Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.66.2.2
      1  1.66.2.2    bouyer /*	$NetBSD: kern_synch.c,v 1.66.2.2 2000/11/22 16:05:22 bouyer Exp $	*/
      2      1.63   thorpej 
      3      1.63   thorpej /*-
      4  1.66.2.1    bouyer  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5      1.63   thorpej  * All rights reserved.
      6      1.63   thorpej  *
      7      1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8      1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9      1.63   thorpej  * NASA Ames Research Center.
     10      1.63   thorpej  *
     11      1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     12      1.63   thorpej  * modification, are permitted provided that the following conditions
     13      1.63   thorpej  * are met:
     14      1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     15      1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     16      1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17      1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18      1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     19      1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     20      1.63   thorpej  *    must display the following acknowledgement:
     21      1.63   thorpej  *	This product includes software developed by the NetBSD
     22      1.63   thorpej  *	Foundation, Inc. and its contributors.
     23      1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24      1.63   thorpej  *    contributors may be used to endorse or promote products derived
     25      1.63   thorpej  *    from this software without specific prior written permission.
     26      1.63   thorpej  *
     27      1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28      1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29      1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30      1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31      1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32      1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33      1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34      1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35      1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36      1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37      1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38      1.63   thorpej  */
     39      1.26       cgd 
     40      1.26       cgd /*-
     41      1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42      1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     43      1.26       cgd  * (c) UNIX System Laboratories, Inc.
     44      1.26       cgd  * All or some portions of this file are derived from material licensed
     45      1.26       cgd  * to the University of California by American Telephone and Telegraph
     46      1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47      1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     48      1.26       cgd  *
     49      1.26       cgd  * Redistribution and use in source and binary forms, with or without
     50      1.26       cgd  * modification, are permitted provided that the following conditions
     51      1.26       cgd  * are met:
     52      1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     53      1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     54      1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     55      1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     56      1.26       cgd  *    documentation and/or other materials provided with the distribution.
     57      1.26       cgd  * 3. All advertising materials mentioning features or use of this software
     58      1.26       cgd  *    must display the following acknowledgement:
     59      1.26       cgd  *	This product includes software developed by the University of
     60      1.26       cgd  *	California, Berkeley and its contributors.
     61      1.26       cgd  * 4. Neither the name of the University nor the names of its contributors
     62      1.26       cgd  *    may be used to endorse or promote products derived from this software
     63      1.26       cgd  *    without specific prior written permission.
     64      1.26       cgd  *
     65      1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66      1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67      1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68      1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69      1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70      1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71      1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72      1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73      1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74      1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75      1.26       cgd  * SUCH DAMAGE.
     76      1.26       cgd  *
     77      1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78      1.26       cgd  */
     79      1.48       mrg 
     80      1.52  jonathan #include "opt_ddb.h"
     81      1.51   thorpej #include "opt_ktrace.h"
     82  1.66.2.1    bouyer #include "opt_lockdebug.h"
     83  1.66.2.1    bouyer #include "opt_multiprocessor.h"
     84      1.26       cgd 
     85      1.26       cgd #include <sys/param.h>
     86      1.26       cgd #include <sys/systm.h>
     87  1.66.2.1    bouyer #include <sys/callout.h>
     88      1.26       cgd #include <sys/proc.h>
     89      1.26       cgd #include <sys/kernel.h>
     90      1.26       cgd #include <sys/buf.h>
     91      1.26       cgd #include <sys/signalvar.h>
     92      1.26       cgd #include <sys/resourcevar.h>
     93      1.55      ross #include <sys/sched.h>
     94      1.47       mrg 
     95      1.47       mrg #include <uvm/uvm_extern.h>
     96      1.47       mrg 
     97      1.26       cgd #ifdef KTRACE
     98      1.26       cgd #include <sys/ktrace.h>
     99      1.26       cgd #endif
    100      1.26       cgd 
    101      1.26       cgd #include <machine/cpu.h>
    102      1.34  christos 
    103      1.26       cgd int	lbolt;			/* once a second sleep address */
    104  1.66.2.1    bouyer int	rrticks;		/* number of hardclock ticks per roundrobin() */
    105  1.66.2.1    bouyer 
    106  1.66.2.1    bouyer /*
    107  1.66.2.1    bouyer  * The global scheduler state.
    108  1.66.2.1    bouyer  */
    109  1.66.2.1    bouyer struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    110  1.66.2.1    bouyer __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    111  1.66.2.1    bouyer struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    112  1.66.2.1    bouyer 
    113  1.66.2.1    bouyer struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    114  1.66.2.1    bouyer #if defined(MULTIPROCESSOR)
    115  1.66.2.1    bouyer struct lock kernel_lock;
    116  1.66.2.1    bouyer #endif
    117      1.26       cgd 
    118  1.66.2.1    bouyer void schedcpu(void *);
    119  1.66.2.1    bouyer void updatepri(struct proc *);
    120  1.66.2.1    bouyer void endtsleep(void *);
    121      1.34  christos 
    122  1.66.2.1    bouyer __inline void awaken(struct proc *);
    123  1.66.2.1    bouyer 
    124  1.66.2.1    bouyer struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    125      1.63   thorpej 
    126      1.26       cgd /*
    127      1.26       cgd  * Force switch among equal priority processes every 100ms.
