Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.47
      1  1.47       mrg /*	$NetBSD: kern_synch.c,v 1.47 1998/02/05 07:59:55 mrg Exp $	*/
      2  1.26       cgd 
      3  1.26       cgd /*-
      4  1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
      5  1.26       cgd  *	The Regents of the University of California.  All rights reserved.
      6  1.26       cgd  * (c) UNIX System Laboratories, Inc.
      7  1.26       cgd  * All or some portions of this file are derived from material licensed
      8  1.26       cgd  * to the University of California by American Telephone and Telegraph
      9  1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     11  1.26       cgd  *
     12  1.26       cgd  * Redistribution and use in source and binary forms, with or without
     13  1.26       cgd  * modification, are permitted provided that the following conditions
     14  1.26       cgd  * are met:
     15  1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     16  1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     17  1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     18  1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     19  1.26       cgd  *    documentation and/or other materials provided with the distribution.
     20  1.26       cgd  * 3. All advertising materials mentioning features or use of this software
     21  1.26       cgd  *    must display the following acknowledgement:
     22  1.26       cgd  *	This product includes software developed by the University of
     23  1.26       cgd  *	California, Berkeley and its contributors.
     24  1.26       cgd  * 4. Neither the name of the University nor the names of its contributors
     25  1.26       cgd  *    may be used to endorse or promote products derived from this software
     26  1.26       cgd  *    without specific prior written permission.
     27  1.26       cgd  *
     28  1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  1.26       cgd  * SUCH DAMAGE.
     39  1.26       cgd  *
     40  1.26       cgd  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
     41  1.26       cgd  */
     42  1.26       cgd 
     43  1.26       cgd #include <sys/param.h>
     44  1.26       cgd #include <sys/systm.h>
     45  1.26       cgd #include <sys/proc.h>
     46  1.26       cgd #include <sys/kernel.h>
     47  1.26       cgd #include <sys/buf.h>
     48  1.26       cgd #include <sys/signalvar.h>
     49  1.26       cgd #include <sys/resourcevar.h>
     50  1.34  christos #include <vm/vm.h>
     51  1.47       mrg 
     52  1.47       mrg #if defined(UVM)
     53  1.47       mrg #include <uvm/uvm_extern.h>
     54  1.47       mrg #endif
     55  1.47       mrg 
     56  1.26       cgd #ifdef KTRACE
     57  1.26       cgd #include <sys/ktrace.h>
     58  1.26       cgd #endif
     59  1.26       cgd 
     60  1.26       cgd #include <machine/cpu.h>
     61  1.34  christos 
     62  1.26       cgd u_char	curpriority;		/* usrpri of curproc */
     63  1.26       cgd int	lbolt;			/* once a second sleep address */
     64  1.26       cgd 
     65  1.34  christos void roundrobin __P((void *));
     66  1.34  christos void schedcpu __P((void *));
     67  1.34  christos void updatepri __P((struct proc *));
     68  1.34  christos void endtsleep __P((void *));
     69  1.34  christos 
     70  1.26       cgd /*
     71  1.26       cgd  * Force switch among equal priority processes every 100ms.
