1.26       cgd #endif
    384      1.26       cgd 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
    385      1.26       cgd 			return (EINTR);
    386      1.26       cgd 		return (ERESTART);
    387      1.26       cgd 	}
    388      1.26       cgd #ifdef KTRACE
    389      1.26       cgd 	if (KTRPOINT(p, KTR_CSW))
    390      1.26       cgd 		ktrcsw(p->p_tracep, 0, 0);
    391      1.26       cgd #endif
    392      1.26       cgd 	return (0);
    393      1.26       cgd }
    394      1.26       cgd 
    395      1.26       cgd /*
    396      1.26       cgd  * Implement timeout for tsleep.
    397      1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    398      1.26       cgd  * set timeout flag and undo the sleep.  If proc
    399      1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    400      1.26       cgd  */
    401      1.26       cgd void
    402      1.26       cgd endtsleep(arg)
    403      1.26       cgd 	void *arg;
    404      1.26       cgd {
    405      1.26       cgd 	register struct proc *p;
    406      1.26       cgd 	int s;
    407      1.26       cgd 
    408      1.26       cgd 	p = (struct proc *)arg;
    409      1.26       cgd 	s = splhigh();
    410      1.26       cgd 	if (p->p_wchan) {
    411      1.26       cgd 		if (p->p_stat == SSLEEP)
    412      1.26       cgd 			setrunnable(p);
    413      1.26       cgd 		else
    414      1.26       cgd 			unsleep(p);
    415      1.26       cgd 		p->p_flag |= P_TIMEOUT;
    416      1.26       cgd 	}
    417      1.26       cgd 	splx(s);
    418      1.26       cgd }
    419      1.26       cgd 
    420      1.26       cgd /*
    421      1.26       cgd  * Short-term, non-interruptable sleep.
    422      1.26       cgd  */
    423      1.26       cgd void
    424      1.26       cgd sleep(ident, priority)
    425      1.26       cgd 	void *ident;
    426      1.26       cgd 	int priority;
    427      1.26       cgd {
    428      1.26       cgd 	register struct proc *p = curproc;
    429      1.26       cgd 	register struct slpque *qp;
    430      1.26       cgd 	register s;
    431      1.26       cgd 	extern int cold;
    432      1.26       cgd 
    433      1.26       cgd #ifdef DIAGNOSTIC
    434      1.26       cgd 	if (priority > PZERO) {
    435      1.41  christos 		printf("sleep called with priority %d > PZERO, wchan: %p\n",
    436      1.26       cgd 		    priority, ident);
    437      1.26       cgd 		panic("old sleep");
    438      1.26       cgd 	}
    439      1.26       cgd #endif
    440      1.26       cgd 	s = splhigh();
    441      1.26       cgd 	if (cold || panicstr) {
    442      1.26       cgd 		/*
    443      1.26       cgd 		 * After a panic, or during autoconfiguration,
    444      1.26       cgd 		 * just give interrupts a chance, then just return;
    445      1.26       cgd 		 * don't run any other procs or panic below,
    446      1.26       cgd 		 * in case this is the idle process and already asleep.
    447      1.26       cgd 		 */
    448      1.26       cgd 		splx(safepri);
    449      1.26       cgd 		splx(s);
    450      1.26       cgd 		return;
    451      1.26       cgd 	}
    452      1.26       cgd #ifdef DIAGNOSTIC
    453      1.26       cgd 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
    454      1.26       cgd 		panic("sleep");
    455      1.26       cgd #endif
    456      1.26       cgd 	p->p_wchan = ident;
    457      1.26       cgd 	p->p_wmesg = NULL;
    458      1.26       cgd 	p->p_slptime = 0;
    459      1.26       cgd 	p->p_priority = priority;
    460      1.26       cgd 	qp = &slpque[LOOKUP(ident)];
    461      1.26       cgd 	if (qp->sq_head == 0)
    462      1.26       cgd 		qp->sq_head = p;
    463      1.26       cgd 	else
    464      1.26       cgd 		*qp->sq_tailp = p;
    465      1.26       cgd 	*(qp->sq_tailp = &p->p_forw) = 0;
    466      1.26       cgd 	p->p_stat = SSLEEP;
    467      1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    468      1.26       cgd #ifdef KTRACE
    469      1.26       cgd 	if (KTRPOINT(p, KTR_CSW))
    470      1.26       cgd 		ktrcsw(p->p_tracep, 1, 0);
    471      1.26       cgd #endif
    472      1.26       cgd 	mi_switch();
    473      1.26       cgd #ifdef	DDB
    474      1.26       cgd 	/* handy breakpoint location after process "wakes" */
    475      1.26       cgd 	asm(".globl bpendsleep ; bpendsleep:");
    476      1.26       cgd #endif
    477      1.26       cgd #ifdef KTRACE
    478      1.26       cgd 	if (KTRPOINT(p, KTR_CSW))
    479      1.26       cgd 		ktrcsw(p->p_tracep, 0, 0);
    480      1.26       cgd #endif
    481      1.26       cgd 	curpriority = p->p_usrpri;
    482      1.26       cgd 	splx(s);
    483      1.26       cgd }
    484      1.26       cgd 
    485      1.26       cgd /*
    486      1.26       cgd  * Remove a process from its wait queue
    487      1.26       cgd  */
