kern_synch.c revision 1.56 1 1.56 ross /* $NetBSD: kern_synch.c,v 1.56 1999/02/28 18:14:57 ross Exp $ */
2 1.26 cgd
3 1.26 cgd /*-
4 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
5 1.26 cgd * The Regents of the University of California. All rights reserved.
6 1.26 cgd * (c) UNIX System Laboratories, Inc.
7 1.26 cgd * All or some portions of this file are derived from material licensed
8 1.26 cgd * to the University of California by American Telephone and Telegraph
9 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 1.26 cgd * the permission of UNIX System Laboratories, Inc.
11 1.26 cgd *
12 1.26 cgd * Redistribution and use in source and binary forms, with or without
13 1.26 cgd * modification, are permitted provided that the following conditions
14 1.26 cgd * are met:
15 1.26 cgd * 1. Redistributions of source code must retain the above copyright
16 1.26 cgd * notice, this list of conditions and the following disclaimer.
17 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.26 cgd * notice, this list of conditions and the following disclaimer in the
19 1.26 cgd * documentation and/or other materials provided with the distribution.
20 1.26 cgd * 3. All advertising materials mentioning features or use of this software
21 1.26 cgd * must display the following acknowledgement:
22 1.26 cgd * This product includes software developed by the University of
23 1.26 cgd * California, Berkeley and its contributors.
24 1.26 cgd * 4. Neither the name of the University nor the names of its contributors
25 1.26 cgd * may be used to endorse or promote products derived from this software
26 1.26 cgd * without specific prior written permission.
27 1.26 cgd *
28 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.26 cgd * SUCH DAMAGE.
39 1.26 cgd *
40 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
41 1.26 cgd */
42 1.48 mrg
43 1.52 jonathan #include "opt_ddb.h"
44 1.51 thorpej #include "opt_ktrace.h"
45 1.48 mrg #include "opt_uvm.h"
46 1.26 cgd
47 1.26 cgd #include <sys/param.h>
48 1.26 cgd #include <sys/systm.h>
49 1.26 cgd #include <sys/proc.h>
50 1.26 cgd #include <sys/kernel.h>
51 1.26 cgd #include <sys/buf.h>
52 1.26 cgd #include <sys/signalvar.h>
53 1.26 cgd #include <sys/resourcevar.h>
54 1.34 christos #include <vm/vm.h>
55 1.55 ross #include <sys/sched.h>
56 1.47 mrg
57 1.47 mrg #if defined(UVM)
58 1.47 mrg #include <uvm/uvm_extern.h>
59 1.47 mrg #endif
60 1.47 mrg
61 1.26 cgd #ifdef KTRACE
62 1.26 cgd #include <sys/ktrace.h>
63 1.26 cgd #endif
64 1.26 cgd
65 1.55 ross #define NICE_WEIGHT 2 /* priorities per nice level */
66 1.55 ross #define PPQ (128 / NQS) /* priorities per queue */
67 1.55 ross
68 1.55 ross #define ESTCPULIM(e) min((e), NICE_WEIGHT * PRIO_MAX - PPQ)
69 1.55 ross
70 1.26 cgd #include <machine/cpu.h>
71 1.34 christos
72 1.26 cgd u_char curpriority; /* usrpri of curproc */
73 1.26 cgd int lbolt; /* once a second sleep address */
74 1.26 cgd
75 1.34 christos void roundrobin __P((void *));
76 1.34 christos void schedcpu __P((void *));
77 1.34 christos void updatepri __P((struct proc *));
78 1.34 christos void endtsleep __P((void *));
79 1.34 christos
80 1.26 cgd /*
81 1.26 cgd * Force switch among equal priority processes every 100ms.