     72  1.26       cgd  */
     73  1.26       cgd /* ARGSUSED */
     74  1.26       cgd void
     75  1.26       cgd roundrobin(arg)
     76  1.26       cgd 	void *arg;
     77  1.26       cgd {
     78  1.26       cgd 
     79  1.26       cgd 	need_resched();
     80  1.26       cgd 	timeout(roundrobin, NULL, hz / 10);
     81  1.26       cgd }
     82  1.26       cgd 
     83  1.26       cgd /*
     84  1.26       cgd  * Constants for digital decay and forget:
     85  1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
     86  1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
     87  1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
     88  1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
     89  1.26       cgd  *
     90  1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
     91  1.26       cgd  *
     92  1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
     93  1.26       cgd  * That is, the system wants to compute a value of decay such
     94  1.26       cgd  * that the following for loop:
     95  1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
     96  1.26       cgd  * 		p_estcpu *= decay;
     97  1.26       cgd  * will compute
     98  1.26       cgd  * 	p_estcpu *= 0.1;
     99  1.26       cgd  * for all values of loadavg:
    100  1.26       cgd  *
    101  1.26       cgd  * Mathematically this loop can be expressed by saying:
    102  1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    103  1.26       cgd  *
    104  1.26       cgd  * The system computes decay as:
    105  1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    106  1.26       cgd  *
    107  1.26       cgd  * We wish to prove that the system's computation of decay
    108  1.26       cgd  * will always fulfill the equation:
    109  1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    110  1.26       cgd  *
    111  1.26       cgd  * If we compute b as:
    112  1.26       cgd  * 	b = 2 * loadavg
    113  1.26       cgd  * then
    114  1.26       cgd  * 	decay = b / (b + 1)
    115  1.26       cgd  *
    116  1.26       cgd  * We now need to prove two things:
    117  1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    118  1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    119  1.26       cgd  *
    120  1.26       cgd  * Facts:
    121  1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    122  1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    123  1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    124  1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    125  1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    126  1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    127  1.26       cgd  *         ln(.1) =~ -2.30
    128  1.26       cgd  *
    129  1.26       cgd  * Proof of (1):
    130  1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    131  1.26       cgd  *	solving for factor,
    132  1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    133  1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    134  1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    135  1.26       cgd  *
    136  1.26       cgd  * Proof of (2):
    137  1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    138  1.26       cgd  *	solving for power,
    139  1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    140  1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    141  1.26       cgd  *
    142  1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    143  1.26       cgd  *      loadav: 1       2       3       4
    144  1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    145  1.26       cgd  */
    146  1.26       cgd 
    147  1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    148  1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    149  1.26       cgd #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    150  1.26       cgd 
    151  1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    152  1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    153  1.26       cgd 
    154  1.26       cgd /*
    155  1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    156  1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    157  1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    158  1.26       cgd  *
    159  1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    160  1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    161  1.26       cgd  *
    162  1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    163  1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    164  1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    165  1.26       cgd  */
    166  1.26       cgd #define	CCPU_SHIFT	11
    167  1.26       cgd 
    168  1.26       cgd /*
    169  1.26       cgd  * Recompute process priorities, every hz ticks.
    170  1.26       cgd  */
    171  1.26       cgd /* ARGSUSED */
    172  1.26       cgd void
    173  1.26       cgd schedcpu(arg)
    174  1.26       cgd 	void *arg;
    175  1.26       cgd {
    176  1.26       cgd 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    177  1.26       cgd 	register struct proc *p;
    178  1.26       cgd 	register int s;
    179  1.26       cgd 	register unsigned int newcpu;
    180  1.26       cgd 
    181  1.26       cgd 	wakeup((caddr_t)&lbolt);
    182  1.27   mycroft 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    183  1.26       cgd 		/*
    184  1.26       cgd 		 * Increment time in/out of memory and sleep time
    185  1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    186  1.26       cgd 		 * (remember them?) overflow takes 45 days.
    187  1.26       cgd 		 */
    188  1.26       cgd 		p->p_swtime++;
    189  1.26       cgd 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    190  1.26       cgd 			p->p_slptime++;
    191  1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    192  1.26       cgd 		/*
    193  1.26       cgd 		 * If the process has slept the entire second,
    194  1.26       cgd 		 * stop recalculating its priority until it wakes up.
    195  1.26       cgd 		 */
    196  1.26       cgd 		if (p->p_slptime > 1)
    197  1.26       cgd 			continue;
    198  1.26       cgd 		s = splstatclock();	/* prevent state changes */
    199  1.26       cgd 		/*
    200  1.26       cgd 		 * p_pctcpu is only for ps.
    201  1.26       cgd 		 */
    202  1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    203  1.26       cgd 		p->p_pctcpu += (hz == 100)?
