kern_synch.c revision 1.57.2.3 1 1.57.2.3 he /* $NetBSD: kern_synch.c,v 1.57.2.3 2000/04/30 20:13:11 he Exp $ */
2 1.57.2.2 he
3 1.57.2.2 he /*-
4 1.57.2.2 he * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 1.57.2.2 he * All rights reserved.
6 1.57.2.2 he *
7 1.57.2.2 he * This code is derived from software contributed to The NetBSD Foundation
8 1.57.2.2 he * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.57.2.2 he * NASA Ames Research Center.
10 1.57.2.2 he *
11 1.57.2.2 he * Redistribution and use in source and binary forms, with or without
12 1.57.2.2 he * modification, are permitted provided that the following conditions
13 1.57.2.2 he * are met:
14 1.57.2.2 he * 1. Redistributions of source code must retain the above copyright
15 1.57.2.2 he * notice, this list of conditions and the following disclaimer.
16 1.57.2.2 he * 2. Redistributions in binary form must reproduce the above copyright
17 1.57.2.2 he * notice, this list of conditions and the following disclaimer in the
18 1.57.2.2 he * documentation and/or other materials provided with the distribution.
19 1.57.2.2 he * 3. All advertising materials mentioning features or use of this software
20 1.57.2.2 he * must display the following acknowledgement:
21 1.57.2.2 he * This product includes software developed by the NetBSD
22 1.57.2.2 he * Foundation, Inc. and its contributors.
23 1.57.2.2 he * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.57.2.2 he * contributors may be used to endorse or promote products derived
25 1.57.2.2 he * from this software without specific prior written permission.
26 1.57.2.2 he *
27 1.57.2.2 he * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.57.2.2 he * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.57.2.2 he * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.57.2.2 he * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.57.2.2 he * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.57.2.2 he * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.57.2.2 he * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.57.2.2 he * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.57.2.2 he * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.57.2.2 he * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.57.2.2 he * POSSIBILITY OF SUCH DAMAGE.
38 1.57.2.2 he */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.26 cgd * 3. All advertising materials mentioning features or use of this software
58 1.26 cgd * must display the following acknowledgement:
59 1.26 cgd * This product includes software developed by the University of
60 1.26 cgd * California, Berkeley and its contributors.
61 1.26 cgd * 4. Neither the name of the University nor the names of its contributors
62 1.26 cgd * may be used to endorse or promote products derived from this software
63 1.26 cgd * without specific prior written permission.
64 1.26 cgd *
65 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 1.26 cgd * SUCH DAMAGE.
76 1.26 cgd *
77 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 1.26 cgd */
79 1.48 mrg
80 1.52 jonathan #include "opt_ddb.h"
81 1.51 thorpej #include "opt_ktrace.h"
82 1.26 cgd
83 1.26 cgd #include <sys/param.h>
84 1.26 cgd #include <sys/systm.h>
85 1.26 cgd #include <sys/proc.h>
86 1.26 cgd #include <sys/kernel.h>
87 1.26 cgd #include <sys/buf.h>
88 1.26 cgd #include <sys/signalvar.h>
89 1.26 cgd #include <sys/resourcevar.h>
90 1.34 christos #include <vm/vm.h>
91 1.55 ross #include <sys/sched.h>
92 1.47 mrg
93 1.47 mrg #include <uvm/uvm_extern.h>
94 1.47 mrg
95 1.26 cgd #ifdef KTRACE
96 1.26 cgd #include <sys/ktrace.h>
97 1.26 cgd #endif
98 1.26 cgd
99 1.55 ross #define NICE_WEIGHT 2 /* priorities per nice level */
100 1.55 ross #define PPQ (128 / NQS) /* priorities per queue */
101 1.55 ross
102 1.55 ross #define ESTCPULIM(e) min((e), NICE_WEIGHT * PRIO_MAX - PPQ)
103 1.55 ross
104 1.26 cgd #include <machine/cpu.h>
105 1.34 christos
106 1.26 cgd u_char curpriority; /* usrpri of curproc */
107 1.26 cgd int lbolt; /* once a second sleep address */
108 1.57.2.3 he int schedflags; /* preemption needed? */
109 1.26 cgd
110 1.34 christos void roundrobin __P((void *));
111 1.34 christos void schedcpu __P((void *));
112 1.34 christos void updatepri __P((struct proc *));
113 1.34 christos void endtsleep __P((void *));
114 1.34 christos
115 1.26 cgd /*
116 1.26 cgd * Force switch among equal priority processes every 100ms.
