kern_synch.c revision 1.57.2.2 1 1.57.2.2 he /* $NetBSD: kern_synch.c,v 1.57.2.2 2000/04/30 12:08:06 he Exp $ */
2 1.57.2.2 he
3 1.57.2.2 he /*-
4 1.57.2.2 he * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 1.57.2.2 he * All rights reserved.
6 1.57.2.2 he *
7 1.57.2.2 he * This code is derived from software contributed to The NetBSD Foundation
8 1.57.2.2 he * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.57.2.2 he * NASA Ames Research Center.
10 1.57.2.2 he *
11 1.57.2.2 he * Redistribution and use in source and binary forms, with or without
12 1.57.2.2 he * modification, are permitted provided that the following conditions
13 1.57.2.2 he * are met:
14 1.57.2.2 he * 1. Redistributions of source code must retain the above copyright
15 1.57.2.2 he * notice, this list of conditions and the following disclaimer.
16 1.57.2.2 he * 2. Redistributions in binary form must reproduce the above copyright
17 1.57.2.2 he * notice, this list of conditions and the following disclaimer in the
18 1.57.2.2 he * documentation and/or other materials provided with the distribution.
19 1.57.2.2 he * 3. All advertising materials mentioning features or use of this software
20 1.57.2.2 he * must display the following acknowledgement:
21 1.57.2.2 he * This product includes software developed by the NetBSD
22 1.57.2.2 he * Foundation, Inc. and its contributors.
23 1.57.2.2 he * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.57.2.2 he * contributors may be used to endorse or promote products derived
25 1.57.2.2 he * from this software without specific prior written permission.
26 1.57.2.2 he *
27 1.57.2.2 he * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.57.2.2 he * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.57.2.2 he * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.57.2.2 he * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.57.2.2 he * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.57.2.2 he * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.57.2.2 he * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.57.2.2 he * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.57.2.2 he * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.57.2.2 he * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.57.2.2 he * POSSIBILITY OF SUCH DAMAGE.
38 1.57.2.2 he */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.26 cgd * 3. All advertising materials mentioning features or use of this software
58 1.26 cgd * must display the following acknowledgement:
59 1.26 cgd * This product includes software developed by the University of
60 1.26 cgd * California, Berkeley and its contributors.
61 1.26 cgd * 4. Neither the name of the University nor the names of its contributors
62 1.26 cgd * may be used to endorse or promote products derived from this software
63 1.26 cgd * without specific prior written permission.
64 1.26 cgd *
65 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 1.26 cgd * SUCH DAMAGE.
76 1.26 cgd *
77 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 1.26 cgd */
79 1.48 mrg
80 1.52 jonathan #include "opt_ddb.h"
81 1.51 thorpej #include "opt_ktrace.h"
82 1.26 cgd
83 1.26 cgd #include <sys/param.h>
84 1.26 cgd #include <sys/systm.h>
85 1.26 cgd #include <sys/proc.h>
86 1.26 cgd #include <sys/kernel.h>
87 1.26 cgd #include <sys/buf.h>
88 1.26 cgd #include <sys/signalvar.h>
89 1.26 cgd #include <sys/resourcevar.h>
90 1.34 christos #include <vm/vm.h>
91 1.55 ross #include <sys/sched.h>
92 1.47 mrg
93 1.47 mrg #include <uvm/uvm_extern.h>
94 1.47 mrg
95 1.26 cgd #ifdef KTRACE
96 1.26 cgd #include <sys/ktrace.h>
97 1.26 cgd #endif
98 1.26 cgd
99 1.55 ross #define NICE_WEIGHT 2 /* priorities per nice level */
100 1.55 ross #define PPQ (128 / NQS) /* priorities per queue */
101 1.55 ross
102 1.55 ross #define ESTCPULIM(e) min((e), NICE_WEIGHT * PRIO_MAX - PPQ)
103 1.55 ross
104 1.26 cgd #include <machine/cpu.h>
105 1.34 christos
106 1.26 cgd u_char curpriority; /* usrpri of curproc */
107 1.26 cgd int lbolt; /* once a second sleep address */
108 1.26 cgd
109 1.34 christos void roundrobin __P((void *));
110 1.34 christos void schedcpu __P((void *));
111 1.34 christos void updatepri __P((struct proc *));
112 1.34 christos void endtsleep __P((void *));
113 1.34 christos
114 1.26 cgd /*
115 1.26 cgd * Force switch among equal priority processes every 100ms.