    204  1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    205  1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    206  1.26       cgd 				<< (FSHIFT - CCPU_SHIFT)) / hz;
    207  1.26       cgd #else
    208  1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    209  1.26       cgd 			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
    210  1.26       cgd #endif
    211  1.26       cgd 		p->p_cpticks = 0;
    212  1.39        ws 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu)
    213  1.39        ws 		    + p->p_nice - NZERO;
    214  1.26       cgd 		p->p_estcpu = min(newcpu, UCHAR_MAX);
    215  1.26       cgd 		resetpriority(p);
    216  1.26       cgd 		if (p->p_priority >= PUSER) {
    217  1.26       cgd #define	PPQ	(128 / NQS)		/* priorities per queue */
    218  1.26       cgd 			if ((p != curproc) &&
    219  1.26       cgd 			    p->p_stat == SRUN &&
    220  1.26       cgd 			    (p->p_flag & P_INMEM) &&
    221  1.26       cgd 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    222  1.43       cgd 				remrunqueue(p);
    223  1.26       cgd 				p->p_priority = p->p_usrpri;
    224  1.26       cgd 				setrunqueue(p);
    225  1.26       cgd 			} else
    226  1.26       cgd 				p->p_priority = p->p_usrpri;
    227  1.26       cgd 		}
    228  1.26       cgd 		splx(s);
    229  1.26       cgd 	}
    230  1.47       mrg #if defined(UVM)
    231  1.47       mrg 	uvm_meter();
    232  1.47       mrg #else
    233  1.26       cgd 	vmmeter();
    234  1.47       mrg #endif
    235  1.26       cgd 	timeout(schedcpu, (void *)0, hz);
    236  1.26       cgd }
    237  1.26       cgd 
    238  1.26       cgd /*
    239  1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    240  1.26       cgd  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    241  1.26       cgd  * least six times the loadfactor will decay p_estcpu to zero.
    242  1.26       cgd  */
    243  1.26       cgd void
    244  1.26       cgd updatepri(p)
    245  1.26       cgd 	register struct proc *p;
    246  1.26       cgd {
    247  1.26       cgd 	register unsigned int newcpu = p->p_estcpu;
    248  1.26       cgd 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    249  1.26       cgd 
    250  1.26       cgd 	if (p->p_slptime > 5 * loadfac)
    251  1.26       cgd 		p->p_estcpu = 0;
    252  1.26       cgd 	else {
    253  1.26       cgd 		p->p_slptime--;	/* the first time was done in schedcpu */
    254  1.26       cgd 		while (newcpu && --p->p_slptime)
    255  1.26       cgd 			newcpu = (int) decay_cpu(loadfac, newcpu);
    256  1.26       cgd 		p->p_estcpu = min(newcpu, UCHAR_MAX);
    257  1.26       cgd 	}
    258  1.26       cgd 	resetpriority(p);
    259  1.26       cgd }
    260  1.26       cgd 
    261  1.26       cgd /*
    262  1.26       cgd  * We're only looking at 7 bits of the address; everything is
    263  1.26       cgd  * aligned to 4, lots of things are aligned to greater powers
    264  1.26       cgd  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    265  1.26       cgd  */
    266  1.26       cgd #define TABLESIZE	128
    267  1.30       cgd #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
    268  1.26       cgd struct slpque {
    269  1.26       cgd 	struct proc *sq_head;
    270  1.26       cgd 	struct proc **sq_tailp;
    271  1.26       cgd } slpque[TABLESIZE];
    272  1.26       cgd 
    273  1.26       cgd /*
    274  1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    275  1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    276  1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    277  1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    278  1.26       cgd  * This priority will typically be 0, or the lowest priority
    279  1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    280  1.26       cgd  * higher to block network software interrupts after panics.
    281  1.26       cgd  */
    282  1.26       cgd int safepri;
    283  1.26       cgd 
    284  1.26       cgd /*
    285  1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    286  1.26       cgd  * performed on the specified identifier.  The process will then be made
    287  1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    288  1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    289  1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    290  1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    291  1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    292  1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    293  1.26       cgd  * call should be interrupted by the signal (return EINTR).