117 1.26 cgd */
118 1.26 cgd /* ARGSUSED */
119 1.26 cgd void
120 1.26 cgd roundrobin(arg)
121 1.26 cgd void *arg;
122 1.26 cgd {
123 1.57.2.2 he int s;
124 1.26 cgd
125 1.57.2.2 he if (curproc != NULL) {
126 1.57.2.2 he s = splstatclock();
127 1.57.2.3 he if (schedflags & PSCHED_SEENRR) {
128 1.57.2.2 he /*
129 1.57.2.2 he * The process has already been through a roundrobin
130 1.57.2.2 he * without switching and may be hogging the CPU.
131 1.57.2.2 he * Indicate that the process should yield.
132 1.57.2.2 he */
133 1.57.2.3 he schedflags |= PSCHED_SHOULDYIELD;
134 1.57.2.2 he } else
135 1.57.2.3 he schedflags |= PSCHED_SEENRR;
136 1.57.2.2 he splx(s);
137 1.57.2.2 he }
138 1.26 cgd need_resched();
139 1.26 cgd timeout(roundrobin, NULL, hz / 10);
140 1.26 cgd }
141 1.26 cgd
142 1.26 cgd /*
143 1.26 cgd * Constants for digital decay and forget:
144 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
145 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
146 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
147 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
148 1.26 cgd *
149 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
150 1.26 cgd *
151 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
152 1.26 cgd * That is, the system wants to compute a value of decay such
153 1.26 cgd * that the following for loop:
154 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
155 1.26 cgd * p_estcpu *= decay;
156 1.26 cgd * will compute
157 1.26 cgd * p_estcpu *= 0.1;
158 1.26 cgd * for all values of loadavg:
159 1.26 cgd *
160 1.26 cgd * Mathematically this loop can be expressed by saying:
161 1.26 cgd * decay ** (5 * loadavg) ~= .1
162 1.26 cgd *
163 1.26 cgd * The system computes decay as:
164 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
165 1.26 cgd *
166 1.26 cgd * We wish to prove that the system's computation of decay
167 1.26 cgd * will always fulfill the equation:
168 1.26 cgd * decay ** (5 * loadavg) ~= .1
169 1.26 cgd *
170 1.26 cgd * If we compute b as:
171 1.26 cgd * b = 2 * loadavg
172 1.26 cgd * then
173 1.26 cgd * decay = b / (b + 1)
174 1.26 cgd *
175 1.26 cgd * We now need to prove two things:
176 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
177 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
178 1.26 cgd *
179 1.26 cgd * Facts:
180 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
181 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
182 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
183 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
184 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
185 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
186 1.26 cgd * ln(.1) =~ -2.30
187 1.26 cgd *
188 1.26 cgd * Proof of (1):
189 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
190 1.26 cgd * solving for factor,
191 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
192 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
193 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
194 1.26 cgd *
195 1.26 cgd * Proof of (2):
196 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
197 1.26 cgd * solving for power,
198 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
199 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
200 1.26 cgd *
201 1.26 cgd * Actual power values for the implemented algorithm are as follows:
202 1.26 cgd * loadav: 1 2 3 4
203 1.26 cgd * power: 5.68 10.32 14.94 19.55
204 1.26 cgd */
205 1.26 cgd
206 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
207 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
208 1.26 cgd #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
209 1.26 cgd
210 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
211 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
212 1.26 cgd
213 1.26 cgd /*
214 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
215 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
216 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
217 1.26 cgd *
218 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
219 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
220 1.26 cgd *
221 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
222 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
223 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
224 1.26 cgd */
225 1.26 cgd #define CCPU_SHIFT 11
226 1.26 cgd
227 1.26 cgd /*
228 1.26 cgd * Recompute process priorities, every hz ticks.
229 1.26 cgd */
230 1.26 cgd /* ARGSUSED */
231 1.26 cgd void
232 1.26 cgd schedcpu(arg)
233 1.26 cgd void *arg;
234 1.26 cgd {
235 1.26 cgd register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
236 1.26 cgd register struct proc *p;
237 1.26 cgd register int s;
238 1.26 cgd register unsigned int newcpu;
239 1.57.2.1 cgd int clkhz;
240 1.26 cgd
241 1.26 cgd wakeup((caddr_t)&lbolt);
242 1.27 mycroft for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
243 1.26 cgd /*
244 1.26 cgd * Increment time in/out of memory and sleep time
245 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
246 1.26 cgd * (remember them?) overflow takes 45 days.