116 1.26 cgd */
117 1.26 cgd /* ARGSUSED */
118 1.26 cgd void
119 1.26 cgd roundrobin(arg)
120 1.26 cgd void *arg;
121 1.26 cgd {
122 1.57.2.2 he int s;
123 1.26 cgd
124 1.57.2.2 he if (curproc != NULL) {
125 1.57.2.2 he s = splstatclock();
126 1.57.2.2 he if (curproc->p_schedflags & PSCHED_SEENRR) {
127 1.57.2.2 he /*
128 1.57.2.2 he * The process has already been through a roundrobin
129 1.57.2.2 he * without switching and may be hogging the CPU.
130 1.57.2.2 he * Indicate that the process should yield.
131 1.57.2.2 he */
132 1.57.2.2 he curproc->p_schedflags |= PSCHED_SHOULDYIELD;
133 1.57.2.2 he } else
134 1.57.2.2 he curproc->p_schedflags |= PSCHED_SEENRR;
135 1.57.2.2 he splx(s);
136 1.57.2.2 he }
137 1.26 cgd need_resched();
138 1.26 cgd timeout(roundrobin, NULL, hz / 10);
139 1.26 cgd }
140 1.26 cgd
141 1.26 cgd /*
142 1.26 cgd * Constants for digital decay and forget:
143 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
144 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
145 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
146 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
147 1.26 cgd *
148 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
149 1.26 cgd *
150 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
151 1.26 cgd * That is, the system wants to compute a value of decay such
152 1.26 cgd * that the following for loop:
153 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
154 1.26 cgd * p_estcpu *= decay;
155 1.26 cgd * will compute
156 1.26 cgd * p_estcpu *= 0.1;
157 1.26 cgd * for all values of loadavg:
158 1.26 cgd *
159 1.26 cgd * Mathematically this loop can be expressed by saying:
160 1.26 cgd * decay ** (5 * loadavg) ~= .1
161 1.26 cgd *
162 1.26 cgd * The system computes decay as:
163 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
164 1.26 cgd *
165 1.26 cgd * We wish to prove that the system's computation of decay
166 1.26 cgd * will always fulfill the equation:
167 1.26 cgd * decay ** (5 * loadavg) ~= .1
168 1.26 cgd *
169 1.26 cgd * If we compute b as:
170 1.26 cgd * b = 2 * loadavg
171 1.26 cgd * then
172 1.26 cgd * decay = b / (b + 1)
173 1.26 cgd *
174 1.26 cgd * We now need to prove two things:
175 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
176 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
177 1.26 cgd *
178 1.26 cgd * Facts:
179 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
180 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
181 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
182 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
183 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
184 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
185 1.26 cgd * ln(.1) =~ -2.30
186 1.26 cgd *
187 1.26 cgd * Proof of (1):
188 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
189 1.26 cgd * solving for factor,
190 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
191 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
192 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
193 1.26 cgd *
194 1.26 cgd * Proof of (2):
195 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
196 1.26 cgd * solving for power,
197 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
198 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
199 1.26 cgd *
200 1.26 cgd * Actual power values for the implemented algorithm are as follows:
201 1.26 cgd * loadav: 1 2 3 4
202 1.26 cgd * power: 5.68 10.32 14.94 19.55
203 1.26 cgd */
204 1.26 cgd
205 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
206 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
207 1.26 cgd #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
208 1.26 cgd
209 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
210 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
211 1.26 cgd
212 1.26 cgd /*
213 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
214 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
215 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
216 1.26 cgd *
217 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
218 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
219 1.26 cgd *
220 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
221 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
222 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
223 1.26 cgd */
224 1.26 cgd #define CCPU_SHIFT 11
225 1.26 cgd
226 1.26 cgd /*
227 1.26 cgd * Recompute process priorities, every hz ticks.
228 1.26 cgd */
229 1.26 cgd /* ARGSUSED */
230 1.26 cgd void
231 1.26 cgd schedcpu(arg)
232 1.26 cgd void *arg;
233 1.26 cgd {
234 1.26 cgd register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
235 1.26 cgd register struct proc *p;
236 1.26 cgd register int s;
237 1.26 cgd register unsigned int newcpu;
238 1.57.2.1 cgd int clkhz;
239 1.26 cgd
240 1.26 cgd wakeup((caddr_t)&lbolt);
241 1.27 mycroft for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
242 1.26 cgd /*
243 1.26 cgd * Increment time in/out of memory and sleep time
244 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
245 1.26 cgd * (remember them?) overflow takes 45 days.