    128  1.66.2.1    bouyer  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    129      1.26       cgd  */
    130      1.26       cgd /* ARGSUSED */
    131      1.26       cgd void
    132  1.66.2.1    bouyer roundrobin(struct cpu_info *ci)
    133      1.26       cgd {
    134  1.66.2.1    bouyer 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    135      1.26       cgd 
    136  1.66.2.1    bouyer 	spc->spc_rrticks = rrticks;
    137  1.66.2.1    bouyer 
    138  1.66.2.1    bouyer 	if (curproc != NULL) {
    139  1.66.2.1    bouyer 		if (spc->spc_flags & SPCF_SEENRR) {
    140  1.66.2.1    bouyer 			/*
    141  1.66.2.1    bouyer 			 * The process has already been through a roundrobin
    142  1.66.2.1    bouyer 			 * without switching and may be hogging the CPU.
    143  1.66.2.1    bouyer 			 * Indicate that the process should yield.
    144  1.66.2.1    bouyer 			 */
    145  1.66.2.1    bouyer 			spc->spc_flags |= SPCF_SHOULDYIELD;
    146  1.66.2.1    bouyer 		} else
    147  1.66.2.1    bouyer 			spc->spc_flags |= SPCF_SEENRR;
    148  1.66.2.1    bouyer 	}
    149  1.66.2.1    bouyer 	need_resched(curcpu());
    150      1.26       cgd }
    151      1.26       cgd 
    152      1.26       cgd /*
    153      1.26       cgd  * Constants for digital decay and forget:
    154      1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    155      1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    156      1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    157      1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    158      1.26       cgd  *
    159      1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    160      1.26       cgd  *
    161      1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    162      1.26       cgd  * That is, the system wants to compute a value of decay such
    163      1.26       cgd  * that the following for loop:
    164      1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    165      1.26       cgd  * 		p_estcpu *= decay;
    166      1.26       cgd  * will compute
    167      1.26       cgd  * 	p_estcpu *= 0.1;
    168      1.26       cgd  * for all values of loadavg:
    169      1.26       cgd  *
    170      1.26       cgd  * Mathematically this loop can be expressed by saying:
    171      1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    172      1.26       cgd  *
    173      1.26       cgd  * The system computes decay as:
    174      1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    175      1.26       cgd  *
    176      1.26       cgd  * We wish to prove that the system's computation of decay
    177      1.26       cgd  * will always fulfill the equation:
    178      1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    179      1.26       cgd  *
    180      1.26       cgd  * If we compute b as:
    181      1.26       cgd  * 	b = 2 * loadavg
    182      1.26       cgd  * then
    183      1.26       cgd  * 	decay = b / (b + 1)
    184      1.26       cgd  *
    185      1.26       cgd  * We now need to prove two things:
    186      1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    187      1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    188      1.26       cgd  *
    189      1.26       cgd  * Facts:
    190      1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    191      1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    192      1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    193      1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    194      1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    195      1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    196      1.26       cgd  *         ln(.1) =~ -2.30
    197      1.26       cgd  *
    198      1.26       cgd  * Proof of (1):
    199      1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    200      1.26       cgd  *	solving for factor,
    201      1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    202      1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    203      1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    204      1.26       cgd  *
    205      1.26       cgd  * Proof of (2):
    206      1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    207      1.26       cgd  *	solving for power,
    208      1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    209      1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    210      1.26       cgd  *
    211      1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    212      1.26       cgd  *      loadav: 1       2       3       4
    213      1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    214      1.26       cgd  */
    215      1.26       cgd 
    216      1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    217      1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    218      1.26       cgd #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    219      1.26       cgd 
    220      1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    221      1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    222      1.26       cgd 
    223      1.26       cgd /*
    224      1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    225      1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    226      1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    227      1.26       cgd  *
    228      1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    229      1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    230      1.26       cgd  *
    231      1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    232      1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    233      1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    234      1.26       cgd  */
    235      1.26       cgd #define	CCPU_SHIFT	11
    236      1.26       cgd 
    237      1.26       cgd /*
    238      1.26       cgd  * Recompute process priorities, every hz ticks.