247 1.26 cgd */
248 1.26 cgd p->p_swtime++;
249 1.26 cgd if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
250 1.26 cgd p->p_slptime++;
251 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
252 1.26 cgd /*
253 1.26 cgd * If the process has slept the entire second,
254 1.26 cgd * stop recalculating its priority until it wakes up.
255 1.26 cgd */
256 1.26 cgd if (p->p_slptime > 1)
257 1.26 cgd continue;
258 1.26 cgd s = splstatclock(); /* prevent state changes */
259 1.26 cgd /*
260 1.26 cgd * p_pctcpu is only for ps.
261 1.26 cgd */
262 1.57.2.1 cgd clkhz = stathz != 0 ? stathz : hz;
263 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
264 1.57.2.1 cgd p->p_pctcpu += (clkhz == 100)?
265 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
266 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
267 1.57.2.1 cgd << (FSHIFT - CCPU_SHIFT)) / clkhz;
268 1.26 cgd #else
269 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
270 1.57.2.1 cgd (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
271 1.26 cgd #endif
272 1.26 cgd p->p_cpticks = 0;
273 1.55 ross newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
274 1.55 ross p->p_estcpu = newcpu;
275 1.26 cgd resetpriority(p);
276 1.26 cgd if (p->p_priority >= PUSER) {
277 1.26 cgd if ((p != curproc) &&
278 1.26 cgd p->p_stat == SRUN &&
279 1.26 cgd (p->p_flag & P_INMEM) &&
280 1.26 cgd (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
281 1.43 cgd remrunqueue(p);
282 1.26 cgd p->p_priority = p->p_usrpri;
283 1.26 cgd setrunqueue(p);
284 1.26 cgd } else
285 1.26 cgd p->p_priority = p->p_usrpri;
286 1.26 cgd }
287 1.26 cgd splx(s);
288 1.26 cgd }
289 1.47 mrg uvm_meter();
290 1.26 cgd timeout(schedcpu, (void *)0, hz);
291 1.26 cgd }
292 1.26 cgd
293 1.26 cgd /*
294 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
295 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
296 1.26 cgd * least six times the loadfactor will decay p_estcpu to zero.
297 1.26 cgd */
298 1.26 cgd void
299 1.26 cgd updatepri(p)
300 1.26 cgd register struct proc *p;
301 1.26 cgd {
302 1.26 cgd register unsigned int newcpu = p->p_estcpu;
303 1.26 cgd register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
304 1.26 cgd
305 1.26 cgd if (p->p_slptime > 5 * loadfac)
306 1.26 cgd p->p_estcpu = 0;
307 1.26 cgd else {
308 1.26 cgd p->p_slptime--; /* the first time was done in schedcpu */
309 1.26 cgd while (newcpu && --p->p_slptime)
310 1.26 cgd newcpu = (int) decay_cpu(loadfac, newcpu);
311 1.55 ross p->p_estcpu = newcpu;
312 1.26 cgd }
313 1.26 cgd resetpriority(p);
314 1.26 cgd }
315 1.26 cgd
316 1.26 cgd /*
317 1.26 cgd * We're only looking at 7 bits of the address; everything is
318 1.26 cgd * aligned to 4, lots of things are aligned to greater powers
319 1.26 cgd * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
320 1.26 cgd */
321 1.26 cgd #define TABLESIZE 128
322 1.30 cgd #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
323 1.26 cgd struct slpque {
324 1.26 cgd struct proc *sq_head;
325 1.26 cgd struct proc **sq_tailp;
326 1.26 cgd } slpque[TABLESIZE];
327 1.26 cgd
328 1.26 cgd /*
329 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
330 1.26 cgd * lower the priority briefly to allow interrupts, then return.
331 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
332 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
333 1.26 cgd * This priority will typically be 0, or the lowest priority
334 1.26 cgd * that is safe for use on the interrupt stack; it can be made
335 1.26 cgd * higher to block network software interrupts after panics.
336 1.26 cgd */
337 1.26 cgd int safepri;
338 1.26 cgd
339 1.26 cgd /*
340 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
341 1.26 cgd * performed on the specified identifier. The process will then be made
342 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
343 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
344 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
345 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
346 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
347 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
348 1.26 cgd * call should be interrupted by the signal (return EINTR).