246 1.26 cgd */
247 1.26 cgd p->p_swtime++;
248 1.26 cgd if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
249 1.26 cgd p->p_slptime++;
250 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
251 1.26 cgd /*
252 1.26 cgd * If the process has slept the entire second,
253 1.26 cgd * stop recalculating its priority until it wakes up.
254 1.26 cgd */
255 1.26 cgd if (p->p_slptime > 1)
256 1.26 cgd continue;
257 1.26 cgd s = splstatclock(); /* prevent state changes */
258 1.26 cgd /*
259 1.26 cgd * p_pctcpu is only for ps.
260 1.26 cgd */
261 1.57.2.1 cgd clkhz = stathz != 0 ? stathz : hz;
262 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
263 1.57.2.1 cgd p->p_pctcpu += (clkhz == 100)?
264 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
265 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
266 1.57.2.1 cgd << (FSHIFT - CCPU_SHIFT)) / clkhz;
267 1.26 cgd #else
268 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
269 1.57.2.1 cgd (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
270 1.26 cgd #endif
271 1.26 cgd p->p_cpticks = 0;
272 1.55 ross newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
273 1.55 ross p->p_estcpu = newcpu;
274 1.26 cgd resetpriority(p);
275 1.26 cgd if (p->p_priority >= PUSER) {
276 1.26 cgd if ((p != curproc) &&
277 1.26 cgd p->p_stat == SRUN &&
278 1.26 cgd (p->p_flag & P_INMEM) &&
279 1.26 cgd (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
280 1.43 cgd remrunqueue(p);
281 1.26 cgd p->p_priority = p->p_usrpri;
282 1.26 cgd setrunqueue(p);
283 1.26 cgd } else
284 1.26 cgd p->p_priority = p->p_usrpri;
285 1.26 cgd }
286 1.26 cgd splx(s);
287 1.26 cgd }
288 1.47 mrg uvm_meter();
289 1.26 cgd timeout(schedcpu, (void *)0, hz);
290 1.26 cgd }
291 1.26 cgd
292 1.26 cgd /*
293 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
294 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
295 1.26 cgd * least six times the loadfactor will decay p_estcpu to zero.
296 1.26 cgd */
297 1.26 cgd void
298 1.26 cgd updatepri(p)
299 1.26 cgd register struct proc *p;
300 1.26 cgd {
301 1.26 cgd register unsigned int newcpu = p->p_estcpu;
302 1.26 cgd register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
303 1.26 cgd
304 1.26 cgd if (p->p_slptime > 5 * loadfac)
305 1.26 cgd p->p_estcpu = 0;
306 1.26 cgd else {
307 1.26 cgd p->p_slptime--; /* the first time was done in schedcpu */
308 1.26 cgd while (newcpu && --p->p_slptime)
309 1.26 cgd newcpu = (int) decay_cpu(loadfac, newcpu);
310 1.55 ross p->p_estcpu = newcpu;
311 1.26 cgd }
312 1.26 cgd resetpriority(p);
313 1.26 cgd }
314 1.26 cgd
315 1.26 cgd /*
316 1.26 cgd * We're only looking at 7 bits of the address; everything is
317 1.26 cgd * aligned to 4, lots of things are aligned to greater powers
318 1.26 cgd * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
319 1.26 cgd */
320 1.26 cgd #define TABLESIZE 128
321 1.30 cgd #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
322 1.26 cgd struct slpque {
323 1.26 cgd struct proc *sq_head;
324 1.26 cgd struct proc **sq_tailp;
325 1.26 cgd } slpque[TABLESIZE];
326 1.26 cgd
327 1.26 cgd /*
328 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
329 1.26 cgd * lower the priority briefly to allow interrupts, then return.
330 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
331 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
332 1.26 cgd * This priority will typically be 0, or the lowest priority
333 1.26 cgd * that is safe for use on the interrupt stack; it can be made
334 1.26 cgd * higher to block network software interrupts after panics.
335 1.26 cgd */
336 1.26 cgd int safepri;
337 1.26 cgd
338 1.26 cgd /*
339 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
340 1.26 cgd * performed on the specified identifier. The process will then be made
341 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
342 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
343 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
344 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
345 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
346 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
347 1.26 cgd * call should be interrupted by the signal (return EINTR).
