kern_synch.c revision 1.48 1 1.48 mrg /* $NetBSD: kern_synch.c,v 1.48 1998/02/10 14:09:45 mrg Exp $ */
2 1.26 cgd
3 1.26 cgd /*-
4 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
5 1.26 cgd * The Regents of the University of California. All rights reserved.
6 1.26 cgd * (c) UNIX System Laboratories, Inc.
7 1.26 cgd * All or some portions of this file are derived from material licensed
8 1.26 cgd * to the University of California by American Telephone and Telegraph
9 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 1.26 cgd * the permission of UNIX System Laboratories, Inc.
11 1.26 cgd *
12 1.26 cgd * Redistribution and use in source and binary forms, with or without
13 1.26 cgd * modification, are permitted provided that the following conditions
14 1.26 cgd * are met:
15 1.26 cgd * 1. Redistributions of source code must retain the above copyright
16 1.26 cgd * notice, this list of conditions and the following disclaimer.
17 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.26 cgd * notice, this list of conditions and the following disclaimer in the
19 1.26 cgd * documentation and/or other materials provided with the distribution.
20 1.26 cgd * 3. All advertising materials mentioning features or use of this software
21 1.26 cgd * must display the following acknowledgement:
22 1.26 cgd * This product includes software developed by the University of
23 1.26 cgd * California, Berkeley and its contributors.
24 1.26 cgd * 4. Neither the name of the University nor the names of its contributors
25 1.26 cgd * may be used to endorse or promote products derived from this software
26 1.26 cgd * without specific prior written permission.
27 1.26 cgd *
28 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.26 cgd * SUCH DAMAGE.
39 1.26 cgd *
40 1.26 cgd * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94
41 1.26 cgd */
42 1.48 mrg
43 1.48 mrg #include "opt_uvm.h"
44 1.26 cgd
45 1.26 cgd #include <sys/param.h>
46 1.26 cgd #include <sys/systm.h>
47 1.26 cgd #include <sys/proc.h>
48 1.26 cgd #include <sys/kernel.h>
49 1.26 cgd #include <sys/buf.h>
50 1.26 cgd #include <sys/signalvar.h>
51 1.26 cgd #include <sys/resourcevar.h>
52 1.34 christos #include <vm/vm.h>
53 1.47 mrg
54 1.47 mrg #if defined(UVM)
55 1.47 mrg #include <uvm/uvm_extern.h>
56 1.47 mrg #endif
57 1.47 mrg
58 1.26 cgd #ifdef KTRACE
59 1.26 cgd #include <sys/ktrace.h>
60 1.26 cgd #endif
61 1.26 cgd
62 1.26 cgd #include <machine/cpu.h>
63 1.34 christos
64 1.26 cgd u_char curpriority; /* usrpri of curproc */
65 1.26 cgd int lbolt; /* once a second sleep address */
66 1.26 cgd
67 1.34 christos void roundrobin __P((void *));
68 1.34 christos void schedcpu __P((void *));
69 1.34 christos void updatepri __P((struct proc *));
70 1.34 christos void endtsleep __P((void *));
71 1.34 christos
72 1.26 cgd /*
73 1.26 cgd * Force switch among equal priority processes every 100ms.