82 1.26 cgd */
83 1.26 cgd /* ARGSUSED */
84 1.26 cgd void
85 1.26 cgd roundrobin(arg)
86 1.26 cgd void *arg;
87 1.26 cgd {
88 1.26 cgd
89 1.26 cgd need_resched();
90 1.26 cgd timeout(roundrobin, NULL, hz / 10);
91 1.26 cgd }
92 1.26 cgd
93 1.26 cgd /*
94 1.26 cgd * Constants for digital decay and forget:
95 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
96 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
97 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
98 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
99 1.26 cgd *
100 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
101 1.26 cgd *
102 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
103 1.26 cgd * That is, the system wants to compute a value of decay such
104 1.26 cgd * that the following for loop:
105 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
106 1.26 cgd * p_estcpu *= decay;
107 1.26 cgd * will compute
108 1.26 cgd * p_estcpu *= 0.1;
109 1.26 cgd * for all values of loadavg:
110 1.26 cgd *
111 1.26 cgd * Mathematically this loop can be expressed by saying:
112 1.26 cgd * decay ** (5 * loadavg) ~= .1
113 1.26 cgd *
114 1.26 cgd * The system computes decay as:
115 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
116 1.26 cgd *
117 1.26 cgd * We wish to prove that the system's computation of decay
118 1.26 cgd * will always fulfill the equation:
119 1.26 cgd * decay ** (5 * loadavg) ~= .1
120 1.26 cgd *
121 1.26 cgd * If we compute b as:
122 1.26 cgd * b = 2 * loadavg
123 1.26 cgd * then
124 1.26 cgd * decay = b / (b + 1)
125 1.26 cgd *
126 1.26 cgd * We now need to prove two things:
127 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
128 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
129 1.26 cgd *
130 1.26 cgd * Facts:
131 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
132 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
133 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
134 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
135 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
136 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
137 1.26 cgd * ln(.1) =~ -2.30
138 1.26 cgd *
139 1.26 cgd * Proof of (1):
140 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
141 1.26 cgd * solving for factor,
142 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
143 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
144 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
145 1.26 cgd *
146 1.26 cgd * Proof of (2):
147 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
148 1.26 cgd * solving for power,
149 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
150 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
151 1.26 cgd *
152 1.26 cgd * Actual power values for the implemented algorithm are as follows:
153 1.26 cgd * loadav: 1 2 3 4
154 1.26 cgd * power: 5.68 10.32 14.94 19.55
155 1.26 cgd */
156 1.26 cgd
157 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
158 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
159 1.26 cgd #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
160 1.26 cgd
161 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
162 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
163 1.26 cgd
164 1.26 cgd /*
165 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
166 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
167 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
168 1.26 cgd *
169 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
170 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
171 1.26 cgd *
172 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
173 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
174 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
175 1.26 cgd */
176 1.26 cgd #define CCPU_SHIFT 11
177 1.26 cgd
178 1.26 cgd /*
179 1.26 cgd * Recompute process priorities, every hz ticks.
180 1.26 cgd */
181 1.26 cgd /* ARGSUSED */
182 1.26 cgd void
183 1.26 cgd schedcpu(arg)
184 1.26 cgd void *arg;
185 1.26 cgd {
186 1.26 cgd register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
187 1.26 cgd register struct proc *p;
188 1.26 cgd register int s;
189 1.26 cgd register unsigned int newcpu;
190 1.26 cgd
191 1.26 cgd wakeup((caddr_t)&lbolt);
192 1.27 mycroft for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
193 1.26 cgd /*
194 1.26 cgd * Increment time in/out of memory and sleep time
195 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
196 1.26 cgd * (remember them?) overflow takes 45 days.
197 1.26 cgd */
198 1.26 cgd p->p_swtime++;
199 1.26 cgd if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
200 1.26 cgd p->p_slptime++;
201 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
202 1.26 cgd /*
203 1.26 cgd * If the process has slept the entire second,
204 1.26 cgd * stop recalculating its priority until it wakes up.
205 1.26 cgd */
206 1.26 cgd if (p->p_slptime > 1)
207 1.26 cgd continue;
208 1.26 cgd s = splstatclock(); /* prevent state changes */
209 1.26 cgd /*
210 1.26 cgd * p_pctcpu is only for ps.