348 1.26 cgd */
349 1.26 cgd int
350 1.26 cgd tsleep(ident, priority, wmesg, timo)
351 1.26 cgd void *ident;
352 1.26 cgd int priority, timo;
353 1.45 mycroft const char *wmesg;
354 1.26 cgd {
355 1.26 cgd register struct proc *p = curproc;
356 1.26 cgd register struct slpque *qp;
357 1.49 kleink register int s;
358 1.26 cgd int sig, catch = priority & PCATCH;
359 1.26 cgd extern int cold;
360 1.26 cgd void endtsleep __P((void *));
361 1.26 cgd
362 1.26 cgd if (cold || panicstr) {
363 1.26 cgd /*
364 1.26 cgd * After a panic, or during autoconfiguration,
365 1.26 cgd * just give interrupts a chance, then just return;
366 1.26 cgd * don't run any other procs or panic below,
367 1.26 cgd * in case this is the idle process and already asleep.
368 1.26 cgd */
369 1.42 cgd s = splhigh();
370 1.26 cgd splx(safepri);
371 1.26 cgd splx(s);
372 1.26 cgd return (0);
373 1.26 cgd }
374 1.42 cgd
375 1.42 cgd #ifdef KTRACE
376 1.42 cgd if (KTRPOINT(p, KTR_CSW))
377 1.42 cgd ktrcsw(p->p_tracep, 1, 0);
378 1.42 cgd #endif
379 1.42 cgd s = splhigh();
380 1.42 cgd
381 1.26 cgd #ifdef DIAGNOSTIC
382 1.26 cgd if (ident == NULL || p->p_stat != SRUN || p->p_back)
383 1.26 cgd panic("tsleep");
384 1.26 cgd #endif
385 1.26 cgd p->p_wchan = ident;
386 1.26 cgd p->p_wmesg = wmesg;
387 1.26 cgd p->p_slptime = 0;
388 1.26 cgd p->p_priority = priority & PRIMASK;
389 1.26 cgd qp = &slpque[LOOKUP(ident)];
390 1.26 cgd if (qp->sq_head == 0)
391 1.26 cgd qp->sq_head = p;
392 1.26 cgd else
393 1.26 cgd *qp->sq_tailp = p;
394 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
395 1.26 cgd if (timo)
396 1.26 cgd timeout(endtsleep, (void *)p, timo);
397 1.26 cgd /*
398 1.26 cgd * We put ourselves on the sleep queue and start our timeout
399 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
400 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
401 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
402 1.26 cgd * without resuming us, thus we must be ready for sleep
403 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
404 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
405 1.26 cgd */
406 1.26 cgd if (catch) {
407 1.26 cgd p->p_flag |= P_SINTR;
408 1.34 christos if ((sig = CURSIG(p)) != 0) {
409 1.26 cgd if (p->p_wchan)
410 1.26 cgd unsleep(p);
411 1.26 cgd p->p_stat = SRUN;
412 1.26 cgd goto resume;
413 1.26 cgd }
414 1.26 cgd if (p->p_wchan == 0) {
415 1.26 cgd catch = 0;
416 1.26 cgd goto resume;
417 1.26 cgd }
418 1.26 cgd } else
419 1.26 cgd sig = 0;
420 1.26 cgd p->p_stat = SSLEEP;
421 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
422 1.26 cgd mi_switch();
423 1.26 cgd #ifdef DDB
424 1.26 cgd /* handy breakpoint location after process "wakes" */
425 1.26 cgd asm(".globl bpendtsleep ; bpendtsleep:");
426 1.26 cgd #endif
427 1.26 cgd resume:
428 1.26 cgd curpriority = p->p_usrpri;
429 1.26 cgd splx(s);
430 1.26 cgd p->p_flag &= ~P_SINTR;
431 1.26 cgd if (p->p_flag & P_TIMEOUT) {
432 1.26 cgd p->p_flag &= ~P_TIMEOUT;
433 1.26 cgd if (sig == 0) {
434 1.26 cgd #ifdef KTRACE
435 1.26 cgd if (KTRPOINT(p, KTR_CSW))
436 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
437 1.26 cgd #endif
438 1.26 cgd return (EWOULDBLOCK);
439 1.26 cgd }
440 1.26 cgd } else if (timo)
441 1.26 cgd untimeout(endtsleep, (void *)p);
442 1.34 christos if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
443 1.26 cgd #ifdef KTRACE
444 1.26 cgd if (KTRPOINT(p, KTR_CSW))
445 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
446 1.26 cgd #endif
447 1.53 mycroft if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
448 1.26 cgd return (EINTR);
449 1.26 cgd return (ERESTART);
450 1.26 cgd }
451 1.26 cgd #ifdef KTRACE
452 1.26 cgd if (KTRPOINT(p, KTR_CSW))
453 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
454 1.26 cgd #endif
455 1.26 cgd return (0);
456 1.26 cgd }
457 1.26 cgd
458 1.26 cgd /*
459 1.26 cgd * Implement timeout for tsleep.