    294  1.26       cgd  */
    295  1.26       cgd int
    296  1.26       cgd tsleep(ident, priority, wmesg, timo)
    297  1.26       cgd 	void *ident;
    298  1.26       cgd 	int priority, timo;
    299  1.45   mycroft 	const char *wmesg;
    300  1.26       cgd {
    301  1.26       cgd 	register struct proc *p = curproc;
    302  1.26       cgd 	register struct slpque *qp;
    303  1.26       cgd 	register s;
    304  1.26       cgd 	int sig, catch = priority & PCATCH;
    305  1.26       cgd 	extern int cold;
    306  1.26       cgd 	void endtsleep __P((void *));
    307  1.26       cgd 
    308  1.26       cgd 	if (cold || panicstr) {
    309  1.26       cgd 		/*
    310  1.26       cgd 		 * After a panic, or during autoconfiguration,
    311  1.26       cgd 		 * just give interrupts a chance, then just return;
    312  1.26       cgd 		 * don't run any other procs or panic below,
    313  1.26       cgd 		 * in case this is the idle process and already asleep.
    314  1.26       cgd 		 */
    315  1.42       cgd 		s = splhigh();
    316  1.26       cgd 		splx(safepri);
    317  1.26       cgd 		splx(s);
    318  1.26       cgd 		return (0);
    319  1.26       cgd 	}
    320  1.42       cgd 
    321  1.42       cgd #ifdef KTRACE
    322  1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    323  1.42       cgd 		ktrcsw(p->p_tracep, 1, 0);
    324  1.42       cgd #endif
    325  1.42       cgd 	s = splhigh();
    326  1.42       cgd 
    327  1.26       cgd #ifdef DIAGNOSTIC
    328  1.26       cgd 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
    329  1.26       cgd 		panic("tsleep");
    330  1.26       cgd #endif
    331  1.26       cgd 	p->p_wchan = ident;
    332  1.26       cgd 	p->p_wmesg = wmesg;
    333  1.26       cgd 	p->p_slptime = 0;
    334  1.26       cgd 	p->p_priority = priority & PRIMASK;
    335  1.26       cgd 	qp = &slpque[LOOKUP(ident)];
    336  1.26       cgd 	if (qp->sq_head == 0)
    337  1.26       cgd 		qp->sq_head = p;
    338  1.26       cgd 	else
    339  1.26       cgd 		*qp->sq_tailp = p;
    340  1.26       cgd 	*(qp->sq_tailp = &p->p_forw) = 0;
    341  1.26       cgd 	if (timo)
    342  1.26       cgd 		timeout(endtsleep, (void *)p, timo);
    343  1.26       cgd 	/*
    344  1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    345  1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    346  1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    347  1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    348  1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    349  1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    350  1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    351  1.26       cgd 	 */
    352  1.26       cgd 	if (catch) {
    353  1.26       cgd 		p->p_flag |= P_SINTR;
    354  1.34  christos 		if ((sig = CURSIG(p)) != 0) {
    355  1.26       cgd 			if (p->p_wchan)
    356  1.26       cgd 				unsleep(p);
    357  1.26       cgd 			p->p_stat = SRUN;
    358  1.26       cgd 			goto resume;
    359  1.26       cgd 		}
    360  1.26       cgd 		if (p->p_wchan == 0) {
    361  1.26       cgd 			catch = 0;
    362  1.26       cgd 			goto resume;
    363  1.26       cgd 		}
    364  1.26       cgd 	} else
    365  1.26       cgd 		sig = 0;
    366  1.26       cgd 	p->p_stat = SSLEEP;
    367  1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    368  1.26       cgd 	mi_switch();
    369  1.26       cgd #ifdef	DDB
    370  1.26       cgd 	/* handy breakpoint location after process "wakes" */
    371  1.26       cgd 	asm(".globl bpendtsleep ; bpendtsleep:");
    372  1.26       cgd #endif