211 1.26 cgd */
212 1.55 ross KASSERT(profhz);
213 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
214 1.55 ross p->p_pctcpu += (profhz == 100)?
215 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
216 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
217 1.55 ross << (FSHIFT - CCPU_SHIFT)) / profhz;
218 1.26 cgd #else
219 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
220 1.55 ross (p->p_cpticks * FSCALE / profhz)) >> FSHIFT;
221 1.26 cgd #endif
222 1.26 cgd p->p_cpticks = 0;
223 1.55 ross newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
224 1.55 ross p->p_estcpu = newcpu;
225 1.26 cgd resetpriority(p);
226 1.26 cgd if (p->p_priority >= PUSER) {
227 1.26 cgd if ((p != curproc) &&
228 1.26 cgd p->p_stat == SRUN &&
229 1.26 cgd (p->p_flag & P_INMEM) &&
230 1.26 cgd (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
231 1.43 cgd remrunqueue(p);
232 1.26 cgd p->p_priority = p->p_usrpri;
233 1.26 cgd setrunqueue(p);
234 1.26 cgd } else
235 1.26 cgd p->p_priority = p->p_usrpri;
236 1.26 cgd }
237 1.26 cgd splx(s);
238 1.26 cgd }
239 1.47 mrg #if defined(UVM)
240 1.47 mrg uvm_meter();
241 1.47 mrg #else
242 1.26 cgd vmmeter();
243 1.47 mrg #endif
244 1.26 cgd timeout(schedcpu, (void *)0, hz);
245 1.26 cgd }
246 1.26 cgd
247 1.26 cgd /*
248 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
249 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
250 1.26 cgd * least six times the loadfactor will decay p_estcpu to zero.
251 1.26 cgd */
252 1.26 cgd void
253 1.26 cgd updatepri(p)
254 1.26 cgd register struct proc *p;
255 1.26 cgd {
256 1.26 cgd register unsigned int newcpu = p->p_estcpu;
257 1.26 cgd register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
258 1.26 cgd
259 1.26 cgd if (p->p_slptime > 5 * loadfac)
260 1.26 cgd p->p_estcpu = 0;
261 1.26 cgd else {
262 1.26 cgd p->p_slptime--; /* the first time was done in schedcpu */
263 1.26 cgd while (newcpu && --p->p_slptime)
264 1.26 cgd newcpu = (int) decay_cpu(loadfac, newcpu);
265 1.55 ross p->p_estcpu = newcpu;
266 1.26 cgd }
267 1.26 cgd resetpriority(p);
268 1.26 cgd }
269 1.26 cgd
270 1.26 cgd /*
271 1.26 cgd * We're only looking at 7 bits of the address; everything is
272 1.26 cgd * aligned to 4, lots of things are aligned to greater powers
273 1.26 cgd * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
274 1.26 cgd */
275 1.26 cgd #define TABLESIZE 128
276 1.30 cgd #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
277 1.26 cgd struct slpque {
278 1.26 cgd struct proc *sq_head;
279 1.26 cgd struct proc **sq_tailp;
280 1.26 cgd } slpque[TABLESIZE];
281 1.26 cgd
282 1.26 cgd /*
283 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
284 1.26 cgd * lower the priority briefly to allow interrupts, then return.
285 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
286 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
287 1.26 cgd * This priority will typically be 0, or the lowest priority
288 1.26 cgd * that is safe for use on the interrupt stack; it can be made
289 1.26 cgd * higher to block network software interrupts after panics.
290 1.26 cgd */
291 1.26 cgd int safepri;
292 1.26 cgd
293 1.26 cgd /*
294 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
295 1.26 cgd * performed on the specified identifier. The process will then be made
296 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
297 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
298 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
299 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
300 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
301 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
302 1.26 cgd * call should be interrupted by the signal (return EINTR).