74 1.26 cgd */
75 1.26 cgd /* ARGSUSED */
76 1.26 cgd void
77 1.26 cgd roundrobin(arg)
78 1.26 cgd void *arg;
79 1.26 cgd {
80 1.26 cgd
81 1.26 cgd need_resched();
82 1.26 cgd timeout(roundrobin, NULL, hz / 10);
83 1.26 cgd }
84 1.26 cgd
85 1.26 cgd /*
86 1.26 cgd * Constants for digital decay and forget:
87 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
88 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
89 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
90 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
91 1.26 cgd *
92 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
93 1.26 cgd *
94 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
95 1.26 cgd * That is, the system wants to compute a value of decay such
96 1.26 cgd * that the following for loop:
97 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
98 1.26 cgd * p_estcpu *= decay;
99 1.26 cgd * will compute
100 1.26 cgd * p_estcpu *= 0.1;
101 1.26 cgd * for all values of loadavg:
102 1.26 cgd *
103 1.26 cgd * Mathematically this loop can be expressed by saying:
104 1.26 cgd * decay ** (5 * loadavg) ~= .1
105 1.26 cgd *
106 1.26 cgd * The system computes decay as:
107 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
108 1.26 cgd *
109 1.26 cgd * We wish to prove that the system's computation of decay
110 1.26 cgd * will always fulfill the equation:
111 1.26 cgd * decay ** (5 * loadavg) ~= .1
112 1.26 cgd *
113 1.26 cgd * If we compute b as:
114 1.26 cgd * b = 2 * loadavg
115 1.26 cgd * then
116 1.26 cgd * decay = b / (b + 1)
117 1.26 cgd *
118 1.26 cgd * We now need to prove two things:
119 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
120 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
121 1.26 cgd *
122 1.26 cgd * Facts:
123 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
124 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
125 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
126 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
127 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
128 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
129 1.26 cgd * ln(.1) =~ -2.30
130 1.26 cgd *
131 1.26 cgd * Proof of (1):
132 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
133 1.26 cgd * solving for factor,
134 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
135 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
136 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
137 1.26 cgd *
138 1.26 cgd * Proof of (2):
139 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
140 1.26 cgd * solving for power,
141 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
142 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
143 1.26 cgd *
144 1.26 cgd * Actual power values for the implemented algorithm are as follows:
145 1.26 cgd * loadav: 1 2 3 4
146 1.26 cgd * power: 5.68 10.32 14.94 19.55
147 1.26 cgd */
148 1.26 cgd
149 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
150 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
151 1.26 cgd #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
152 1.26 cgd
153 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
154 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
155 1.26 cgd
156 1.26 cgd /*
157 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
158 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
159 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
160 1.26 cgd *
161 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
162 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
163 1.26 cgd *
164 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
165 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
166 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
167 1.26 cgd */
168 1.26 cgd #define CCPU_SHIFT 11
169 1.26 cgd
170 1.26 cgd /*
171 1.26 cgd * Recompute process priorities, every hz ticks.
172 1.26 cgd */
173 1.26 cgd /* ARGSUSED */
174 1.26 cgd void
175 1.26 cgd schedcpu(arg)
176 1.26 cgd void *arg;
177 1.26 cgd {
178 1.26 cgd register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
179 1.26 cgd register struct proc *p;
180 1.26 cgd register int s;
181 1.26 cgd register unsigned int newcpu;
182 1.26 cgd
183 1.26 cgd wakeup((caddr_t)&lbolt);
184 1.27 mycroft for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
185 1.26 cgd /*
186 1.26 cgd * Increment time in/out of memory and sleep time
187 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
188 1.26 cgd * (remember them?) overflow takes 45 days.
189 1.26 cgd */
190 1.26 cgd p->p_swtime++;
191 1.26 cgd if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
192 1.26 cgd p->p_slptime++;
193 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
194 1.26 cgd /*
195 1.26 cgd * If the process has slept the entire second,
196 1.26 cgd * stop recalculating its priority until it wakes up.
197 1.26 cgd */
198 1.26 cgd if (p->p_slptime > 1)
199 1.26 cgd continue;
200 1.26 cgd s = splstatclock(); /* prevent state changes */
201 1.26 cgd /*
202 1.26 cgd * p_pctcpu is only for ps.
203 1.26 cgd */
204 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
205 1.26 cgd p->p_pctcpu += (hz == 100)?
206 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
207 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
208 1.26 cgd << (FSHIFT - CCPU_SHIFT)) / hz;
209 1.26 cgd #else
210 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
211 1.26 cgd (p->p_cpticks * FSCALE / hz)) >> FSHIFT;
212 1.26 cgd #endif
213 1.26 cgd p->p_cpticks = 0;
214 1.39 ws newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu)
215 1.39 ws + p->p_nice - NZERO;
216 1.26 cgd p->p_estcpu = min(newcpu, UCHAR_MAX);
217 1.26 cgd resetpriority(p);
218 1.26 cgd if (p->p_priority >= PUSER) {
219 1.26 cgd #define PPQ (128 / NQS) /* priorities per queue */
220 1.26 cgd if ((p != curproc) &&
221 1.26 cgd p->p_stat == SRUN &&
222 1.26 cgd (p->p_flag & P_INMEM) &&
223 1.26 cgd (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
224 1.43 cgd remrunqueue(p);
225 1.26 cgd p->p_priority = p->p_usrpri;
226 1.26 cgd setrunqueue(p);
227 1.26 cgd } else
228 1.26 cgd p->p_priority = p->p_usrpri;
229 1.26 cgd }
230 1.26 cgd splx(s);
231 1.26 cgd }
232 1.47 mrg #if defined(UVM)
233 1.47 mrg uvm_meter();
234 1.47 mrg #else
235 1.26 cgd vmmeter();
236 1.47 mrg #endif
237 1.26 cgd timeout(schedcpu, (void *)0, hz);
238 1.26 cgd }
239 1.26 cgd
240 1.26 cgd /*
241 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
242 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
243 1.26 cgd * least six times the loadfactor will decay p_estcpu to zero.