349 1.26 cgd */
350 1.26 cgd int
351 1.26 cgd tsleep(ident, priority, wmesg, timo)
352 1.26 cgd void *ident;
353 1.26 cgd int priority, timo;
354 1.45 mycroft const char *wmesg;
355 1.26 cgd {
356 1.26 cgd register struct proc *p = curproc;
357 1.26 cgd register struct slpque *qp;
358 1.49 kleink register int s;
359 1.26 cgd int sig, catch = priority & PCATCH;
360 1.26 cgd extern int cold;
361 1.26 cgd void endtsleep __P((void *));
362 1.26 cgd
363 1.26 cgd if (cold || panicstr) {
364 1.26 cgd /*
365 1.26 cgd * After a panic, or during autoconfiguration,
366 1.26 cgd * just give interrupts a chance, then just return;
367 1.26 cgd * don't run any other procs or panic below,
368 1.26 cgd * in case this is the idle process and already asleep.
369 1.26 cgd */
370 1.42 cgd s = splhigh();
371 1.26 cgd splx(safepri);
372 1.26 cgd splx(s);
373 1.26 cgd return (0);
374 1.26 cgd }
375 1.42 cgd
376 1.42 cgd #ifdef KTRACE
377 1.42 cgd if (KTRPOINT(p, KTR_CSW))
378 1.42 cgd ktrcsw(p->p_tracep, 1, 0);
379 1.42 cgd #endif
380 1.42 cgd s = splhigh();
381 1.42 cgd
382 1.26 cgd #ifdef DIAGNOSTIC
383 1.26 cgd if (ident == NULL || p->p_stat != SRUN || p->p_back)
384 1.26 cgd panic("tsleep");
385 1.26 cgd #endif
386 1.26 cgd p->p_wchan = ident;
387 1.26 cgd p->p_wmesg = wmesg;
388 1.26 cgd p->p_slptime = 0;
389 1.26 cgd p->p_priority = priority & PRIMASK;
390 1.26 cgd qp = &slpque[LOOKUP(ident)];
391 1.26 cgd if (qp->sq_head == 0)
392 1.26 cgd qp->sq_head = p;
393 1.26 cgd else
394 1.26 cgd *qp->sq_tailp = p;
395 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
396 1.26 cgd if (timo)
397 1.26 cgd timeout(endtsleep, (void *)p, timo);
398 1.26 cgd /*
399 1.26 cgd * We put ourselves on the sleep queue and start our timeout
400 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
401 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
402 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
403 1.26 cgd * without resuming us, thus we must be ready for sleep
404 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
405 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
406 1.26 cgd */
407 1.26 cgd if (catch) {
408 1.26 cgd p->p_flag |= P_SINTR;
409 1.34 christos if ((sig = CURSIG(p)) != 0) {
410 1.26 cgd if (p->p_wchan)
411 1.26 cgd unsleep(p);
412 1.26 cgd p->p_stat = SRUN;
413 1.26 cgd goto resume;
414 1.26 cgd }
415 1.26 cgd if (p->p_wchan == 0) {
416 1.26 cgd catch = 0;
417 1.26 cgd goto resume;
418 1.26 cgd }
419 1.26 cgd } else
420 1.26 cgd sig = 0;
421 1.26 cgd p->p_stat = SSLEEP;
422 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
423 1.26 cgd mi_switch();
424 1.26 cgd #ifdef DDB
425 1.26 cgd /* handy breakpoint location after process "wakes" */
426 1.26 cgd asm(".globl bpendtsleep ; bpendtsleep:");
427 1.26 cgd #endif
428 1.26 cgd resume:
429 1.26 cgd curpriority = p->p_usrpri;
430 1.26 cgd splx(s);
431 1.26 cgd p->p_flag &= ~P_SINTR;
432 1.26 cgd if (p->p_flag & P_TIMEOUT) {
433 1.26 cgd p->p_flag &= ~P_TIMEOUT;
434 1.26 cgd if (sig == 0) {
435 1.26 cgd #ifdef KTRACE
436 1.26 cgd if (KTRPOINT(p, KTR_CSW))
437 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
438 1.26 cgd #endif
439 1.26 cgd return (EWOULDBLOCK);
440 1.26 cgd }
441 1.26 cgd } else if (timo)
442 1.26 cgd untimeout(endtsleep, (void *)p);
443 1.34 christos if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
444 1.26 cgd #ifdef KTRACE
445 1.26 cgd if (KTRPOINT(p, KTR_CSW))
446 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
447 1.26 cgd #endif
448 1.53 mycroft if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
449 1.26 cgd return (EINTR);
450 1.26 cgd return (ERESTART);
451 1.26 cgd }
452 1.26 cgd #ifdef KTRACE
453 1.26 cgd if (KTRPOINT(p, KTR_CSW))
454 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
455 1.26 cgd #endif
456 1.26 cgd return (0);
457 1.26 cgd }
458 1.26 cgd
459 1.26 cgd /*
460 1.26 cgd * Implement timeout for tsleep.