    373  1.26       cgd resume:
    374  1.26       cgd 	curpriority = p->p_usrpri;
    375  1.26       cgd 	splx(s);
    376  1.26       cgd 	p->p_flag &= ~P_SINTR;
    377  1.26       cgd 	if (p->p_flag & P_TIMEOUT) {
    378  1.26       cgd 		p->p_flag &= ~P_TIMEOUT;
    379  1.26       cgd 		if (sig == 0) {
    380  1.26       cgd #ifdef KTRACE
    381  1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    382  1.26       cgd 				ktrcsw(p->p_tracep, 0, 0);
    383  1.26       cgd #endif
    384  1.26       cgd 			return (EWOULDBLOCK);
    385  1.26       cgd 		}
    386  1.26       cgd 	} else if (timo)
    387  1.26       cgd 		untimeout(endtsleep, (void *)p);
    388  1.34  christos 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    389  1.26       cgd #ifdef KTRACE
    390  1.26       cgd 		if (KTRPOINT(p, KTR_CSW))
    391  1.26       cgd 			ktrcsw(p->p_tracep, 0, 0);
    392  1.26       cgd #endif
    393  1.26       cgd 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
    394  1.26       cgd 			return (EINTR);
    395  1.26       cgd 		return (ERESTART);
    396  1.26       cgd 	}
    397  1.26       cgd #ifdef KTRACE
    398  1.26       cgd 	if (KTRPOINT(p, KTR_CSW))
    399  1.26       cgd 		ktrcsw(p->p_tracep, 0, 0);
    400  1.26       cgd #endif
    401  1.26       cgd 	return (0);
    402  1.26       cgd }
    403  1.26       cgd 
    404  1.26       cgd /*
    405  1.26       cgd  * Implement timeout for tsleep.
    406  1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    407  1.26       cgd  * set timeout flag and undo the sleep.  If proc
    408  1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    409  1.26       cgd  */
    410  1.26       cgd void
    411  1.26       cgd endtsleep(arg)
    412  1.26       cgd 	void *arg;
    413  1.26       cgd {
    414  1.26       cgd 	register struct proc *p;
    415  1.26       cgd 	int s;
    416  1.26       cgd 
    417  1.26       cgd 	p = (struct proc *)arg;
    418  1.26       cgd 	s = splhigh();
    419  1.26       cgd 	if (p->p_wchan) {
    420  1.26       cgd 		if (p->p_stat == SSLEEP)
    421  1.26       cgd 			setrunnable(p);
    422  1.26       cgd 		else
    423  1.26       cgd 			unsleep(p);
    424  1.26       cgd 		p->p_flag |= P_TIMEOUT;
    425  1.26       cgd 	}
    426  1.26       cgd 	splx(s);
    427  1.26       cgd }
    428  1.26       cgd 
    429  1.26       cgd /*
    430  1.26       cgd  * Short-term, non-interruptable sleep.
    431  1.26       cgd  */
    432  1.26       cgd void
    433  1.26       cgd sleep(ident, priority)
    434  1.26       cgd 	void *ident;
    435  1.26       cgd 	int priority;
    436  1.26       cgd {
    437  1.26       cgd 	register struct proc *p = curproc;
    438  1.26       cgd 	register struct slpque *qp;
    439  1.26       cgd 	register s;
    440  1.26       cgd 	extern int cold;
    441  1.26       cgd 
    442  1.26       cgd #ifdef DIAGNOSTIC
    443  1.26       cgd 	if (priority > PZERO) {
    444  1.41  christos 		printf("sleep called with priority %d > PZERO, wchan: %p\n",
    445  1.26       cgd 		    priority, ident);
    446  1.26       cgd 		panic("old sleep");
    447  1.26       cgd 	}
    448  1.26       cgd #endif
    449  1.26       cgd 	s = splhigh();
    450  1.26       cgd 	if (cold || panicstr) {
    451  1.26       cgd 		/*
    452  1.26       cgd 		 * After a panic, or during autoconfiguration,
    453  1.26       cgd 		 * just give interrupts a chance, then just return;
    454  1.26       cgd 		 * don't run any other procs or panic below,
    455  1.26       cgd 		 * in case this is the idle process and already asleep.