244 1.26 cgd */
245 1.26 cgd void
246 1.26 cgd updatepri(p)
247 1.26 cgd register struct proc *p;
248 1.26 cgd {
249 1.26 cgd register unsigned int newcpu = p->p_estcpu;
250 1.26 cgd register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
251 1.26 cgd
252 1.26 cgd if (p->p_slptime > 5 * loadfac)
253 1.26 cgd p->p_estcpu = 0;
254 1.26 cgd else {
255 1.26 cgd p->p_slptime--; /* the first time was done in schedcpu */
256 1.26 cgd while (newcpu && --p->p_slptime)
257 1.26 cgd newcpu = (int) decay_cpu(loadfac, newcpu);
258 1.26 cgd p->p_estcpu = min(newcpu, UCHAR_MAX);
259 1.26 cgd }
260 1.26 cgd resetpriority(p);
261 1.26 cgd }
262 1.26 cgd
263 1.26 cgd /*
264 1.26 cgd * We're only looking at 7 bits of the address; everything is
265 1.26 cgd * aligned to 4, lots of things are aligned to greater powers
266 1.26 cgd * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
267 1.26 cgd */
268 1.26 cgd #define TABLESIZE 128
269 1.30 cgd #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
270 1.26 cgd struct slpque {
271 1.26 cgd struct proc *sq_head;
272 1.26 cgd struct proc **sq_tailp;
273 1.26 cgd } slpque[TABLESIZE];
274 1.26 cgd
275 1.26 cgd /*
276 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
277 1.26 cgd * lower the priority briefly to allow interrupts, then return.
278 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
279 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
280 1.26 cgd * This priority will typically be 0, or the lowest priority
281 1.26 cgd * that is safe for use on the interrupt stack; it can be made
282 1.26 cgd * higher to block network software interrupts after panics.
283 1.26 cgd */
284 1.26 cgd int safepri;
285 1.26 cgd
286 1.26 cgd /*
287 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
288 1.26 cgd * performed on the specified identifier. The process will then be made
289 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
290 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
291 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
292 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
293 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
294 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
295 1.26 cgd * call should be interrupted by the signal (return EINTR).
296 1.26 cgd */
297 1.26 cgd int
298 1.26 cgd tsleep(ident, priority, wmesg, timo)
299 1.26 cgd void *ident;
300 1.26 cgd int priority, timo;
301 1.45 mycroft const char *wmesg;
302 1.26 cgd {
303 1.26 cgd register struct proc *p = curproc;
304 1.26 cgd register struct slpque *qp;
305 1.26 cgd register s;
306 1.26 cgd int sig, catch = priority & PCATCH;
307 1.26 cgd extern int cold;
308 1.26 cgd void endtsleep __P((void *));
309 1.26 cgd
310 1.26 cgd if (cold || panicstr) {
311 1.26 cgd /*
312 1.26 cgd * After a panic, or during autoconfiguration,
313 1.26 cgd * just give interrupts a chance, then just return;
314 1.26 cgd * don't run any other procs or panic below,
315 1.26 cgd * in case this is the idle process and already asleep.