460 1.26 cgd * If process hasn't been awakened (wchan non-zero),
461 1.26 cgd * set timeout flag and undo the sleep. If proc
462 1.26 cgd * is stopped, just unsleep so it will remain stopped.
463 1.26 cgd */
464 1.26 cgd void
465 1.26 cgd endtsleep(arg)
466 1.26 cgd void *arg;
467 1.26 cgd {
468 1.26 cgd register struct proc *p;
469 1.26 cgd int s;
470 1.26 cgd
471 1.26 cgd p = (struct proc *)arg;
472 1.26 cgd s = splhigh();
473 1.26 cgd if (p->p_wchan) {
474 1.26 cgd if (p->p_stat == SSLEEP)
475 1.26 cgd setrunnable(p);
476 1.26 cgd else
477 1.26 cgd unsleep(p);
478 1.26 cgd p->p_flag |= P_TIMEOUT;
479 1.26 cgd }
480 1.26 cgd splx(s);
481 1.26 cgd }
482 1.26 cgd
483 1.26 cgd /*
484 1.26 cgd * Short-term, non-interruptable sleep.
485 1.26 cgd */
486 1.26 cgd void
487 1.26 cgd sleep(ident, priority)
488 1.26 cgd void *ident;
489 1.26 cgd int priority;
490 1.26 cgd {
491 1.26 cgd register struct proc *p = curproc;
492 1.26 cgd register struct slpque *qp;
493 1.49 kleink register int s;
494 1.26 cgd extern int cold;
495 1.26 cgd
496 1.26 cgd #ifdef DIAGNOSTIC
497 1.26 cgd if (priority > PZERO) {
498 1.41 christos printf("sleep called with priority %d > PZERO, wchan: %p\n",
499 1.26 cgd priority, ident);
500 1.26 cgd panic("old sleep");
501 1.26 cgd }
502 1.26 cgd #endif
503 1.26 cgd s = splhigh();
504 1.26 cgd if (cold || panicstr) {
505 1.26 cgd /*
506 1.26 cgd * After a panic, or during autoconfiguration,
507 1.26 cgd * just give interrupts a chance, then just return;
508 1.26 cgd * don't run any other procs or panic below,
509 1.26 cgd * in case this is the idle process and already asleep.
510 1.26 cgd */
511 1.26 cgd splx(safepri);
512 1.26 cgd splx(s);
513 1.26 cgd return;
514 1.26 cgd }
515 1.26 cgd #ifdef DIAGNOSTIC
516 1.26 cgd if (ident == NULL || p->p_stat != SRUN || p->p_back)
517 1.26 cgd panic("sleep");
518 1.26 cgd #endif
519 1.26 cgd p->p_wchan = ident;
520 1.26 cgd p->p_wmesg = NULL;
521 1.26 cgd p->p_slptime = 0;
522 1.26 cgd p->p_priority = priority;
523 1.26 cgd qp = &slpque[LOOKUP(ident)];
524 1.26 cgd if (qp->sq_head == 0)
525 1.26 cgd qp->sq_head = p;
526 1.26 cgd else
527 1.26 cgd *qp->sq_tailp = p;
528 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
529 1.26 cgd p->p_stat = SSLEEP;
530 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
531 1.26 cgd #ifdef KTRACE
532 1.26 cgd if (KTRPOINT(p, KTR_CSW))
533 1.26 cgd ktrcsw(p->p_tracep, 1, 0);
534 1.26 cgd #endif
535 1.26 cgd mi_switch();
536 1.26 cgd #ifdef DDB
537 1.26 cgd /* handy breakpoint location after process "wakes" */
538 1.26 cgd asm(".globl bpendsleep ; bpendsleep:");
539 1.26 cgd #endif
540 1.26 cgd #ifdef KTRACE
541 1.26 cgd if (KTRPOINT(p, KTR_CSW))
542 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
543 1.26 cgd #endif
544 1.26 cgd curpriority = p->p_usrpri;
545 1.26 cgd splx(s);
546 1.26 cgd }
547 1.26 cgd
548 1.26 cgd /*
549 1.26 cgd * Remove a process from its wait queue
550 1.26 cgd */
551 1.26 cgd void
552 1.26 cgd unsleep(p)