    456  1.26       cgd 		 */
    457  1.26       cgd 		splx(safepri);
    458  1.26       cgd 		splx(s);
    459  1.26       cgd 		return;
    460  1.26       cgd 	}
    461  1.26       cgd #ifdef DIAGNOSTIC
    462  1.26       cgd 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
    463  1.26       cgd 		panic("sleep");
    464  1.26       cgd #endif
    465  1.26       cgd 	p->p_wchan = ident;
    466  1.26       cgd 	p->p_wmesg = NULL;
    467  1.26       cgd 	p->p_slptime = 0;
    468  1.26       cgd 	p->p_priority = priority;
    469  1.26       cgd 	qp = &slpque[LOOKUP(ident)];
    470  1.26       cgd 	if (qp->sq_head == 0)
    471  1.26       cgd 		qp->sq_head = p;
    472  1.26       cgd 	else
    473  1.26       cgd 		*qp->sq_tailp = p;
    474  1.26       cgd 	*(qp->sq_tailp = &p->p_forw) = 0;
    475  1.26       cgd 	p->p_stat = SSLEEP;
    476  1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    477  1.26       cgd #ifdef KTRACE
    478  1.26       cgd 	if (KTRPOINT(p, KTR_CSW))
    479  1.26       cgd 		ktrcsw(p->p_tracep, 1, 0);
    480  1.26       cgd #endif
    481  1.26       cgd 	mi_switch();
    482  1.26       cgd #ifdef	DDB
    483  1.26       cgd 	/* handy breakpoint location after process "wakes" */
    484  1.26       cgd 	asm(".globl bpendsleep ; bpendsleep:");
    485  1.26       cgd #endif
    486  1.26       cgd #ifdef KTRACE
    487  1.26       cgd 	if (KTRPOINT(p, KTR_CSW))
    488  1.26       cgd 		ktrcsw(p->p_tracep, 0, 0);
    489  1.26       cgd #endif
    490  1.26       cgd 	curpriority = p->p_usrpri;
    491  1.26       cgd 	splx(s);
    492  1.26       cgd }
    493  1.26       cgd 
    494  1.26       cgd /*
    495  1.26       cgd  * Remove a process from its wait queue
    496  1.26       cgd  */
    497  1.26       cgd void
    498  1.26       cgd unsleep(p)
    499  1.26       cgd 	register struct proc *p;
    500  1.26       cgd {
    501  1.26       cgd 	register struct slpque *qp;
    502  1.26       cgd 	register struct proc **hp;
    503  1.26       cgd 	int s;
    504  1.26       cgd 
    505  1.26       cgd 	s = splhigh();
    506  1.26       cgd 	if (p->p_wchan) {
    507  1.26       cgd 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
    508  1.26       cgd 		while (*hp != p)
    509  1.26       cgd 			hp = &(*hp)->p_forw;
    510  1.26       cgd 		*hp = p->p_forw;
    511  1.26       cgd 		if (qp->sq_tailp == &p->p_forw)
    512  1.26       cgd 			qp->sq_tailp = hp;
    513  1.26       cgd 		p->p_wchan = 0;
    514  1.26       cgd 	}
    515  1.26       cgd 	splx(s);
    516  1.26       cgd }
    517  1.26       cgd 
    518  1.26       cgd /*
    519  1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    520  1.26       cgd  */
    521  1.26       cgd void
    522  1.26       cgd wakeup(ident)
    523  1.26       cgd 	register void *ident;
    524  1.26       cgd {
    525  1.26       cgd 	register struct slpque *qp;
    526  1.26       cgd 	register struct proc *p, **q;
    527  1.26       cgd 	int s;
    528  1.26       cgd 
    529  1.26       cgd 	s = splhigh();
    530  1.26       cgd 	qp = &slpque[LOOKUP(ident)];
    531  1.26       cgd restart:
    532  1.34  christos 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    533  1.26       cgd #ifdef DIAGNOSTIC
    534  1.34  christos 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    535  1.26       cgd 			panic("wakeup");
    536  1.26       cgd #endif
    537  1.26       cgd 		if (p->p_wchan == ident) {
    538  1.26       cgd 			p->p_wchan = 0;
    539  1.26       cgd 			*q = p->p_forw;
    540  1.26       cgd 			if (qp->sq_tailp == &p->p_forw)
    541  1.26       cgd 				qp->sq_tailp = q;
    542  1.26       cgd 			if (p->p_stat == SSLEEP) {
    543  1.26       cgd 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
    544  1.26       cgd 				if (p->p_slptime > 1)
    545  1.26       cgd 					updatepri(p);
    546  1.26       cgd 				p->p_slptime = 0;
    547  1.26       cgd 				p->p_stat = SRUN;
    548  1.26       cgd 				if (p->p_flag & P_INMEM)
    549  1.26       cgd 					setrunqueue(p);
    550  1.26       cgd 				/*
    551  1.26       cgd 				 * Since curpriority is a user priority,
    552  1.26       cgd 				 * p->p_priority is always better than
    553  1.26       cgd 				 * curpriority.