    239      1.26       cgd  */
    240      1.26       cgd /* ARGSUSED */
    241      1.26       cgd void
    242  1.66.2.1    bouyer schedcpu(void *arg)
    243      1.26       cgd {
    244  1.66.2.1    bouyer 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    245  1.66.2.1    bouyer 	struct proc *p;
    246  1.66.2.1    bouyer 	int s, s1;
    247  1.66.2.1    bouyer 	unsigned int newcpu;
    248      1.66      ross 	int clkhz;
    249      1.26       cgd 
    250      1.62   thorpej 	proclist_lock_read();
    251      1.27   mycroft 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    252      1.26       cgd 		/*
    253      1.26       cgd 		 * Increment time in/out of memory and sleep time
    254      1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    255      1.26       cgd 		 * (remember them?) overflow takes 45 days.
    256      1.26       cgd 		 */
    257      1.26       cgd 		p->p_swtime++;
    258      1.26       cgd 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    259      1.26       cgd 			p->p_slptime++;
    260      1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    261      1.26       cgd 		/*
    262      1.26       cgd 		 * If the process has slept the entire second,
    263      1.26       cgd 		 * stop recalculating its priority until it wakes up.
    264      1.26       cgd 		 */
    265      1.26       cgd 		if (p->p_slptime > 1)
    266      1.26       cgd 			continue;
    267      1.26       cgd 		s = splstatclock();	/* prevent state changes */
    268      1.26       cgd 		/*
    269      1.26       cgd 		 * p_pctcpu is only for ps.
    270      1.26       cgd 		 */
    271      1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    272      1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    273      1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    274      1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    275      1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    276      1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    277      1.26       cgd #else
    278      1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    279      1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    280      1.26       cgd #endif
    281      1.26       cgd 		p->p_cpticks = 0;
    282      1.55      ross 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    283      1.55      ross 		p->p_estcpu = newcpu;
    284  1.66.2.1    bouyer 		SCHED_LOCK(s1);
    285      1.26       cgd 		resetpriority(p);
    286      1.26       cgd 		if (p->p_priority >= PUSER) {
    287  1.66.2.1    bouyer 			if (p->p_stat == SRUN &&
    288      1.26       cgd 			    (p->p_flag & P_INMEM) &&
    289      1.26       cgd 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    290      1.43       cgd 				remrunqueue(p);
    291      1.26       cgd 				p->p_priority = p->p_usrpri;
    292      1.26       cgd 				setrunqueue(p);
    293      1.26       cgd 			} else
    294      1.26       cgd 				p->p_priority = p->p_usrpri;
    295      1.26       cgd 		}
    296  1.66.2.1    bouyer 		SCHED_UNLOCK(s1);
    297      1.26       cgd 		splx(s);
    298      1.26       cgd 	}
    299      1.61   thorpej 	proclist_unlock_read();
    300      1.47       mrg 	uvm_meter();
    301  1.66.2.1    bouyer 	wakeup((caddr_t)&lbolt);
    302  1.66.2.1    bouyer 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    303      1.26       cgd }
    304      1.26       cgd 
    305      1.26       cgd /*
    306      1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    307      1.26       cgd  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    308      1.26       cgd  * least six times the loadfactor will decay p_estcpu to zero.
    309      1.26       cgd  */
    310      1.26       cgd void
    311  1.66.2.1    bouyer updatepri(struct proc *p)
    312      1.26       cgd {
    313  1.66.2.1    bouyer 	unsigned int newcpu;
    314  1.66.2.1    bouyer 	fixpt_t loadfac;
    315  1.66.2.1    bouyer 
    316  1.66.2.1    bouyer 	SCHED_ASSERT_LOCKED();
    317  1.66.2.1    bouyer 
    318  1.66.2.1    bouyer 	newcpu = p->p_estcpu;
    319  1.66.2.1    bouyer 	loadfac = loadfactor(averunnable.ldavg[0]);
    320      1.26       cgd 
    321      1.26       cgd 	if (p->p_slptime > 5 * loadfac)
    322      1.26       cgd 		p->p_estcpu = 0;
    323      1.26       cgd 	else {
    324      1.26       cgd 		p->p_slptime--;	/* the first time was done in schedcpu */
    325      1.26       cgd 		while (newcpu && --p->p_slptime)
    326      1.26       cgd 			newcpu = (int) decay_cpu(loadfac, newcpu);
    327      1.55      ross 		p->p_estcpu = newcpu;
    328      1.26       cgd 	}
    329      1.26       cgd 	resetpriority(p);
    330      1.26       cgd }
    331      1.26       cgd 
    332      1.26       cgd /*
    333      1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    334      1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    335      1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    336      1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    337      1.26       cgd  * This priority will typically be 0, or the lowest priority
    338      1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    339      1.26       cgd  * higher to block network software interrupts after panics.
    340      1.26       cgd  */
    341      1.26       cgd int safepri;
    342      1.26       cgd 
    343      1.26       cgd /*
    344      1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    345      1.26       cgd  * performed on the specified identifier.  The process will then be made
    346      1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    347      1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    348      1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    349      1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    350      1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    351      1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    352      1.26       cgd  * call should be interrupted by the signal (return EINTR).