303 1.26 cgd */
304 1.26 cgd int
305 1.26 cgd tsleep(ident, priority, wmesg, timo)
306 1.26 cgd void *ident;
307 1.26 cgd int priority, timo;
308 1.45 mycroft const char *wmesg;
309 1.26 cgd {
310 1.26 cgd register struct proc *p = curproc;
311 1.26 cgd register struct slpque *qp;
312 1.49 kleink register int s;
313 1.26 cgd int sig, catch = priority & PCATCH;
314 1.26 cgd extern int cold;
315 1.26 cgd void endtsleep __P((void *));
316 1.26 cgd
317 1.26 cgd if (cold || panicstr) {
318 1.26 cgd /*
319 1.26 cgd * After a panic, or during autoconfiguration,
320 1.26 cgd * just give interrupts a chance, then just return;
321 1.26 cgd * don't run any other procs or panic below,
322 1.26 cgd * in case this is the idle process and already asleep.
323 1.26 cgd */
324 1.42 cgd s = splhigh();
325 1.26 cgd splx(safepri);
326 1.26 cgd splx(s);
327 1.26 cgd return (0);
328 1.26 cgd }
329 1.42 cgd
330 1.42 cgd #ifdef KTRACE
331 1.42 cgd if (KTRPOINT(p, KTR_CSW))
332 1.42 cgd ktrcsw(p->p_tracep, 1, 0);
333 1.42 cgd #endif
334 1.42 cgd s = splhigh();
335 1.42 cgd
336 1.26 cgd #ifdef DIAGNOSTIC
337 1.26 cgd if (ident == NULL || p->p_stat != SRUN || p->p_back)
338 1.26 cgd panic("tsleep");
339 1.26 cgd #endif
340 1.26 cgd p->p_wchan = ident;
341 1.26 cgd p->p_wmesg = wmesg;
342 1.26 cgd p->p_slptime = 0;
343 1.26 cgd p->p_priority = priority & PRIMASK;
344 1.26 cgd qp = &slpque[LOOKUP(ident)];
345 1.26 cgd if (qp->sq_head == 0)
346 1.26 cgd qp->sq_head = p;
347 1.26 cgd else
348 1.26 cgd *qp->sq_tailp = p;
349 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
350 1.26 cgd if (timo)
351 1.26 cgd timeout(endtsleep, (void *)p, timo);
352 1.26 cgd /*
353 1.26 cgd * We put ourselves on the sleep queue and start our timeout
354 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
355 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
356 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
357 1.26 cgd * without resuming us, thus we must be ready for sleep
358 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
359 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
360 1.26 cgd */
361 1.26 cgd if (catch) {
362 1.26 cgd p->p_flag |= P_SINTR;
363 1.34 christos if ((sig = CURSIG(p)) != 0) {
364 1.26 cgd if (p->p_wchan)
365 1.26 cgd unsleep(p);
366 1.26 cgd p->p_stat = SRUN;
367 1.26 cgd goto resume;
368 1.26 cgd }
369 1.26 cgd if (p->p_wchan == 0) {
370 1.26 cgd catch = 0;
371 1.26 cgd goto resume;
372 1.26 cgd }
373 1.26 cgd } else
374 1.26 cgd sig = 0;
375 1.26 cgd p->p_stat = SSLEEP;
376 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
377 1.26 cgd mi_switch();
378 1.26 cgd #ifdef DDB
379 1.26 cgd /* handy breakpoint location after process "wakes" */
380 1.26 cgd asm(".globl bpendtsleep ; bpendtsleep:");
381 1.26 cgd #endif
382 1.26 cgd resume:
383 1.26 cgd curpriority = p->p_usrpri;
384 1.26 cgd splx(s);
385 1.26 cgd p->p_flag &= ~P_SINTR;
386 1.26 cgd if (p->p_flag & P_TIMEOUT) {
387 1.26 cgd p->p_flag &= ~P_TIMEOUT;
388 1.26 cgd if (sig == 0) {
389 1.26 cgd #ifdef KTRACE
390 1.26 cgd if (KTRPOINT(p, KTR_CSW))
391 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
392 1.26 cgd #endif
393 1.26 cgd return (EWOULDBLOCK);
394 1.26 cgd }
395 1.26 cgd } else if (timo)
396 1.26 cgd untimeout(endtsleep, (void *)p);
397 1.34 christos if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
398 1.26 cgd #ifdef KTRACE
399 1.26 cgd if (KTRPOINT(p, KTR_CSW))
400 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
401 1.26 cgd #endif
402 1.53 mycroft if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
403 1.26 cgd return (EINTR);
404 1.26 cgd return (ERESTART);
405 1.26 cgd }
406 1.26 cgd #ifdef KTRACE
407 1.26 cgd if (KTRPOINT(p, KTR_CSW))
408 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
409 1.26 cgd #endif
410 1.26 cgd return (0);
411 1.26 cgd }
412 1.26 cgd
413 1.26 cgd /*
414 1.26 cgd * Implement timeout for tsleep.