    554  1.26       cgd 				 */
    555  1.26       cgd 				if ((p->p_flag & P_INMEM) == 0)
    556  1.26       cgd 					wakeup((caddr_t)&proc0);
    557  1.26       cgd 				else
    558  1.26       cgd 					need_resched();
    559  1.26       cgd 				/* END INLINE EXPANSION */
    560  1.26       cgd 				goto restart;
    561  1.26       cgd 			}
    562  1.26       cgd 		} else
    563  1.26       cgd 			q = &p->p_forw;
    564  1.26       cgd 	}
    565  1.26       cgd 	splx(s);
    566  1.26       cgd }
    567  1.26       cgd 
    568  1.26       cgd /*
    569  1.26       cgd  * The machine independent parts of mi_switch().
    570  1.26       cgd  * Must be called at splstatclock() or higher.
    571  1.26       cgd  */
    572  1.26       cgd void
    573  1.26       cgd mi_switch()
    574  1.26       cgd {
    575  1.26       cgd 	register struct proc *p = curproc;	/* XXX */
    576  1.26       cgd 	register struct rlimit *rlim;
    577  1.26       cgd 	register long s, u;
    578  1.26       cgd 	struct timeval tv;
    579  1.26       cgd 
    580  1.26       cgd 	/*
    581  1.26       cgd 	 * Compute the amount of time during which the current
    582  1.26       cgd 	 * process was running, and add that to its total so far.
    583  1.26       cgd 	 */
    584  1.26       cgd 	microtime(&tv);
    585  1.26       cgd 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
    586  1.26       cgd 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
    587  1.26       cgd 	if (u < 0) {
    588  1.26       cgd 		u += 1000000;
    589  1.26       cgd 		s--;
    590  1.26       cgd 	} else if (u >= 1000000) {
    591  1.26       cgd 		u -= 1000000;
    592  1.26       cgd 		s++;
    593  1.26       cgd 	}
    594  1.26       cgd 	p->p_rtime.tv_usec = u;
    595  1.26       cgd 	p->p_rtime.tv_sec = s;
    596  1.26       cgd 
    597  1.26       cgd 	/*
    598  1.26       cgd 	 * Check if the process exceeds its cpu resource allocation.
    599  1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    600  1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    601  1.26       cgd 	 */
    602  1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    603  1.26       cgd 	if (s >= rlim->rlim_cur) {
    604  1.26       cgd 		if (s >= rlim->rlim_max)
    605  1.26       cgd 			psignal(p, SIGKILL);
    606  1.26       cgd 		else {
    607  1.26       cgd 			psignal(p, SIGXCPU);
    608  1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    609  1.26       cgd 				rlim->rlim_cur += 5;
    610  1.26       cgd 		}
    611  1.26       cgd 	}
    612  1.38  explorer 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
    613  1.39        ws 		p->p_nice = autoniceval + NZERO;
    614  1.26       cgd 		resetpriority(p);
    615  1.26       cgd 	}
    616  1.26       cgd 
    617  1.26       cgd 	/*
    618  1.26       cgd 	 * Pick a new current process and record its start time.