    353  1.66.2.1    bouyer  *
    354  1.66.2.1    bouyer  * The interlock is held until the scheduler_slock is held.  The
    355  1.66.2.1    bouyer  * interlock will be locked before returning back to the caller
    356  1.66.2.1    bouyer  * unless the PNORELOCK flag is specified, in which case the
    357  1.66.2.1    bouyer  * interlock will always be unlocked upon return.
    358      1.26       cgd  */
    359      1.26       cgd int
    360  1.66.2.1    bouyer ltsleep(void *ident, int priority, const char *wmesg, int timo,
    361  1.66.2.1    bouyer     __volatile struct simplelock *interlock)
    362  1.66.2.1    bouyer {
    363  1.66.2.1    bouyer 	struct proc *p = curproc;
    364  1.66.2.1    bouyer 	struct slpque *qp;
    365  1.66.2.1    bouyer 	int sig, s;
    366  1.66.2.1    bouyer 	int catch = priority & PCATCH;
    367  1.66.2.1    bouyer 	int relock = (priority & PNORELOCK) == 0;
    368      1.26       cgd 
    369  1.66.2.1    bouyer 	/*
    370  1.66.2.1    bouyer 	 * XXXSMP
    371  1.66.2.1    bouyer 	 * This is probably bogus.  Figure out what the right
    372  1.66.2.1    bouyer 	 * thing to do here really is.
    373  1.66.2.1    bouyer 	 * Note that not sleeping if ltsleep is called with curproc == NULL
    374  1.66.2.1    bouyer 	 * in the shutdown case is disgusting but partly necessary given
    375  1.66.2.1    bouyer 	 * how shutdown (barely) works.
    376  1.66.2.1    bouyer 	 */
    377  1.66.2.1    bouyer 	if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
    378      1.26       cgd 		/*
    379      1.26       cgd 		 * After a panic, or during autoconfiguration,
    380      1.26       cgd 		 * just give interrupts a chance, then just return;
    381      1.26       cgd 		 * don't run any other procs or panic below,
    382      1.26       cgd 		 * in case this is the idle process and already asleep.
    383      1.26       cgd 		 */
    384      1.42       cgd 		s = splhigh();
    385      1.26       cgd 		splx(safepri);
    386      1.26       cgd 		splx(s);
    387  1.66.2.1    bouyer 		if (interlock != NULL && relock == 0)
    388  1.66.2.1    bouyer 			simple_unlock(interlock);
    389      1.26       cgd 		return (0);
    390      1.26       cgd 	}
    391      1.42       cgd 
    392  1.66.2.1    bouyer 
    393      1.42       cgd #ifdef KTRACE
    394      1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    395  1.66.2.1    bouyer 		ktrcsw(p, 1, 0);
    396      1.42       cgd #endif
    397  1.66.2.1    bouyer 
    398  1.66.2.1    bouyer 	SCHED_LOCK(s);
    399      1.42       cgd 
    400      1.26       cgd #ifdef DIAGNOSTIC
    401      1.64   thorpej 	if (ident == NULL)
    402  1.66.2.1    bouyer 		panic("ltsleep: ident == NULL");
    403  1.66.2.1    bouyer 	if (p->p_stat != SONPROC)
    404  1.66.2.1    bouyer 		panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
    405      1.64   thorpej 	if (p->p_back != NULL)
    406  1.66.2.1    bouyer 		panic("ltsleep: p_back != NULL");
    407      1.26       cgd #endif
    408  1.66.2.1    bouyer 
    409      1.26       cgd 	p->p_wchan = ident;
    410      1.26       cgd 	p->p_wmesg = wmesg;
    411      1.26       cgd 	p->p_slptime = 0;
    412      1.26       cgd 	p->p_priority = priority & PRIMASK;
    413  1.66.2.1    bouyer 
    414  1.66.2.1    bouyer 	qp = SLPQUE(ident);
    415      1.26       cgd 	if (qp->sq_head == 0)
    416      1.26       cgd 		qp->sq_head = p;
    417      1.26       cgd 	else
    418      1.26       cgd 		*qp->sq_tailp = p;
    419      1.26       cgd 	*(qp->sq_tailp = &p->p_forw) = 0;
    420  1.66.2.1    bouyer 
    421      1.26       cgd 	if (timo)
    422  1.66.2.1    bouyer 		callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
    423  1.66.2.1    bouyer 
    424  1.66.2.1    bouyer 	/*
    425  1.66.2.1    bouyer 	 * We can now release the interlock; the scheduler_slock
    426  1.66.2.1    bouyer 	 * is held, so a thread can't get in to do wakeup() before
    427  1.66.2.1    bouyer 	 * we do the switch.