461 1.26 cgd * If process hasn't been awakened (wchan non-zero),
462 1.26 cgd * set timeout flag and undo the sleep. If proc
463 1.26 cgd * is stopped, just unsleep so it will remain stopped.
464 1.26 cgd */
465 1.26 cgd void
466 1.26 cgd endtsleep(arg)
467 1.26 cgd void *arg;
468 1.26 cgd {
469 1.26 cgd register struct proc *p;
470 1.26 cgd int s;
471 1.26 cgd
472 1.26 cgd p = (struct proc *)arg;
473 1.26 cgd s = splhigh();
474 1.26 cgd if (p->p_wchan) {
475 1.26 cgd if (p->p_stat == SSLEEP)
476 1.26 cgd setrunnable(p);
477 1.26 cgd else
478 1.26 cgd unsleep(p);
479 1.26 cgd p->p_flag |= P_TIMEOUT;
480 1.26 cgd }
481 1.26 cgd splx(s);
482 1.26 cgd }
483 1.26 cgd
484 1.26 cgd /*
485 1.26 cgd * Short-term, non-interruptable sleep.
486 1.26 cgd */
487 1.26 cgd void
488 1.26 cgd sleep(ident, priority)
489 1.26 cgd void *ident;
490 1.26 cgd int priority;
491 1.26 cgd {
492 1.26 cgd register struct proc *p = curproc;
493 1.26 cgd register struct slpque *qp;
494 1.49 kleink register int s;
495 1.26 cgd extern int cold;
496 1.26 cgd
497 1.26 cgd #ifdef DIAGNOSTIC
498 1.26 cgd if (priority > PZERO) {
499 1.41 christos printf("sleep called with priority %d > PZERO, wchan: %p\n",
500 1.26 cgd priority, ident);
501 1.26 cgd panic("old sleep");
502 1.26 cgd }
503 1.26 cgd #endif
504 1.26 cgd s = splhigh();
505 1.26 cgd if (cold || panicstr) {
506 1.26 cgd /*
507 1.26 cgd * After a panic, or during autoconfiguration,
508 1.26 cgd * just give interrupts a chance, then just return;
509 1.26 cgd * don't run any other procs or panic below,
510 1.26 cgd * in case this is the idle process and already asleep.
511 1.26 cgd */
512 1.26 cgd splx(safepri);
513 1.26 cgd splx(s);
514 1.26 cgd return;
515 1.26 cgd }
516 1.26 cgd #ifdef DIAGNOSTIC
517 1.26 cgd if (ident == NULL || p->p_stat != SRUN || p->p_back)
518 1.26 cgd panic("sleep");
519 1.26 cgd #endif
520 1.26 cgd p->p_wchan = ident;
521 1.26 cgd p->p_wmesg = NULL;
522 1.26 cgd p->p_slptime = 0;
523 1.26 cgd p->p_priority = priority;
524 1.26 cgd qp = &slpque[LOOKUP(ident)];
525 1.26 cgd if (qp->sq_head == 0)
526 1.26 cgd qp->sq_head = p;
527 1.26 cgd else
528 1.26 cgd *qp->sq_tailp = p;
529 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
530 1.26 cgd p->p_stat = SSLEEP;
531 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
532 1.26 cgd #ifdef KTRACE
533 1.26 cgd if (KTRPOINT(p, KTR_CSW))
534 1.26 cgd ktrcsw(p->p_tracep, 1, 0);
535 1.26 cgd #endif
536 1.26 cgd mi_switch();
537 1.26 cgd #ifdef DDB
538 1.26 cgd /* handy breakpoint location after process "wakes" */
539 1.26 cgd asm(".globl bpendsleep ; bpendsleep:");
540 1.26 cgd #endif
541 1.26 cgd #ifdef KTRACE
542 1.26 cgd if (KTRPOINT(p, KTR_CSW))
543 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
544 1.26 cgd #endif
545 1.26 cgd curpriority = p->p_usrpri;
546 1.26 cgd splx(s);
547 1.26 cgd }
548 1.26 cgd
549 1.26 cgd /*
550 1.26 cgd * Remove a process from its wait queue
551 1.26 cgd */
552 1.26 cgd void
553 1.26 cgd unsleep(p)