553 1.26 cgd register struct proc *p;
554 1.26 cgd {
555 1.26 cgd register struct slpque *qp;
556 1.26 cgd register struct proc **hp;
557 1.26 cgd int s;
558 1.26 cgd
559 1.26 cgd s = splhigh();
560 1.26 cgd if (p->p_wchan) {
561 1.26 cgd hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
562 1.26 cgd while (*hp != p)
563 1.26 cgd hp = &(*hp)->p_forw;
564 1.26 cgd *hp = p->p_forw;
565 1.26 cgd if (qp->sq_tailp == &p->p_forw)
566 1.26 cgd qp->sq_tailp = hp;
567 1.26 cgd p->p_wchan = 0;
568 1.26 cgd }
569 1.26 cgd splx(s);
570 1.26 cgd }
571 1.26 cgd
572 1.26 cgd /*
573 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
574 1.26 cgd */
575 1.26 cgd void
576 1.26 cgd wakeup(ident)
577 1.26 cgd register void *ident;
578 1.26 cgd {
579 1.26 cgd register struct slpque *qp;
580 1.26 cgd register struct proc *p, **q;
581 1.26 cgd int s;
582 1.26 cgd
583 1.26 cgd s = splhigh();
584 1.26 cgd qp = &slpque[LOOKUP(ident)];
585 1.26 cgd restart:
586 1.34 christos for (q = &qp->sq_head; (p = *q) != NULL; ) {
587 1.26 cgd #ifdef DIAGNOSTIC
588 1.34 christos if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
589 1.26 cgd panic("wakeup");
590 1.26 cgd #endif
591 1.26 cgd if (p->p_wchan == ident) {
592 1.26 cgd p->p_wchan = 0;
593 1.26 cgd *q = p->p_forw;
594 1.26 cgd if (qp->sq_tailp == &p->p_forw)
595 1.26 cgd qp->sq_tailp = q;
596 1.26 cgd if (p->p_stat == SSLEEP) {
597 1.26 cgd /* OPTIMIZED EXPANSION OF setrunnable(p); */
598 1.26 cgd if (p->p_slptime > 1)
599 1.26 cgd updatepri(p);
600 1.26 cgd p->p_slptime = 0;
601 1.26 cgd p->p_stat = SRUN;
602 1.26 cgd if (p->p_flag & P_INMEM)
603 1.26 cgd setrunqueue(p);
604 1.26 cgd /*
605 1.26 cgd * Since curpriority is a user priority,
606 1.26 cgd * p->p_priority is always better than
607 1.26 cgd * curpriority.
608 1.26 cgd */
609 1.26 cgd if ((p->p_flag & P_INMEM) == 0)
610 1.26 cgd wakeup((caddr_t)&proc0);
611 1.26 cgd else
612 1.26 cgd need_resched();
613 1.26 cgd /* END INLINE EXPANSION */
614 1.26 cgd goto restart;
615 1.26 cgd }
616 1.26 cgd } else
617 1.26 cgd q = &p->p_forw;
618 1.26 cgd }
619 1.26 cgd splx(s);
620 1.26 cgd }
621 1.26 cgd
622 1.26 cgd /*
623 1.57.2.2 he * General yield call. Puts the current process back on its run queue and
624 1.57.2.2 he * performs a voluntary context switch.
625 1.57.2.2 he */
626 1.57.2.2 he void
627 1.57.2.2 he yield()
628 1.57.2.2 he {
629 1.57.2.2 he struct proc *p = curproc;
630 1.57.2.2 he int s;
631 1.57.2.2 he
632 1.57.2.2 he p->p_priority = p->p_usrpri;
633 1.57.2.2 he s = splstatclock();
634 1.57.2.2 he setrunqueue(p);
635 1.57.2.2 he p->p_stats->p_ru.ru_nvcsw++;
636 1.57.2.2 he mi_switch();
637 1.57.2.2 he splx(s);
638 1.57.2.2 he }
639 1.57.2.2 he
640 1.57.2.2 he /*
641 1.57.2.2 he * General preemption call. Puts the current process back on its run queue
642 1.57.2.2 he * and performs an involuntary context switch. If a process is supplied,
643 1.57.2.2 he * we switch to that process. Otherwise, we use the normal process selection
644 1.57.2.2 he * criteria.