    428  1.66.2.1    bouyer 	 *
    429  1.66.2.1    bouyer 	 * XXX We leave the code block here, after inserting ourselves
    430  1.66.2.1    bouyer 	 * on the sleep queue, because we might want a more clever
    431  1.66.2.1    bouyer 	 * data structure for the sleep queues at some point.
    432  1.66.2.1    bouyer 	 */
    433  1.66.2.1    bouyer 	if (interlock != NULL)
    434  1.66.2.1    bouyer 		simple_unlock(interlock);
    435  1.66.2.1    bouyer 
    436      1.26       cgd 	/*
    437      1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    438      1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    439      1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    440      1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    441      1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    442      1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    443      1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    444      1.26       cgd 	 */
    445      1.26       cgd 	if (catch) {
    446      1.26       cgd 		p->p_flag |= P_SINTR;
    447      1.34  christos 		if ((sig = CURSIG(p)) != 0) {
    448  1.66.2.1    bouyer 			if (p->p_wchan != NULL)
    449      1.26       cgd 				unsleep(p);
    450  1.66.2.1    bouyer 			p->p_stat = SONPROC;
    451  1.66.2.1    bouyer 			SCHED_UNLOCK(s);
    452      1.26       cgd 			goto resume;
    453      1.26       cgd 		}
    454  1.66.2.1    bouyer 		if (p->p_wchan == NULL) {
    455      1.26       cgd 			catch = 0;
    456  1.66.2.1    bouyer 			SCHED_UNLOCK(s);
    457      1.26       cgd 			goto resume;
    458      1.26       cgd 		}
    459      1.26       cgd 	} else
    460      1.26       cgd 		sig = 0;
    461      1.26       cgd 	p->p_stat = SSLEEP;
    462      1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    463  1.66.2.1    bouyer 
    464  1.66.2.1    bouyer 	SCHED_ASSERT_LOCKED();
    465  1.66.2.1    bouyer 	mi_switch(p);
    466  1.66.2.1    bouyer 
    467      1.26       cgd #ifdef	DDB
    468      1.26       cgd 	/* handy breakpoint location after process "wakes" */
    469      1.26       cgd 	asm(".globl bpendtsleep ; bpendtsleep:");
    470      1.26       cgd #endif
    471  1.66.2.1    bouyer 
    472  1.66.2.1    bouyer 	SCHED_ASSERT_UNLOCKED();
    473      1.26       cgd 	splx(s);
    474  1.66.2.1    bouyer 
    475  1.66.2.1    bouyer  resume:
    476  1.66.2.1    bouyer 	KDASSERT(p->p_cpu != NULL);
    477  1.66.2.1    bouyer 	KDASSERT(p->p_cpu == curcpu());
    478  1.66.2.1    bouyer 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
    479  1.66.2.1    bouyer 
    480      1.26       cgd 	p->p_flag &= ~P_SINTR;
    481      1.26       cgd 	if (p->p_flag & P_TIMEOUT) {
    482      1.26       cgd 		p->p_flag &= ~P_TIMEOUT;
    483      1.26       cgd 		if (sig == 0) {
    484      1.26       cgd #ifdef KTRACE
    485      1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    486  1.66.2.1    bouyer 				ktrcsw(p, 0, 0);
    487      1.26       cgd #endif
    488  1.66.2.1    bouyer 			if (relock && interlock != NULL)
    489  1.66.2.1    bouyer 				simple_lock(interlock);
    490      1.26       cgd 			return (EWOULDBLOCK);
    491      1.26       cgd 		}
    492      1.26       cgd 	} else if (timo)
    493  1.66.2.1    bouyer 		callout_stop(&p->p_tsleep_ch);
    494      1.34  christos 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    495      1.26       cgd #ifdef KTRACE
    496      1.26       cgd 		if (KTRPOINT(p, KTR_CSW))
    497  1.66.2.1    bouyer 			ktrcsw(p, 0, 0);
    498      1.26       cgd #endif
    499  1.66.2.1    bouyer 		if (relock && interlock != NULL)
    500  1.66.2.1    bouyer 			simple_lock(interlock);
    501  1.66.2.2    bouyer 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    502      1.26       cgd 			return (EINTR);
    503      1.26       cgd 		return (ERESTART);
    504      1.26       cgd 	}
    505      1.26       cgd #ifdef KTRACE
    506      1.26       cgd 	if (KTRPOINT(p, KTR_CSW))
    507  1.66.2.1    bouyer 		ktrcsw(p, 0, 0);
    508      1.26       cgd #endif
    509  1.66.2.1    bouyer 	if (relock && interlock != NULL)
    510  1.66.2.1    bouyer 		simple_lock(interlock);
    511      1.26       cgd 	return (0);
    512      1.26       cgd }
    513      1.26       cgd 
    514      1.26       cgd /*
    515      1.26       cgd  * Implement timeout for tsleep.