316 1.26 cgd */
317 1.42 cgd s = splhigh();
318 1.26 cgd splx(safepri);
319 1.26 cgd splx(s);
320 1.26 cgd return (0);
321 1.26 cgd }
322 1.42 cgd
323 1.42 cgd #ifdef KTRACE
324 1.42 cgd if (KTRPOINT(p, KTR_CSW))
325 1.42 cgd ktrcsw(p->p_tracep, 1, 0);
326 1.42 cgd #endif
327 1.42 cgd s = splhigh();
328 1.42 cgd
329 1.26 cgd #ifdef DIAGNOSTIC
330 1.26 cgd if (ident == NULL || p->p_stat != SRUN || p->p_back)
331 1.26 cgd panic("tsleep");
332 1.26 cgd #endif
333 1.26 cgd p->p_wchan = ident;
334 1.26 cgd p->p_wmesg = wmesg;
335 1.26 cgd p->p_slptime = 0;
336 1.26 cgd p->p_priority = priority & PRIMASK;
337 1.26 cgd qp = &slpque[LOOKUP(ident)];
338 1.26 cgd if (qp->sq_head == 0)
339 1.26 cgd qp->sq_head = p;
340 1.26 cgd else
341 1.26 cgd *qp->sq_tailp = p;
342 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
343 1.26 cgd if (timo)
344 1.26 cgd timeout(endtsleep, (void *)p, timo);
345 1.26 cgd /*
346 1.26 cgd * We put ourselves on the sleep queue and start our timeout
347 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
348 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
349 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
350 1.26 cgd * without resuming us, thus we must be ready for sleep
351 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
352 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
353 1.26 cgd */
354 1.26 cgd if (catch) {
355 1.26 cgd p->p_flag |= P_SINTR;
356 1.34 christos if ((sig = CURSIG(p)) != 0) {
357 1.26 cgd if (p->p_wchan)
358 1.26 cgd unsleep(p);
359 1.26 cgd p->p_stat = SRUN;
360 1.26 cgd goto resume;
361 1.26 cgd }
362 1.26 cgd if (p->p_wchan == 0) {
363 1.26 cgd catch = 0;
364 1.26 cgd goto resume;
365 1.26 cgd }
366 1.26 cgd } else
367 1.26 cgd sig = 0;
368 1.26 cgd p->p_stat = SSLEEP;
369 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
370 1.26 cgd mi_switch();
371 1.26 cgd #ifdef DDB
372 1.26 cgd /* handy breakpoint location after process "wakes" */
373 1.26 cgd asm(".globl bpendtsleep ; bpendtsleep:");
374 1.26 cgd #endif
375 1.26 cgd resume:
376 1.26 cgd curpriority = p->p_usrpri;
377 1.26 cgd splx(s);
378 1.26 cgd p->p_flag &= ~P_SINTR;
379 1.26 cgd if (p->p_flag & P_TIMEOUT) {
380 1.26 cgd p->p_flag &= ~P_TIMEOUT;
381 1.26 cgd if (sig == 0) {
382 1.26 cgd #ifdef KTRACE
383 1.26 cgd if (KTRPOINT(p, KTR_CSW))
384 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
385 1.26 cgd #endif
386 1.26 cgd return (EWOULDBLOCK);
387 1.26 cgd }
388 1.26 cgd } else if (timo)
389 1.26 cgd untimeout(endtsleep, (void *)p);
390 1.34 christos if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
391 1.26 cgd #ifdef KTRACE
392 1.26 cgd if (KTRPOINT(p, KTR_CSW))
393 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
394 1.26 cgd #endif
395 1.26 cgd if (p->p_sigacts->ps_sigintr & sigmask(sig))
396 1.26 cgd return (EINTR);
397 1.26 cgd return (ERESTART);
398 1.26 cgd }
399 1.26 cgd #ifdef KTRACE
400 1.26 cgd if (KTRPOINT(p, KTR_CSW))
401 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
402 1.26 cgd #endif
403 1.26 cgd return (0);
404 1.26 cgd }
405 1.26 cgd
406 1.26 cgd /*
407 1.26 cgd * Implement timeout for tsleep.
408 1.26 cgd * If process hasn't been awakened (wchan non-zero),
409 1.26 cgd * set timeout flag and undo the sleep. If proc
410 1.26 cgd * is stopped, just unsleep so it will remain stopped.