415 1.26 cgd * If process hasn't been awakened (wchan non-zero),
416 1.26 cgd * set timeout flag and undo the sleep. If proc
417 1.26 cgd * is stopped, just unsleep so it will remain stopped.
418 1.26 cgd */
419 1.26 cgd void
420 1.26 cgd endtsleep(arg)
421 1.26 cgd void *arg;
422 1.26 cgd {
423 1.26 cgd register struct proc *p;
424 1.26 cgd int s;
425 1.26 cgd
426 1.26 cgd p = (struct proc *)arg;
427 1.26 cgd s = splhigh();
428 1.26 cgd if (p->p_wchan) {
429 1.26 cgd if (p->p_stat == SSLEEP)
430 1.26 cgd setrunnable(p);
431 1.26 cgd else
432 1.26 cgd unsleep(p);
433 1.26 cgd p->p_flag |= P_TIMEOUT;
434 1.26 cgd }
435 1.26 cgd splx(s);
436 1.26 cgd }
437 1.26 cgd
438 1.26 cgd /*
439 1.26 cgd * Short-term, non-interruptable sleep.
440 1.26 cgd */
441 1.26 cgd void
442 1.26 cgd sleep(ident, priority)
443 1.26 cgd void *ident;
444 1.26 cgd int priority;
445 1.26 cgd {
446 1.26 cgd register struct proc *p = curproc;
447 1.26 cgd register struct slpque *qp;
448 1.49 kleink register int s;
449 1.26 cgd extern int cold;
450 1.26 cgd
451 1.26 cgd #ifdef DIAGNOSTIC
452 1.26 cgd if (priority > PZERO) {
453 1.41 christos printf("sleep called with priority %d > PZERO, wchan: %p\n",
454 1.26 cgd priority, ident);
455 1.26 cgd panic("old sleep");
456 1.26 cgd }
457 1.26 cgd #endif
458 1.26 cgd s = splhigh();
459 1.26 cgd if (cold || panicstr) {
460 1.26 cgd /*
461 1.26 cgd * After a panic, or during autoconfiguration,
462 1.26 cgd * just give interrupts a chance, then just return;
463 1.26 cgd * don't run any other procs or panic below,
464 1.26 cgd * in case this is the idle process and already asleep.