    516      1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    517      1.26       cgd  * set timeout flag and undo the sleep.  If proc
    518      1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    519      1.26       cgd  */
    520      1.26       cgd void
    521  1.66.2.1    bouyer endtsleep(void *arg)
    522      1.26       cgd {
    523  1.66.2.1    bouyer 	struct proc *p;
    524      1.26       cgd 	int s;
    525      1.26       cgd 
    526      1.26       cgd 	p = (struct proc *)arg;
    527  1.66.2.1    bouyer 
    528  1.66.2.1    bouyer 	SCHED_LOCK(s);
    529      1.26       cgd 	if (p->p_wchan) {
    530      1.26       cgd 		if (p->p_stat == SSLEEP)
    531      1.26       cgd 			setrunnable(p);
    532      1.26       cgd 		else
    533      1.26       cgd 			unsleep(p);
    534      1.26       cgd 		p->p_flag |= P_TIMEOUT;
    535      1.26       cgd 	}
    536  1.66.2.1    bouyer 	SCHED_UNLOCK(s);
    537      1.26       cgd }
    538      1.26       cgd 
    539      1.26       cgd /*
    540      1.26       cgd  * Remove a process from its wait queue
    541      1.26       cgd  */
    542      1.26       cgd void
    543  1.66.2.1    bouyer unsleep(struct proc *p)
    544      1.26       cgd {
    545  1.66.2.1    bouyer 	struct slpque *qp;
    546  1.66.2.1    bouyer 	struct proc **hp;
    547  1.66.2.1    bouyer 
    548  1.66.2.1    bouyer 	SCHED_ASSERT_LOCKED();
    549      1.26       cgd 
    550      1.26       cgd 	if (p->p_wchan) {
    551  1.66.2.1    bouyer 		hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
    552      1.26       cgd 		while (*hp != p)
    553      1.26       cgd 			hp = &(*hp)->p_forw;
    554      1.26       cgd 		*hp = p->p_forw;
    555      1.26       cgd 		if (qp->sq_tailp == &p->p_forw)
    556      1.26       cgd 			qp->sq_tailp = hp;
    557      1.26       cgd 		p->p_wchan = 0;
    558      1.26       cgd 	}
    559      1.26       cgd }
    560      1.26       cgd 
    561      1.26       cgd /*
    562      1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    563      1.63   thorpej  */
    564      1.63   thorpej __inline void
    565  1.66.2.1    bouyer awaken(struct proc *p)
    566      1.63   thorpej {
    567      1.63   thorpej 
    568  1.66.2.1    bouyer 	SCHED_ASSERT_LOCKED();
    569  1.66.2.1    bouyer 
    570      1.63   thorpej 	if (p->p_slptime > 1)
    571      1.63   thorpej 		updatepri(p);
    572      1.63   thorpej 	p->p_slptime = 0;
    573      1.63   thorpej 	p->p_stat = SRUN;
    574  1.66.2.1    bouyer 
    575      1.63   thorpej 	/*
    576      1.63   thorpej 	 * Since curpriority is a user priority, p->p_priority
    577      1.63   thorpej 	 * is always better than curpriority.
    578      1.63   thorpej 	 */
    579      1.63   thorpej 	if (p->p_flag & P_INMEM) {
    580      1.63   thorpej 		setrunqueue(p);
    581  1.66.2.1    bouyer 		KASSERT(p->p_cpu != NULL);
    582  1.66.2.1    bouyer 		need_resched(p->p_cpu);
    583      1.63   thorpej 	} else
    584  1.66.2.1    bouyer 		sched_wakeup(&proc0);
    585      1.63   thorpej }
    586      1.63   thorpej 
    587  1.66.2.1    bouyer #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    588  1.66.2.1    bouyer void
    589  1.66.2.1    bouyer sched_unlock_idle(void)
    590  1.66.2.1    bouyer {
    591  1.66.2.1    bouyer 
    592  1.66.2.1    bouyer 	simple_unlock(&sched_lock);
    593  1.66.2.1    bouyer }
    594  1.66.2.1    bouyer 
    595  1.66.2.1    bouyer void
    596  1.66.2.1    bouyer sched_lock_idle(void)
    597  1.66.2.1    bouyer {
    598  1.66.2.1    bouyer 
    599  1.66.2.1    bouyer 	simple_lock(&sched_lock);
    600  1.66.2.1    bouyer }
    601  1.66.2.1    bouyer #endif /* MULTIPROCESSOR || LOCKDEBUG */
    602  1.66.2.1    bouyer 
    603      1.63   thorpej /*
    604      1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    605      1.26       cgd  */
    606  1.66.2.1    bouyer 