411 1.26 cgd */
412 1.26 cgd void
413 1.26 cgd endtsleep(arg)
414 1.26 cgd void *arg;
415 1.26 cgd {
416 1.26 cgd register struct proc *p;
417 1.26 cgd int s;
418 1.26 cgd
419 1.26 cgd p = (struct proc *)arg;
420 1.26 cgd s = splhigh();
421 1.26 cgd if (p->p_wchan) {
422 1.26 cgd if (p->p_stat == SSLEEP)
423 1.26 cgd setrunnable(p);
424 1.26 cgd else
425 1.26 cgd unsleep(p);
426 1.26 cgd p->p_flag |= P_TIMEOUT;
427 1.26 cgd }
428 1.26 cgd splx(s);
429 1.26 cgd }
430 1.26 cgd
431 1.26 cgd /*
432 1.26 cgd * Short-term, non-interruptable sleep.
433 1.26 cgd */
434 1.26 cgd void
435 1.26 cgd sleep(ident, priority)
436 1.26 cgd void *ident;
437 1.26 cgd int priority;
438 1.26 cgd {
439 1.26 cgd register struct proc *p = curproc;
440 1.26 cgd register struct slpque *qp;
441 1.26 cgd register s;
442 1.26 cgd extern int cold;
443 1.26 cgd
444 1.26 cgd #ifdef DIAGNOSTIC
445 1.26 cgd if (priority > PZERO) {
446 1.41 christos printf("sleep called with priority %d > PZERO, wchan: %p\n",
447 1.26 cgd priority, ident);
448 1.26 cgd panic("old sleep");
449 1.26 cgd }
450 1.26 cgd #endif
451 1.26 cgd s = splhigh();
452 1.26 cgd if (cold || panicstr) {
453 1.26 cgd /*
454 1.26 cgd * After a panic, or during autoconfiguration,
455 1.26 cgd * just give interrupts a chance, then just return;
456 1.26 cgd * don't run any other procs or panic below,
457 1.26 cgd * in case this is the idle process and already asleep.
458 1.26 cgd */
459 1.26 cgd splx(safepri);
460 1.26 cgd splx(s);
461 1.26 cgd return;
462 1.26 cgd }
463 1.26 cgd #ifdef DIAGNOSTIC
464 1.26 cgd if (ident == NULL || p->p_stat != SRUN || p->p_back)
465 1.26 cgd panic("sleep");
466 1.26 cgd #endif
467 1.26 cgd p->p_wchan = ident;
468 1.26 cgd p->p_wmesg = NULL;
469 1.26 cgd p->p_slptime = 0;
470 1.26 cgd p->p_priority = priority;
471 1.26 cgd qp = &slpque[LOOKUP(ident)];
472 1.26 cgd if (qp->sq_head == 0)
473 1.26 cgd qp->sq_head = p;
474 1.26 cgd else
475 1.26 cgd *qp->sq_tailp = p;
476 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
477 1.26 cgd p->p_stat = SSLEEP;
478 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
479 1.26 cgd #ifdef KTRACE
480 1.26 cgd if (KTRPOINT(p, KTR_CSW))
481 1.26 cgd ktrcsw(p->p_tracep, 1, 0);
482 1.26 cgd #endif
483 1.26 cgd mi_switch();
484 1.26 cgd #ifdef DDB
485 1.26 cgd /* handy breakpoint location after process "wakes" */
486 1.26 cgd asm(".globl bpendsleep ; bpendsleep:");
487 1.26 cgd #endif
488 1.26 cgd #ifdef KTRACE
489 1.26 cgd if (KTRPOINT(p, KTR_CSW))
490 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
491 1.26 cgd #endif
492 1.26 cgd curpriority = p->p_usrpri;
493 1.26 cgd splx(s);
494 1.26 cgd }
495 1.26 cgd
496 1.26 cgd /*
497 1.26 cgd * Remove a process from its wait queue
498 1.26 cgd */
499 1.26 cgd void
500 1.26 cgd unsleep(p)
501 1.26 cgd register struct proc *p;
502 1.26 cgd {
503 1.26 cgd register struct slpque *qp;
504 1.26 cgd register struct proc **hp;
505 1.26 cgd int s;
506 1.26 cgd
507 1.26 cgd s = splhigh();