554 1.26 cgd register struct proc *p;
555 1.26 cgd {
556 1.26 cgd register struct slpque *qp;
557 1.26 cgd register struct proc **hp;
558 1.26 cgd int s;
559 1.26 cgd
560 1.26 cgd s = splhigh();
561 1.26 cgd if (p->p_wchan) {
562 1.26 cgd hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
563 1.26 cgd while (*hp != p)
564 1.26 cgd hp = &(*hp)->p_forw;
565 1.26 cgd *hp = p->p_forw;
566 1.26 cgd if (qp->sq_tailp == &p->p_forw)
567 1.26 cgd qp->sq_tailp = hp;
568 1.26 cgd p->p_wchan = 0;
569 1.26 cgd }
570 1.26 cgd splx(s);
571 1.26 cgd }
572 1.26 cgd
573 1.26 cgd /*
574 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
575 1.26 cgd */
576 1.26 cgd void
577 1.26 cgd wakeup(ident)
578 1.26 cgd register void *ident;
579 1.26 cgd {
580 1.26 cgd register struct slpque *qp;
581 1.26 cgd register struct proc *p, **q;
582 1.26 cgd int s;
583 1.26 cgd
584 1.26 cgd s = splhigh();
585 1.26 cgd qp = &slpque[LOOKUP(ident)];
586 1.26 cgd restart:
587 1.34 christos for (q = &qp->sq_head; (p = *q) != NULL; ) {
588 1.26 cgd #ifdef DIAGNOSTIC
589 1.34 christos if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
590 1.26 cgd panic("wakeup");
591 1.26 cgd #endif
592 1.26 cgd if (p->p_wchan == ident) {
593 1.26 cgd p->p_wchan = 0;
594 1.26 cgd *q = p->p_forw;
595 1.26 cgd if (qp->sq_tailp == &p->p_forw)
596 1.26 cgd qp->sq_tailp = q;
597 1.26 cgd if (p->p_stat == SSLEEP) {
598 1.26 cgd /* OPTIMIZED EXPANSION OF setrunnable(p); */
599 1.26 cgd if (p->p_slptime > 1)
600 1.26 cgd updatepri(p);
601 1.26 cgd p->p_slptime = 0;
602 1.26 cgd p->p_stat = SRUN;
603 1.26 cgd if (p->p_flag & P_INMEM)
604 1.26 cgd setrunqueue(p);
605 1.26 cgd /*
606 1.26 cgd * Since curpriority is a user priority,
607 1.26 cgd * p->p_priority is always better than
608 1.26 cgd * curpriority.
609 1.26 cgd */
610 1.26 cgd if ((p->p_flag & P_INMEM) == 0)
611 1.26 cgd wakeup((caddr_t)&proc0);
612 1.26 cgd else
613 1.26 cgd need_resched();
614 1.26 cgd /* END INLINE EXPANSION */
615 1.26 cgd goto restart;
616 1.26 cgd }
617 1.26 cgd } else
618 1.26 cgd q = &p->p_forw;
619 1.26 cgd }
620 1.26 cgd splx(s);
621 1.26 cgd }
622 1.26 cgd
623 1.26 cgd /*
624 1.57.2.2 he * General yield call. Puts the current process back on its run queue and
625 1.57.2.2 he * performs a voluntary context switch.
626 1.57.2.2 he */
627 1.57.2.2 he void
628 1.57.2.2 he yield()
629 1.57.2.2 he {
630 1.57.2.2 he struct proc *p = curproc;
631 1.57.2.2 he int s;
632 1.57.2.2 he
633 1.57.2.2 he p->p_priority = p->p_usrpri;
634 1.57.2.2 he s = splstatclock();
635 1.57.2.2 he setrunqueue(p);
636 1.57.2.2 he p->p_stats->p_ru.ru_nvcsw++;
637 1.57.2.2 he mi_switch();
638 1.57.2.2 he splx(s);
639 1.57.2.2 he }
640 1.57.2.2 he
641 1.57.2.2 he /*
642 1.57.2.2 he * General preemption call. Puts the current process back on its run queue
643 1.57.2.2 he * and performs an involuntary context switch. If a process is supplied,
644 1.57.2.2 he * we switch to that process. Otherwise, we use the normal process selection
645 1.57.2.2 he * criteria.