645 1.57.2.2 he */
646 1.57.2.2 he void
647 1.57.2.2 he preempt(newp)
648 1.57.2.2 he struct proc *newp;
649 1.57.2.2 he {
650 1.57.2.2 he struct proc *p = curproc;
651 1.57.2.2 he int s;
652 1.57.2.2 he
653 1.57.2.2 he /*
654 1.57.2.2 he * XXX Switching to a specific process is not supported yet.
655 1.57.2.2 he */
656 1.57.2.2 he if (newp != NULL)
657 1.57.2.2 he panic("preempt: cpu_preempt not yet implemented");
658 1.57.2.2 he
659 1.57.2.2 he p->p_priority = p->p_usrpri;
660 1.57.2.2 he s = splstatclock();
661 1.57.2.2 he setrunqueue(p);
662 1.57.2.2 he p->p_stats->p_ru.ru_nivcsw++;
663 1.57.2.2 he mi_switch();
664 1.57.2.2 he splx(s);
665 1.57.2.2 he }
666 1.57.2.2 he
667 1.57.2.2 he /*
668 1.26 cgd * The machine independent parts of mi_switch().
669 1.26 cgd * Must be called at splstatclock() or higher.
670 1.26 cgd */
671 1.26 cgd void
672 1.26 cgd mi_switch()
673 1.26 cgd {
674 1.26 cgd register struct proc *p = curproc; /* XXX */
675 1.26 cgd register struct rlimit *rlim;
676 1.26 cgd register long s, u;
677 1.26 cgd struct timeval tv;
678 1.26 cgd
679 1.50 fvdl #ifdef DEBUG
680 1.54 chs if (p->p_simple_locks) {
681 1.54 chs printf("p->p_simple_locks %d\n", p->p_simple_locks);
682 1.54 chs #ifdef LOCKDEBUG
683 1.54 chs simple_lock_dump();
684 1.54 chs #endif
685 1.50 fvdl panic("sleep: holding simple lock");
686 1.54 chs }
687 1.50 fvdl #endif
688 1.26 cgd /*
689 1.26 cgd * Compute the amount of time during which the current
690 1.26 cgd * process was running, and add that to its total so far.
691 1.26 cgd */
692 1.26 cgd microtime(&tv);
693 1.26 cgd u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
694 1.26 cgd s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
695 1.26 cgd if (u < 0) {
696 1.26 cgd u += 1000000;
697 1.26 cgd s--;
698 1.26 cgd } else if (u >= 1000000) {
699 1.26 cgd u -= 1000000;
700 1.26 cgd s++;
701 1.26 cgd }
702 1.26 cgd p->p_rtime.tv_usec = u;
703 1.26 cgd p->p_rtime.tv_sec = s;
704 1.26 cgd
705 1.26 cgd /*
706 1.26 cgd * Check if the process exceeds its cpu resource allocation.
707 1.26 cgd * If over max, kill it. In any case, if it has run for more
708 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
709 1.26 cgd */
710 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
711 1.26 cgd if (s >= rlim->rlim_cur) {
712 1.26 cgd if (s >= rlim->rlim_max)
713 1.26 cgd psignal(p, SIGKILL);
714 1.26 cgd else {
715 1.26 cgd psignal(p, SIGXCPU);
716 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
717 1.26 cgd rlim->rlim_cur += 5;
718 1.26 cgd }
719 1.26 cgd }
720 1.38 explorer if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
721 1.39 ws p->p_nice = autoniceval + NZERO;
722 1.26 cgd resetpriority(p);
723 1.26 cgd }
724 1.57.2.2 he
725 1.57.2.2 he /*
726 1.57.2.2 he * Process is about to yield the CPU; clear the appropriate
727 1.57.2.2 he * scheduling flags.
728 1.57.2.2 he */
729 1.57.2.2 he p->p_schedflags &= ~PSCHED_SWITCHCLEAR;
730 1.26 cgd
731 1.26 cgd /*
732 1.26 cgd * Pick a new current process and record its start time.