508 1.26 cgd if (p->p_wchan) {
509 1.26 cgd hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
510 1.26 cgd while (*hp != p)
511 1.26 cgd hp = &(*hp)->p_forw;
512 1.26 cgd *hp = p->p_forw;
513 1.26 cgd if (qp->sq_tailp == &p->p_forw)
514 1.26 cgd qp->sq_tailp = hp;
515 1.26 cgd p->p_wchan = 0;
516 1.26 cgd }
517 1.26 cgd splx(s);
518 1.26 cgd }
519 1.26 cgd
520 1.26 cgd /*
521 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
522 1.26 cgd */
523 1.26 cgd void
524 1.26 cgd wakeup(ident)
525 1.26 cgd register void *ident;
526 1.26 cgd {
527 1.26 cgd register struct slpque *qp;
528 1.26 cgd register struct proc *p, **q;
529 1.26 cgd int s;
530 1.26 cgd
531 1.26 cgd s = splhigh();
532 1.26 cgd qp = &slpque[LOOKUP(ident)];
533 1.26 cgd restart:
534 1.34 christos for (q = &qp->sq_head; (p = *q) != NULL; ) {
535 1.26 cgd #ifdef DIAGNOSTIC
536 1.34 christos if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
537 1.26 cgd panic("wakeup");
538 1.26 cgd #endif
539 1.26 cgd if (p->p_wchan == ident) {
540 1.26 cgd p->p_wchan = 0;
541 1.26 cgd *q = p->p_forw;
542 1.26 cgd if (qp->sq_tailp == &p->p_forw)
543 1.26 cgd qp->sq_tailp = q;
544 1.26 cgd if (p->p_stat == SSLEEP) {
545 1.26 cgd /* OPTIMIZED EXPANSION OF setrunnable(p); */
546 1.26 cgd if (p->p_slptime > 1)
547 1.26 cgd updatepri(p);
548 1.26 cgd p->p_slptime = 0;
549 1.26 cgd p->p_stat = SRUN;
550 1.26 cgd if (p->p_flag & P_INMEM)
551 1.26 cgd setrunqueue(p);
552 1.26 cgd /*
553 1.26 cgd * Since curpriority is a user priority,
554 1.26 cgd * p->p_priority is always better than
555 1.26 cgd * curpriority.
556 1.26 cgd */
557 1.26 cgd if ((p->p_flag & P_INMEM) == 0)
558 1.26 cgd wakeup((caddr_t)&proc0);
559 1.26 cgd else
560 1.26 cgd need_resched();
561 1.26 cgd /* END INLINE EXPANSION */
562 1.26 cgd goto restart;
563 1.26 cgd }
564 1.26 cgd } else
565 1.26 cgd q = &p->p_forw;
566 1.26 cgd }
567 1.26 cgd splx(s);
568 1.26 cgd }
569 1.26 cgd
570 1.26 cgd /*
571 1.26 cgd * The machine independent parts of mi_switch().
572 1.26 cgd * Must be called at splstatclock() or higher.
573 1.26 cgd */
574 1.26 cgd void
575 1.26 cgd mi_switch()
576 1.26 cgd {
577 1.26 cgd register struct proc *p = curproc; /* XXX */
578 1.26 cgd register struct rlimit *rlim;
579 1.26 cgd register long s, u;
580 1.26 cgd struct timeval tv;
581 1.26 cgd
582 1.26 cgd /*
583 1.26 cgd * Compute the amount of time during which the current
584 1.26 cgd * process was running, and add that to its total so far.
585 1.26 cgd */
586 1.26 cgd microtime(&tv);
587 1.26 cgd u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
588 1.26 cgd s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
589 1.26 cgd if (u < 0) {
590 1.26 cgd u += 1000000;
591 1.26 cgd s--;
592 1.26 cgd } else if (u >= 1000000) {
593 1.26 cgd u -= 1000000;
594 1.26 cgd s++;
595 1.26 cgd }
596 1.26 cgd p->p_rtime.tv_usec = u;
597 1.26 cgd p->p_rtime.tv_sec = s;
598 1.26 cgd
599 1.26 cgd /*
600 1.26 cgd * Check if the process exceeds its cpu resource allocation.