    607      1.26       cgd void
    608  1.66.2.1    bouyer wakeup(void *ident)
    609      1.26       cgd {
    610      1.26       cgd 	int s;
    611      1.26       cgd 
    612  1.66.2.1    bouyer 	SCHED_ASSERT_UNLOCKED();
    613  1.66.2.1    bouyer 
    614  1.66.2.1    bouyer 	SCHED_LOCK(s);
    615  1.66.2.1    bouyer 	sched_wakeup(ident);
    616  1.66.2.1    bouyer 	SCHED_UNLOCK(s);
    617  1.66.2.1    bouyer }
    618  1.66.2.1    bouyer 
    619  1.66.2.1    bouyer void
    620  1.66.2.1    bouyer sched_wakeup(void *ident)
    621  1.66.2.1    bouyer {
    622  1.66.2.1    bouyer 	struct slpque *qp;
    623  1.66.2.1    bouyer 	struct proc *p, **q;
    624  1.66.2.1    bouyer 
    625  1.66.2.1    bouyer 	SCHED_ASSERT_LOCKED();
    626  1.66.2.1    bouyer 
    627  1.66.2.1    bouyer 	qp = SLPQUE(ident);
    628  1.66.2.1    bouyer  restart:
    629      1.34  christos 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    630      1.26       cgd #ifdef DIAGNOSTIC
    631      1.34  christos 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    632      1.26       cgd 			panic("wakeup");
    633      1.26       cgd #endif
    634      1.26       cgd 		if (p->p_wchan == ident) {
    635      1.26       cgd 			p->p_wchan = 0;
    636      1.26       cgd 			*q = p->p_forw;
    637      1.26       cgd 			if (qp->sq_tailp == &p->p_forw)
    638      1.26       cgd 				qp->sq_tailp = q;
    639      1.26       cgd 			if (p->p_stat == SSLEEP) {
    640      1.63   thorpej 				awaken(p);
    641      1.26       cgd 				goto restart;
    642      1.26       cgd 			}
    643      1.26       cgd 		} else
    644      1.26       cgd 			q = &p->p_forw;
    645      1.63   thorpej 	}
    646      1.63   thorpej }
    647      1.63   thorpej 
    648      1.63   thorpej /*
    649      1.63   thorpej  * Make the highest priority process first in line on the specified
    650      1.63   thorpej  * identifier runnable.
    651      1.63   thorpej  */
    652      1.63   thorpej void
    653  1.66.2.1    bouyer wakeup_one(void *ident)
    654      1.63   thorpej {
    655      1.63   thorpej 	struct slpque *qp;
    656      1.63   thorpej 	struct proc *p, **q;
    657      1.63   thorpej 	struct proc *best_sleepp, **best_sleepq;
    658      1.63   thorpej 	struct proc *best_stopp, **best_stopq;
    659      1.63   thorpej 	int s;
    660      1.63   thorpej 
    661      1.63   thorpej 	best_sleepp = best_stopp = NULL;
    662      1.63   thorpej 	best_sleepq = best_stopq = NULL;
    663      1.63   thorpej 
    664  1.66.2.1    bouyer 	SCHED_LOCK(s);
    665  1.66.2.1    bouyer 
    666  1.66.2.1    bouyer 	qp = SLPQUE(ident);
    667  1.66.2.1    bouyer 
    668      1.63   thorpej 	for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
    669      1.63   thorpej #ifdef DIAGNOSTIC
    670      1.63   thorpej 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    671      1.63   thorpej 			panic("wakeup_one");
    672      1.63   thorpej #endif
    673      1.63   thorpej 		if (p->p_wchan == ident) {
    674      1.63   thorpej 			if (p->p_stat == SSLEEP) {
    675      1.63   thorpej 				if (best_sleepp == NULL ||
    676      1.63   thorpej 				    p->p_priority < best_sleepp->p_priority) {
    677      1.63   thorpej 					best_sleepp = p;
    678      1.63   thorpej 					best_sleepq = q;
    679      1.63   thorpej 				}
    680      1.63   thorpej 			} else {
    681      1.63   thorpej 				if (best_stopp == NULL ||
    682      1.63   thorpej 				    p->p_priority < best_stopp->p_priority) {
    683      1.63   thorpej 					best_stopp = p;
    684      1.63   thorpej 					best_stopq = q;
    685      1.63   thorpej 				}
    686      1.63   thorpej 			}
    687      1.63   thorpej 		}
    688      1.63   thorpej 	}
    689      1.63   thorpej 
    690      1.63   thorpej 	/*
    691      1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    692      1.63   thorpej 	 * process.