733 1.26 cgd */
734 1.47 mrg uvmexp.swtch++;
735 1.26 cgd cpu_switch(p);
736 1.26 cgd microtime(&runtime);
737 1.26 cgd }
738 1.26 cgd
739 1.26 cgd /*
740 1.26 cgd * Initialize the (doubly-linked) run queues
741 1.26 cgd * to be empty.
742 1.26 cgd */
743 1.26 cgd void
744 1.26 cgd rqinit()
745 1.26 cgd {
746 1.26 cgd register int i;
747 1.26 cgd
748 1.26 cgd for (i = 0; i < NQS; i++)
749 1.26 cgd qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
750 1.26 cgd }
751 1.26 cgd
752 1.26 cgd /*
753 1.26 cgd * Change process state to be runnable,
754 1.26 cgd * placing it on the run queue if it is in memory,
755 1.26 cgd * and awakening the swapper if it isn't in memory.
756 1.26 cgd */
757 1.26 cgd void
758 1.26 cgd setrunnable(p)
759 1.26 cgd register struct proc *p;
760 1.26 cgd {
761 1.26 cgd register int s;
762 1.26 cgd
763 1.26 cgd s = splhigh();
764 1.26 cgd switch (p->p_stat) {
765 1.26 cgd case 0:
766 1.26 cgd case SRUN:
767 1.26 cgd case SZOMB:
768 1.26 cgd default:
769 1.26 cgd panic("setrunnable");
770 1.26 cgd case SSTOP:
771 1.33 mycroft /*
772 1.33 mycroft * If we're being traced (possibly because someone attached us
773 1.33 mycroft * while we were stopped), check for a signal from the debugger.
774 1.33 mycroft */
775 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
776 1.53 mycroft sigaddset(&p->p_siglist, p->p_xstat);
777 1.53 mycroft p->p_sigcheck = 1;
778 1.53 mycroft }
779 1.26 cgd case SSLEEP:
780 1.26 cgd unsleep(p); /* e.g. when sending signals */
781 1.26 cgd break;
782 1.26 cgd
783 1.26 cgd case SIDL:
784 1.26 cgd break;
785 1.26 cgd }
786 1.26 cgd p->p_stat = SRUN;
787 1.26 cgd if (p->p_flag & P_INMEM)
788 1.26 cgd setrunqueue(p);
789 1.26 cgd splx(s);
790 1.26 cgd if (p->p_slptime > 1)
791 1.26 cgd updatepri(p);
792 1.26 cgd p->p_slptime = 0;
793 1.26 cgd if ((p->p_flag & P_INMEM) == 0)
794 1.26 cgd wakeup((caddr_t)&proc0);
795 1.26 cgd else if (p->p_priority < curpriority)
796 1.26 cgd need_resched();
797 1.26 cgd }
798 1.26 cgd
799 1.26 cgd /*
800 1.26 cgd * Compute the priority of a process when running in user mode.
801 1.26 cgd * Arrange to reschedule if the resulting priority is better
802 1.26 cgd * than that of the current process.
803 1.26 cgd */
804 1.26 cgd void
805 1.26 cgd resetpriority(p)
806 1.26 cgd register struct proc *p;
807 1.26 cgd {
808 1.26 cgd register unsigned int newpriority;
809 1.26 cgd
810 1.55 ross newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
811 1.26 cgd newpriority = min(newpriority, MAXPRI);
812 1.26 cgd p->p_usrpri = newpriority;
813 1.26 cgd if (newpriority < curpriority)
814 1.26 cgd need_resched();
815 1.55 ross }
816 1.55 ross
817 1.55 ross /*
818 1.56 ross * We adjust the priority of the current process. The priority of a process
819 1.56 ross * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
820 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
821 1.56 ross * will compute a different value each time p_estcpu increases. This can
822 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
823 1.56 ross * queue will not change. The cpu usage estimator ramps up quite quickly
824 1.56 ross * when the process is running (linearly), and decays away exponentially, at
825 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
826 1.56 ross * principal is that the system will 90% forget that the process used a lot
827 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
828 1.56 ross * processes which haven't run much recently, and to round-robin among other
829 1.56 ross * processes.
830 1.55 ross */
831 1.55 ross
832 1.55 ross void
833 1.56 ross schedclock(p)
834 1.55 ross struct proc *p;
835 1.55 ross {
836 1.55 ross p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
837 1.55 ross resetpriority(p);
838 1.55 ross if (p->p_priority >= PUSER)
839 1.55 ross p->p_priority = p->p_usrpri;
840 1.26 cgd }
841