465 1.26 cgd */
466 1.26 cgd splx(safepri);
467 1.26 cgd splx(s);
468 1.26 cgd return;
469 1.26 cgd }
470 1.26 cgd #ifdef DIAGNOSTIC
471 1.26 cgd if (ident == NULL || p->p_stat != SRUN || p->p_back)
472 1.26 cgd panic("sleep");
473 1.26 cgd #endif
474 1.26 cgd p->p_wchan = ident;
475 1.26 cgd p->p_wmesg = NULL;
476 1.26 cgd p->p_slptime = 0;
477 1.26 cgd p->p_priority = priority;
478 1.26 cgd qp = &slpque[LOOKUP(ident)];
479 1.26 cgd if (qp->sq_head == 0)
480 1.26 cgd qp->sq_head = p;
481 1.26 cgd else
482 1.26 cgd *qp->sq_tailp = p;
483 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
484 1.26 cgd p->p_stat = SSLEEP;
485 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
486 1.26 cgd #ifdef KTRACE
487 1.26 cgd if (KTRPOINT(p, KTR_CSW))
488 1.26 cgd ktrcsw(p->p_tracep, 1, 0);
489 1.26 cgd #endif
490 1.26 cgd mi_switch();
491 1.26 cgd #ifdef DDB
492 1.26 cgd /* handy breakpoint location after process "wakes" */
493 1.26 cgd asm(".globl bpendsleep ; bpendsleep:");
494 1.26 cgd #endif
495 1.26 cgd #ifdef KTRACE
496 1.26 cgd if (KTRPOINT(p, KTR_CSW))
497 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
498 1.26 cgd #endif
499 1.26 cgd curpriority = p->p_usrpri;
500 1.26 cgd splx(s);
501 1.26 cgd }
502 1.26 cgd
503 1.26 cgd /*
504 1.26 cgd * Remove a process from its wait queue
505 1.26 cgd */
506 1.26 cgd void
507 1.26 cgd unsleep(p)
508 1.26 cgd register struct proc *p;
509 1.26 cgd {
510 1.26 cgd register struct slpque *qp;
511 1.26 cgd register struct proc **hp;
512 1.26 cgd int s;
513 1.26 cgd
514 1.26 cgd s = splhigh();
515 1.26 cgd if (p->p_wchan) {
516 1.26 cgd hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
517 1.26 cgd while (*hp != p)
518 1.26 cgd hp = &(*hp)->p_forw;
519 1.26 cgd *hp = p->p_forw;
520 1.26 cgd if (qp->sq_tailp == &p->p_forw)
521 1.26 cgd qp->sq_tailp = hp;
522 1.26 cgd p->p_wchan = 0;
523 1.26 cgd }
524 1.26 cgd splx(s);
525 1.26 cgd }
526 1.26 cgd
527 1.26 cgd /*
528 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
529 1.26 cgd */
530 1.26 cgd void
531 1.26 cgd wakeup(ident)
532 1.26 cgd register void *ident;
533 1.26 cgd {
534 1.26 cgd register struct slpque *qp;
535 1.26 cgd register struct proc *p, **q;
536 1.26 cgd int s;
537 1.26 cgd
538 1.26 cgd s = splhigh();
539 1.26 cgd qp = &slpque[LOOKUP(ident)];
540 1.26 cgd restart:
541 1.34 christos for (q = &qp->sq_head; (p = *q) != NULL; ) {
542 1.26 cgd #ifdef DIAGNOSTIC
543 1.34 christos if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
544 1.26 cgd panic("wakeup");
545 1.26 cgd #endif
546 1.26 cgd if (p->p_wchan == ident) {
547 1.26 cgd p->p_wchan = 0;
548 1.26 cgd *q = p->p_forw;
549 1.26 cgd if (qp->sq_tailp == &p->p_forw)
550 1.26 cgd qp->sq_tailp = q;
551 1.26 cgd if (p->p_stat == SSLEEP) {
552 1.26 cgd /* OPTIMIZED EXPANSION OF setrunnable(p); */
553 1.26 cgd if (p->p_slptime > 1)
554 1.26 cgd updatepri(p);
555 1.26 cgd p->p_slptime = 0;
556 1.26 cgd p->p_stat = SRUN;
557 1.26 cgd if (p->p_flag & P_INMEM)
558 1.26 cgd setrunqueue(p);
559 1.26 cgd /*
560 1.26 cgd * Since curpriority is a user priority,
561 1.26 cgd * p->p_priority is always better than
562 1.26 cgd * curpriority.