646 1.57.2.2 he */
647 1.57.2.2 he void
648 1.57.2.2 he preempt(newp)
649 1.57.2.2 he struct proc *newp;
650 1.57.2.2 he {
651 1.57.2.2 he struct proc *p = curproc;
652 1.57.2.2 he int s;
653 1.57.2.2 he
654 1.57.2.2 he /*
655 1.57.2.2 he * XXX Switching to a specific process is not supported yet.
656 1.57.2.2 he */
657 1.57.2.2 he if (newp != NULL)
658 1.57.2.2 he panic("preempt: cpu_preempt not yet implemented");
659 1.57.2.2 he
660 1.57.2.2 he p->p_priority = p->p_usrpri;
661 1.57.2.2 he s = splstatclock();
662 1.57.2.2 he setrunqueue(p);
663 1.57.2.2 he p->p_stats->p_ru.ru_nivcsw++;
664 1.57.2.2 he mi_switch();
665 1.57.2.2 he splx(s);
666 1.57.2.2 he }
667 1.57.2.2 he
668 1.57.2.2 he /*
669 1.26 cgd * The machine independent parts of mi_switch().
670 1.26 cgd * Must be called at splstatclock() or higher.
671 1.26 cgd */
672 1.26 cgd void
673 1.26 cgd mi_switch()
674 1.26 cgd {
675 1.26 cgd register struct proc *p = curproc; /* XXX */
676 1.26 cgd register struct rlimit *rlim;
677 1.26 cgd register long s, u;
678 1.26 cgd struct timeval tv;
679 1.26 cgd
680 1.50 fvdl #ifdef DEBUG
681 1.54 chs if (p->p_simple_locks) {
682 1.54 chs printf("p->p_simple_locks %d\n", p->p_simple_locks);
683 1.54 chs #ifdef LOCKDEBUG
684 1.54 chs simple_lock_dump();
685 1.54 chs #endif
686 1.50 fvdl panic("sleep: holding simple lock");
687 1.54 chs }
688 1.50 fvdl #endif
689 1.26 cgd /*
690 1.26 cgd * Compute the amount of time during which the current
691 1.26 cgd * process was running, and add that to its total so far.
692 1.26 cgd */
693 1.26 cgd microtime(&tv);
694 1.26 cgd u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
695 1.26 cgd s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
696 1.26 cgd if (u < 0) {
697 1.26 cgd u += 1000000;
698 1.26 cgd s--;
699 1.26 cgd } else if (u >= 1000000) {
700 1.26 cgd u -= 1000000;
701 1.26 cgd s++;
702 1.26 cgd }
703 1.26 cgd p->p_rtime.tv_usec = u;
704 1.26 cgd p->p_rtime.tv_sec = s;
705 1.26 cgd
706 1.26 cgd /*
707 1.26 cgd * Check if the process exceeds its cpu resource allocation.
708 1.26 cgd * If over max, kill it. In any case, if it has run for more
709 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
710 1.26 cgd */
711 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
712 1.26 cgd if (s >= rlim->rlim_cur) {
713 1.26 cgd if (s >= rlim->rlim_max)
714 1.26 cgd psignal(p, SIGKILL);
715 1.26 cgd else {
716 1.26 cgd psignal(p, SIGXCPU);
717 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
718 1.26 cgd rlim->rlim_cur += 5;
719 1.26 cgd }
720 1.26 cgd }
721 1.38 explorer if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
722 1.39 ws p->p_nice = autoniceval + NZERO;
723 1.26 cgd resetpriority(p);
724 1.26 cgd }
725 1.57.2.2 he
726 1.57.2.2 he /*
727 1.57.2.2 he * Process is about to yield the CPU; clear the appropriate
728 1.57.2.2 he * scheduling flags.
729 1.57.2.2 he */
730 1.57.2.3 he schedflags &= ~PSCHED_SWITCHCLEAR;
731 1.26 cgd
732 1.26 cgd /*
733 1.26 cgd * Pick a new current process and record its start time.