601 1.26 cgd * If over max, kill it. In any case, if it has run for more
602 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
603 1.26 cgd */
604 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
605 1.26 cgd if (s >= rlim->rlim_cur) {
606 1.26 cgd if (s >= rlim->rlim_max)
607 1.26 cgd psignal(p, SIGKILL);
608 1.26 cgd else {
609 1.26 cgd psignal(p, SIGXCPU);
610 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
611 1.26 cgd rlim->rlim_cur += 5;
612 1.26 cgd }
613 1.26 cgd }
614 1.38 explorer if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
615 1.39 ws p->p_nice = autoniceval + NZERO;
616 1.26 cgd resetpriority(p);
617 1.26 cgd }
618 1.26 cgd
619 1.26 cgd /*
620 1.26 cgd * Pick a new current process and record its start time.
621 1.26 cgd */
622 1.47 mrg #if defined(UVM)
623 1.47 mrg uvmexp.swtch++;
624 1.47 mrg #else
625 1.26 cgd cnt.v_swtch++;
626 1.47 mrg #endif
627 1.26 cgd cpu_switch(p);
628 1.26 cgd microtime(&runtime);
629 1.26 cgd }
630 1.26 cgd
631 1.26 cgd /*
632 1.26 cgd * Initialize the (doubly-linked) run queues
633 1.26 cgd * to be empty.
634 1.26 cgd */
635 1.26 cgd void
636 1.26 cgd rqinit()
637 1.26 cgd {
638 1.26 cgd register int i;
639 1.26 cgd
640 1.26 cgd for (i = 0; i < NQS; i++)
641 1.26 cgd qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
642 1.26 cgd }
643 1.26 cgd
644 1.26 cgd /*
645 1.26 cgd * Change process state to be runnable,
646 1.26 cgd * placing it on the run queue if it is in memory,
647 1.26 cgd * and awakening the swapper if it isn't in memory.
648 1.26 cgd */
649 1.26 cgd void
650 1.26 cgd setrunnable(p)
651 1.26 cgd register struct proc *p;
652 1.26 cgd {
653 1.26 cgd register int s;
654 1.26 cgd
655 1.26 cgd s = splhigh();
656 1.26 cgd switch (p->p_stat) {
657 1.26 cgd case 0:
658 1.26 cgd case SRUN:
659 1.26 cgd case SZOMB:
660 1.26 cgd default:
661 1.26 cgd panic("setrunnable");
662 1.26 cgd case SSTOP:
663 1.33 mycroft /*
664 1.33 mycroft * If we're being traced (possibly because someone attached us
665 1.33 mycroft * while we were stopped), check for a signal from the debugger.
666 1.33 mycroft */
667 1.33 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
668 1.33 mycroft p->p_siglist |= sigmask(p->p_xstat);
669 1.26 cgd case SSLEEP:
670 1.26 cgd unsleep(p); /* e.g. when sending signals */
671 1.26 cgd break;
672 1.26 cgd
673 1.26 cgd case SIDL:
674 1.26 cgd break;
675 1.26 cgd }
676 1.26 cgd p->p_stat = SRUN;
677 1.26 cgd if (p->p_flag & P_INMEM)
678 1.26 cgd setrunqueue(p);
679 1.26 cgd splx(s);
680 1.26 cgd if (p->p_slptime > 1)
681 1.26 cgd updatepri(p);
682 1.26 cgd p->p_slptime = 0;
683 1.26 cgd if ((p->p_flag & P_INMEM) == 0)
684 1.26 cgd wakeup((caddr_t)&proc0);
685 1.26 cgd else if (p->p_priority < curpriority)
686 1.26 cgd need_resched();
687 1.26 cgd }
688 1.26 cgd
689 1.26 cgd /*
690 1.26 cgd * Compute the priority of a process when running in user mode.
691 1.26 cgd * Arrange to reschedule if the resulting priority is better
692 1.26 cgd * than that of the current process.
693 1.26 cgd */
694 1.26 cgd void
695 1.26 cgd resetpriority(p)
696 1.26 cgd register struct proc *p;
697 1.26 cgd {
698 1.26 cgd register unsigned int newpriority;
699 1.26 cgd
700 1.39 ws newpriority = PUSER + p->p_estcpu / 4 + 2 * (p->p_nice - NZERO);
701 1.26 cgd newpriority = min(newpriority, MAXPRI);
702 1.26 cgd p->p_usrpri = newpriority;
703 1.26 cgd if (newpriority < curpriority)
704 1.26 cgd need_resched();
705 1.26 cgd }
706