563 1.26 cgd */
564 1.26 cgd if ((p->p_flag & P_INMEM) == 0)
565 1.26 cgd wakeup((caddr_t)&proc0);
566 1.26 cgd else
567 1.26 cgd need_resched();
568 1.26 cgd /* END INLINE EXPANSION */
569 1.26 cgd goto restart;
570 1.26 cgd }
571 1.26 cgd } else
572 1.26 cgd q = &p->p_forw;
573 1.26 cgd }
574 1.26 cgd splx(s);
575 1.26 cgd }
576 1.26 cgd
577 1.26 cgd /*
578 1.26 cgd * The machine independent parts of mi_switch().
579 1.26 cgd * Must be called at splstatclock() or higher.
580 1.26 cgd */
581 1.26 cgd void
582 1.26 cgd mi_switch()
583 1.26 cgd {
584 1.26 cgd register struct proc *p = curproc; /* XXX */
585 1.26 cgd register struct rlimit *rlim;
586 1.26 cgd register long s, u;
587 1.26 cgd struct timeval tv;
588 1.26 cgd
589 1.50 fvdl #ifdef DEBUG
590 1.54 chs if (p->p_simple_locks) {
591 1.54 chs printf("p->p_simple_locks %d\n", p->p_simple_locks);
592 1.54 chs #ifdef LOCKDEBUG
593 1.54 chs simple_lock_dump();
594 1.54 chs #endif
595 1.50 fvdl panic("sleep: holding simple lock");
596 1.54 chs }
597 1.50 fvdl #endif
598 1.26 cgd /*
599 1.26 cgd * Compute the amount of time during which the current
600 1.26 cgd * process was running, and add that to its total so far.
601 1.26 cgd */
602 1.26 cgd microtime(&tv);
603 1.26 cgd u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
604 1.26 cgd s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
605 1.26 cgd if (u < 0) {
606 1.26 cgd u += 1000000;
607 1.26 cgd s--;
608 1.26 cgd } else if (u >= 1000000) {
609 1.26 cgd u -= 1000000;
610 1.26 cgd s++;
611 1.26 cgd }
612 1.26 cgd p->p_rtime.tv_usec = u;
613 1.26 cgd p->p_rtime.tv_sec = s;
614 1.26 cgd
615 1.26 cgd /*
616 1.26 cgd * Check if the process exceeds its cpu resource allocation.
617 1.26 cgd * If over max, kill it. In any case, if it has run for more
618 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
619 1.26 cgd */
620 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
621 1.26 cgd if (s >= rlim->rlim_cur) {
622 1.26 cgd if (s >= rlim->rlim_max)
623 1.26 cgd psignal(p, SIGKILL);
624 1.26 cgd else {
625 1.26 cgd psignal(p, SIGXCPU);
626 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
627 1.26 cgd rlim->rlim_cur += 5;
628 1.26 cgd }
629 1.26 cgd }
630 1.38 explorer if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
631 1.39 ws p->p_nice = autoniceval + NZERO;
632 1.26 cgd resetpriority(p);
633 1.26 cgd }
634 1.26 cgd
635 1.26 cgd /*
636 1.26 cgd * Pick a new current process and record its start time.
637 1.26 cgd */
638 1.47 mrg #if defined(UVM)
639 1.47 mrg uvmexp.swtch++;
640 1.47 mrg #else
641 1.26 cgd cnt.v_swtch++;
642 1.47 mrg #endif
643 1.26 cgd cpu_switch(p);
644 1.26 cgd microtime(&runtime);
645 1.26 cgd }
646 1.26 cgd
647 1.26 cgd /*
648 1.26 cgd * Initialize the (doubly-linked) run queues
649 1.26 cgd * to be empty.