    619  1.26       cgd 	 */
    620  1.47       mrg #if defined(UVM)
    621  1.47       mrg 	uvmexp.swtch++;
    622  1.47       mrg #else
    623  1.26       cgd 	cnt.v_swtch++;
    624  1.47       mrg #endif
    625  1.26       cgd 	cpu_switch(p);
    626  1.26       cgd 	microtime(&runtime);
    627  1.26       cgd }
    628  1.26       cgd 
    629  1.26       cgd /*
    630  1.26       cgd  * Initialize the (doubly-linked) run queues
    631  1.26       cgd  * to be empty.
    632  1.26       cgd  */
    633  1.26       cgd void
    634  1.26       cgd rqinit()
    635  1.26       cgd {
    636  1.26       cgd 	register int i;
    637  1.26       cgd 
    638  1.26       cgd 	for (i = 0; i < NQS; i++)
    639  1.26       cgd 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
    640  1.26       cgd }
    641  1.26       cgd 
    642  1.26       cgd /*
    643  1.26       cgd  * Change process state to be runnable,
    644  1.26       cgd  * placing it on the run queue if it is in memory,
    645  1.26       cgd  * and awakening the swapper if it isn't in memory.
    646  1.26       cgd  */
    647  1.26       cgd void
    648  1.26       cgd setrunnable(p)
    649  1.26       cgd 	register struct proc *p;
    650  1.26       cgd {
    651  1.26       cgd 	register int s;
    652  1.26       cgd 
    653  1.26       cgd 	s = splhigh();
    654  1.26       cgd 	switch (p->p_stat) {
    655  1.26       cgd 	case 0:
    656  1.26       cgd 	case SRUN:
    657  1.26       cgd 	case SZOMB:
    658  1.26       cgd 	default:
    659  1.26       cgd 		panic("setrunnable");
    660  1.26       cgd 	case SSTOP:
    661  1.33   mycroft 		/*
    662  1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    663  1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    664  1.33   mycroft 		 */
    665  1.33   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
    666  1.33   mycroft 			p->p_siglist |= sigmask(p->p_xstat);
    667  1.26       cgd 	case SSLEEP:
    668  1.26       cgd 		unsleep(p);		/* e.g. when sending signals */
    669  1.26       cgd 		break;
    670  1.26       cgd 
    671  1.26       cgd 	case SIDL:
    672  1.26       cgd 		break;
    673  1.26       cgd 	}
    674  1.26       cgd 	p->p_stat = SRUN;
    675  1.26       cgd 	if (p->p_flag & P_INMEM)
    676  1.26       cgd 		setrunqueue(p);
    677  1.26       cgd 	splx(s);
    678  1.26       cgd 	if (p->p_slptime > 1)
    679  1.26       cgd 		updatepri(p);
    680  1.26       cgd 	p->p_slptime = 0;
    681  1.26       cgd 	if ((p->p_flag & P_INMEM) == 0)
    682  1.26       cgd 		wakeup((caddr_t)&proc0);
    683  1.26       cgd 	else if (p->p_priority < curpriority)
    684  1.26       cgd 		need_resched();
    685  1.26       cgd }
    686  1.26       cgd 
    687  1.26       cgd /*
    688  1.26       cgd  * Compute the priority of a process when running in user mode.
    689  1.26       cgd  * Arrange to reschedule if the resulting priority is better
    690  1.26       cgd  * than that of the current process.
    691  1.26       cgd  */
    692  1.26       cgd void
    693  1.26       cgd resetpriority(p)
    694  1.26       cgd 	register struct proc *p;
    695  1.26       cgd {
    696  1.26       cgd 	register unsigned int newpriority;
    697  1.26       cgd 
    698  1.39        ws 	newpriority = PUSER + p->p_estcpu / 4 + 2 * (p->p_nice - NZERO);
    699  1.26       cgd 	newpriority = min(newpriority, MAXPRI);
    700  1.26       cgd 	p->p_usrpri = newpriority;
    701  1.26       cgd 	if (newpriority < curpriority)
    702  1.26       cgd 		need_resched();
    703  1.26       cgd }
    704