    488      1.26       cgd void
    489      1.26       cgd unsleep(p)
    490      1.26       cgd 	register struct proc *p;
    491      1.26       cgd {
    492      1.26       cgd 	register struct slpque *qp;
    493      1.26       cgd 	register struct proc **hp;
    494      1.26       cgd 	int s;
    495      1.26       cgd 
    496      1.26       cgd 	s = splhigh();
    497      1.26       cgd 	if (p->p_wchan) {
    498      1.26       cgd 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
    499      1.26       cgd 		while (*hp != p)
    500      1.26       cgd 			hp = &(*hp)->p_forw;
    501      1.26       cgd 		*hp = p->p_forw;
    502      1.26       cgd 		if (qp->sq_tailp == &p->p_forw)
    503      1.26       cgd 			qp->sq_tailp = hp;
    504      1.26       cgd 		p->p_wchan = 0;
    505      1.26       cgd 	}
    506      1.26       cgd 	splx(s);
    507      1.26       cgd }
    508      1.26       cgd 
    509      1.26       cgd /*
    510      1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    511      1.26       cgd  */
    512      1.26       cgd void
    513      1.26       cgd wakeup(ident)
    514      1.26       cgd 	register void *ident;
    515      1.26       cgd {
    516      1.26       cgd 	register struct slpque *qp;
    517      1.26       cgd 	register struct proc *p, **q;
    518      1.26       cgd 	int s;
    519      1.26       cgd 
    520      1.26       cgd 	s = splhigh();
    521      1.26       cgd 	qp = &slpque[LOOKUP(ident)];
    522      1.26       cgd restart:
    523      1.34  christos 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    524      1.26       cgd #ifdef DIAGNOSTIC
    525      1.34  christos 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    526      1.26       cgd 			panic("wakeup");
    527      1.26       cgd #endif
    528      1.26       cgd 		if (p->p_wchan == ident) {
    529      1.26       cgd 			p->p_wchan = 0;
    530      1.26       cgd 			*q = p->p_forw;
    531      1.26       cgd 			if (qp->sq_tailp == &p->p_forw)
    532      1.26       cgd 				qp->sq_tailp = q;
    533      1.26       cgd 			if (p->p_stat == SSLEEP) {
    534      1.26       cgd 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
    535      1.26       cgd 				if (p->p_slptime > 1)
    536      1.26       cgd 					updatepri(p);
    537      1.26       cgd 				p->p_slptime = 0;
    538      1.26       cgd 				p->p_stat = SRUN;
    539      1.26       cgd 				if (p->p_flag & P_INMEM)
    540      1.26       cgd 					setrunqueue(p);
    541      1.26       cgd 				/*
    542      1.26       cgd 				 * Since curpriority is a user priority,
    543      1.26       cgd 				 * p->p_priority is always better than
    544      1.26       cgd 				 * curpriority.
    545      1.26       cgd 				 */
    546      1.26       cgd 				if ((p->p_flag & P_INMEM) == 0)
    547      1.26       cgd 					wakeup((caddr_t)&proc0);
    548      1.26       cgd 				else
    549      1.26       cgd 					need_resched();
    550      1.26       cgd 				/* END INLINE EXPANSION */
    551      1.26       cgd 				goto restart;
    552      1.26       cgd 			}
    553      1.26       cgd 		} else
    554      1.26       cgd 			q = &p->p_forw;
    555      1.26       cgd 	}
    556      1.26       cgd 	splx(s);
    557      1.26       cgd }
    558      1.26       cgd 
    559      1.26       cgd /*
    560      1.26       cgd  * The machine independent parts of mi_switch().
    561      1.26       cgd  * Must be called at splstatclock() or higher.
    562      1.26       cgd  */
    563      1.26       cgd void
    564      1.26       cgd mi_switch()
    565      1.26       cgd {
    566      1.26       cgd 	register struct proc *p = curproc;	/* XXX */
    567      1.26       cgd 	register struct rlimit *rlim;
    568      1.26       cgd 	register long s, u;
    569      1.26       cgd 	struct timeval tv;
    570      1.26       cgd 
    571      1.26       cgd 	/*
    572      1.26       cgd 	 * Compute the amount of time during which the current
    573      1.26       cgd 	 * process was running, and add that to its total so far.
    574      1.26       cgd 	 */
    575      1.26       cgd 	microtime(&tv);
    576      1.26       cgd 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
    577      1.26       cgd 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
    578      1.26       cgd 	if (u < 0) {
    579      1.26       cgd 		u += 1000000;
    580      1.26       cgd 		s--;
    581      1.26       cgd 	} else if (u >= 1000000) {
    582      1.26       cgd 		u -= 1000000;
    583      1.26       cgd 		s++;
    584      1.26       cgd 	}
    585      1.26       cgd 	p->p_rtime.tv_usec = u;
    586      1.26       cgd 	p->p_rtime.tv_sec = s;
    587      1.26       cgd 
    588      1.26       cgd 	/*
    589      1.26       cgd 	 * Check if the process exceeds its cpu resource allocation.