734 1.26 cgd */
735 1.47 mrg uvmexp.swtch++;
736 1.26 cgd cpu_switch(p);
737 1.26 cgd microtime(&runtime);
738 1.26 cgd }
739 1.26 cgd
740 1.26 cgd /*
741 1.26 cgd * Initialize the (doubly-linked) run queues
742 1.26 cgd * to be empty.
743 1.26 cgd */
744 1.26 cgd void
745 1.26 cgd rqinit()
746 1.26 cgd {
747 1.26 cgd register int i;
748 1.26 cgd
749 1.26 cgd for (i = 0; i < NQS; i++)
750 1.26 cgd qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
751 1.26 cgd }
752 1.26 cgd
753 1.26 cgd /*
754 1.26 cgd * Change process state to be runnable,
755 1.26 cgd * placing it on the run queue if it is in memory,
756 1.26 cgd * and awakening the swapper if it isn't in memory.
757 1.26 cgd */
758 1.26 cgd void
759 1.26 cgd setrunnable(p)
760 1.26 cgd register struct proc *p;
761 1.26 cgd {
762 1.26 cgd register int s;
763 1.26 cgd
764 1.26 cgd s = splhigh();
765 1.26 cgd switch (p->p_stat) {
766 1.26 cgd case 0:
767 1.26 cgd case SRUN:
768 1.26 cgd case SZOMB:
769 1.26 cgd default:
770 1.26 cgd panic("setrunnable");
771 1.26 cgd case SSTOP:
772 1.33 mycroft /*
773 1.33 mycroft * If we're being traced (possibly because someone attached us
774 1.33 mycroft * while we were stopped), check for a signal from the debugger.
775 1.33 mycroft */
776 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
777 1.53 mycroft sigaddset(&p->p_siglist, p->p_xstat);
778 1.53 mycroft p->p_sigcheck = 1;
779 1.53 mycroft }
780 1.26 cgd case SSLEEP:
781 1.26 cgd unsleep(p); /* e.g. when sending signals */
782 1.26 cgd break;
783 1.26 cgd
784 1.26 cgd case SIDL:
785 1.26 cgd break;
786 1.26 cgd }
787 1.26 cgd p->p_stat = SRUN;
788 1.26 cgd if (p->p_flag & P_INMEM)
789 1.26 cgd setrunqueue(p);
790 1.26 cgd splx(s);
791 1.26 cgd if (p->p_slptime > 1)
792 1.26 cgd updatepri(p);
793 1.26 cgd p->p_slptime = 0;
794 1.26 cgd if ((p->p_flag & P_INMEM) == 0)
795 1.26 cgd wakeup((caddr_t)&proc0);
796 1.26 cgd else if (p->p_priority < curpriority)
797 1.26 cgd need_resched();
798 1.26 cgd }
799 1.26 cgd
800 1.26 cgd /*
801 1.26 cgd * Compute the priority of a process when running in user mode.
802 1.26 cgd * Arrange to reschedule if the resulting priority is better
803 1.26 cgd * than that of the current process.
804 1.26 cgd */
805 1.26 cgd void
806 1.26 cgd resetpriority(p)
807 1.26 cgd register struct proc *p;
808 1.26 cgd {
809 1.26 cgd register unsigned int newpriority;
810 1.26 cgd
811 1.55 ross newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
812 1.26 cgd newpriority = min(newpriority, MAXPRI);
813 1.26 cgd p->p_usrpri = newpriority;
814 1.26 cgd if (newpriority < curpriority)
815 1.26 cgd need_resched();
816 1.55 ross }
817 1.55 ross
818 1.55 ross /*
819 1.56 ross * We adjust the priority of the current process. The priority of a process
820 1.56 ross * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
821 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
822 1.56 ross * will compute a different value each time p_estcpu increases. This can
823 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
824 1.56 ross * queue will not change. The cpu usage estimator ramps up quite quickly
825 1.56 ross * when the process is running (linearly), and decays away exponentially, at
826 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
827 1.56 ross * principal is that the system will 90% forget that the process used a lot
828 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
829 1.56 ross * processes which haven't run much recently, and to round-robin among other
830 1.56 ross * processes.
831 1.55 ross */
832 1.55 ross
833 1.55 ross void
834 1.56 ross schedclock(p)
835 1.55 ross struct proc *p;
836 1.55 ross {
837 1.55 ross p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
838 1.55 ross resetpriority(p);
839 1.55 ross if (p->p_priority >= PUSER)
840 1.55 ross p->p_priority = p->p_usrpri;
841 1.26 cgd }
842