650 1.26 cgd */
651 1.26 cgd void
652 1.26 cgd rqinit()
653 1.26 cgd {
654 1.26 cgd register int i;
655 1.26 cgd
656 1.26 cgd for (i = 0; i < NQS; i++)
657 1.26 cgd qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
658 1.26 cgd }
659 1.26 cgd
660 1.26 cgd /*
661 1.26 cgd * Change process state to be runnable,
662 1.26 cgd * placing it on the run queue if it is in memory,
663 1.26 cgd * and awakening the swapper if it isn't in memory.
664 1.26 cgd */
665 1.26 cgd void
666 1.26 cgd setrunnable(p)
667 1.26 cgd register struct proc *p;
668 1.26 cgd {
669 1.26 cgd register int s;
670 1.26 cgd
671 1.26 cgd s = splhigh();
672 1.26 cgd switch (p->p_stat) {
673 1.26 cgd case 0:
674 1.26 cgd case SRUN:
675 1.26 cgd case SZOMB:
676 1.26 cgd default:
677 1.26 cgd panic("setrunnable");
678 1.26 cgd case SSTOP:
679 1.33 mycroft /*
680 1.33 mycroft * If we're being traced (possibly because someone attached us
681 1.33 mycroft * while we were stopped), check for a signal from the debugger.
682 1.33 mycroft */
683 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
684 1.53 mycroft sigaddset(&p->p_siglist, p->p_xstat);
685 1.53 mycroft p->p_sigcheck = 1;
686 1.53 mycroft }
687 1.26 cgd case SSLEEP:
688 1.26 cgd unsleep(p); /* e.g. when sending signals */
689 1.26 cgd break;
690 1.26 cgd
691 1.26 cgd case SIDL:
692 1.26 cgd break;
693 1.26 cgd }
694 1.26 cgd p->p_stat = SRUN;
695 1.26 cgd if (p->p_flag & P_INMEM)
696 1.26 cgd setrunqueue(p);
697 1.26 cgd splx(s);
698 1.26 cgd if (p->p_slptime > 1)
699 1.26 cgd updatepri(p);
700 1.26 cgd p->p_slptime = 0;
701 1.26 cgd if ((p->p_flag & P_INMEM) == 0)
702 1.26 cgd wakeup((caddr_t)&proc0);
703 1.26 cgd else if (p->p_priority < curpriority)
704 1.26 cgd need_resched();
705 1.26 cgd }
706 1.26 cgd
707 1.26 cgd /*
708 1.26 cgd * Compute the priority of a process when running in user mode.
709 1.26 cgd * Arrange to reschedule if the resulting priority is better
710 1.26 cgd * than that of the current process.
711 1.26 cgd */
712 1.26 cgd void
713 1.26 cgd resetpriority(p)
714 1.26 cgd register struct proc *p;
715 1.26 cgd {
716 1.26 cgd register unsigned int newpriority;
717 1.26 cgd
718 1.55 ross newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
719 1.26 cgd newpriority = min(newpriority, MAXPRI);
720 1.26 cgd p->p_usrpri = newpriority;
721 1.26 cgd if (newpriority < curpriority)
722 1.26 cgd need_resched();
723 1.55 ross }
724 1.55 ross
725 1.55 ross /*
726 1.56 ross * We adjust the priority of the current process. The priority of a process
727 1.56 ross * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
728 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
729 1.56 ross * will compute a different value each time p_estcpu increases. This can
730 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
731 1.56 ross * queue will not change. The cpu usage estimator ramps up quite quickly
732 1.56 ross * when the process is running (linearly), and decays away exponentially, at
733 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
734 1.56 ross * principal is that the system will 90% forget that the process used a lot
735 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
736 1.56 ross * processes which haven't run much recently, and to round-robin among other
737 1.56 ross * processes.
738 1.55 ross */
739 1.55 ross
740 1.55 ross void
741 1.56 ross schedclock(p)
742 1.55 ross struct proc *p;
743 1.55 ross {
744 1.55 ross p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
745 1.55 ross resetpriority(p);
746 1.55 ross if (p->p_priority >= PUSER)
747 1.55 ross p->p_priority = p->p_usrpri;
748 1.26 cgd }
749