    590      1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    591      1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    592      1.26       cgd 	 */
    593      1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    594      1.26       cgd 	if (s >= rlim->rlim_cur) {
    595      1.26       cgd 		if (s >= rlim->rlim_max)
    596      1.26       cgd 			psignal(p, SIGKILL);
    597      1.26       cgd 		else {
    598      1.26       cgd 			psignal(p, SIGXCPU);
    599      1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    600      1.26       cgd 				rlim->rlim_cur += 5;
    601      1.26       cgd 		}
    602      1.26       cgd 	}
    603      1.38  explorer 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
    604      1.39        ws 		p->p_nice = autoniceval + NZERO;
    605      1.26       cgd 		resetpriority(p);
    606      1.26       cgd 	}
    607      1.26       cgd 
    608      1.26       cgd 	/*
    609      1.26       cgd 	 * Pick a new current process and record its start time.
    610      1.26       cgd 	 */
    611      1.26       cgd 	cnt.v_swtch++;
    612      1.26       cgd 	cpu_switch(p);
    613      1.26       cgd 	microtime(&runtime);
    614      1.26       cgd }
    615      1.26       cgd 
    616      1.26       cgd /*
    617      1.26       cgd  * Initialize the (doubly-linked) run queues
    618      1.26       cgd  * to be empty.
    619      1.26       cgd  */
    620      1.26       cgd void
    621      1.26       cgd rqinit()
    622      1.26       cgd {
    623      1.26       cgd 	register int i;
    624      1.26       cgd 
    625      1.26       cgd 	for (i = 0; i < NQS; i++)
    626      1.26       cgd 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
    627      1.26       cgd }
    628      1.26       cgd 
    629      1.26       cgd /*
    630      1.26       cgd  * Change process state to be runnable,
    631      1.26       cgd  * placing it on the run queue if it is in memory,
    632      1.26       cgd  * and awakening the swapper if it isn't in memory.
    633      1.26       cgd  */
    634      1.26       cgd void
    635      1.26       cgd setrunnable(p)
    636      1.26       cgd 	register struct proc *p;
    637      1.26       cgd {
    638      1.26       cgd 	register int s;
    639      1.26       cgd 
    640      1.26       cgd 	s = splhigh();
    641      1.26       cgd 	switch (p->p_stat) {
    642      1.26       cgd 	case 0:
    643      1.26       cgd 	case SRUN:
    644      1.26       cgd 	case SZOMB:
    645      1.26       cgd 	default:
    646      1.26       cgd 		panic("setrunnable");
    647      1.26       cgd 	case SSTOP:
    648      1.33   mycroft 		/*
    649      1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    650      1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    651      1.33   mycroft 		 */
    652      1.33   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
    653      1.33   mycroft 			p->p_siglist |= sigmask(p->p_xstat);
    654      1.26       cgd 	case SSLEEP:
    655      1.26       cgd 		unsleep(p);		/* e.g. when sending signals */
    656      1.26       cgd 		break;
    657      1.26       cgd 
    658      1.26       cgd 	case SIDL:
    659      1.26       cgd 		break;
    660      1.26       cgd 	}
    661      1.26       cgd 	p->p_stat = SRUN;
    662      1.26       cgd 	if (p->p_flag & P_INMEM)
    663      1.26       cgd 		setrunqueue(p);
    664      1.26       cgd 	splx(s);
    665      1.26       cgd 	if (p->p_slptime > 1)
    666      1.26       cgd 		updatepri(p);
    667      1.26       cgd 	p->p_slptime = 0;
    668      1.26       cgd 	if ((p->p_flag & P_INMEM) == 0)
    669      1.26       cgd 		wakeup((caddr_t)&proc0);
    670      1.26       cgd 	else if (p->p_priority < curpriority)
    671      1.26       cgd 		need_resched();
    672      1.26       cgd }
    673      1.26       cgd 
    674      1.26       cgd /*
    675      1.26       cgd  * Compute the priority of a process when running in user mode.
    676      1.26       cgd  * Arrange to reschedule if the resulting priority is better
    677      1.26       cgd  * than that of the current process.
    678      1.26       cgd  */
    679      1.26       cgd void
    680      1.26       cgd resetpriority(p)
    681      1.26       cgd 	register struct proc *p;
    682      1.26       cgd {
    683      1.26       cgd 	register unsigned int newpriority;
    684      1.26       cgd 
    685      1.39        ws 	newpriority = PUSER + p->p_estcpu / 4 + 2 * (p->p_nice - NZERO);
    686      1.26       cgd 	newpriority = min(newpriority, MAXPRI);
    687      1.26       cgd 	p->p_usrpri = newpriority;
    688      1.26       cgd 	if (newpriority < curpriority)
    689      1.26       cgd 		need_resched();
    690      1.26       cgd }
    691