    693      1.63   thorpej 	 */
    694      1.63   thorpej 	if (best_sleepp != NULL) {
    695      1.63   thorpej 		p = best_sleepp;
    696      1.63   thorpej 		q = best_sleepq;
    697      1.63   thorpej 	} else {
    698      1.63   thorpej 		p = best_stopp;
    699      1.63   thorpej 		q = best_stopq;
    700      1.63   thorpej 	}
    701      1.63   thorpej 
    702      1.63   thorpej 	if (p != NULL) {
    703  1.66.2.1    bouyer 		p->p_wchan = NULL;
    704      1.63   thorpej 		*q = p->p_forw;
    705      1.63   thorpej 		if (qp->sq_tailp == &p->p_forw)
    706      1.63   thorpej 			qp->sq_tailp = q;
    707      1.63   thorpej 		if (p->p_stat == SSLEEP)
    708      1.63   thorpej 			awaken(p);
    709      1.26       cgd 	}
    710  1.66.2.1    bouyer 	SCHED_UNLOCK(s);
    711  1.66.2.1    bouyer }
    712  1.66.2.1    bouyer 
    713  1.66.2.1    bouyer /*
    714  1.66.2.1    bouyer  * General yield call.  Puts the current process back on its run queue and
    715  1.66.2.1    bouyer  * performs a voluntary context switch.
    716  1.66.2.1    bouyer  */
    717  1.66.2.1    bouyer void
    718  1.66.2.1    bouyer yield(void)
    719  1.66.2.1    bouyer {
    720  1.66.2.1    bouyer 	struct proc *p = curproc;
    721  1.66.2.1    bouyer 	int s;
    722  1.66.2.1    bouyer 
    723  1.66.2.1    bouyer 	SCHED_LOCK(s);
    724  1.66.2.1    bouyer 	p->p_priority = p->p_usrpri;
    725  1.66.2.1    bouyer 	p->p_stat = SRUN;
    726  1.66.2.1    bouyer 	setrunqueue(p);
    727  1.66.2.1    bouyer 	p->p_stats->p_ru.ru_nvcsw++;
    728  1.66.2.1    bouyer 	mi_switch(p);
    729  1.66.2.1    bouyer 	SCHED_ASSERT_UNLOCKED();
    730      1.26       cgd 	splx(s);
    731      1.26       cgd }
    732      1.26       cgd 
    733      1.26       cgd /*
    734  1.66.2.1    bouyer  * General preemption call.  Puts the current process back on its run queue
    735  1.66.2.1    bouyer  * and performs an involuntary context switch.  If a process is supplied,
    736  1.66.2.1    bouyer  * we switch to that process.  Otherwise, we use the normal process selection
    737  1.66.2.1    bouyer  * criteria.
    738      1.26       cgd  */
    739      1.26       cgd void
    740  1.66.2.1    bouyer preempt(struct proc *newp)
    741      1.26       cgd {
    742  1.66.2.1    bouyer 	struct proc *p = curproc;
    743  1.66.2.1    bouyer 	int s;
    744  1.66.2.1    bouyer 
    745  1.66.2.1    bouyer 	/*
    746  1.66.2.1    bouyer 	 * XXX Switching to a specific process is not supported yet.
    747  1.66.2.1    bouyer 	 */
    748  1.66.2.1    bouyer 	if (newp != NULL)
    749  1.66.2.1    bouyer 		panic("preempt: cpu_preempt not yet implemented");
    750  1.66.2.1    bouyer 
    751  1.66.2.1    bouyer 	SCHED_LOCK(s);
    752  1.66.2.1    bouyer 	p->p_priority = p->p_usrpri;
    753  1.66.2.1    bouyer 	p->p_stat = SRUN;
    754  1.66.2.1    bouyer 	setrunqueue(p);
    755  1.66.2.1    bouyer 	p->p_stats->p_ru.ru_nivcsw++;
    756  1.66.2.1    bouyer 	mi_switch(p);
    757  1.66.2.1    bouyer 	SCHED_ASSERT_UNLOCKED();
    758  1.66.2.1    bouyer 	splx(s);
    759  1.66.2.1    bouyer }
    760  1.66.2.1    bouyer 
    761  1.66.2.1    bouyer /*
    762  1.66.2.1    bouyer  * The machine independent parts of context switch.
    763  1.66.2.1    bouyer  * Must be called at splsched() (no higher!) and with
    764  1.66.2.1    bouyer  * the sched_lock held.
    765  1.66.2.1    bouyer  */
    766  1.66.2.1    bouyer void
    767  1.66.2.1    bouyer mi_switch(struct proc *p)
    768  1.66.2.1    bouyer {
    769  1.66.2.1    bouyer 	struct schedstate_percpu *spc;
    770  1.66.2.1    bouyer 	struct rlimit *rlim;
    771  1.66.2.1    bouyer 	long s, u;
    772      1.26       cgd 	struct timeval tv;
    773  1.66.2.1    bouyer #if defined(MULTIPROCESSOR)
    774  1.66.2.1    bouyer 	int hold_count;
    775  1.66.2.1    bouyer #endif
    776      1.26       cgd 
    777  1.66.2.1    bouyer 	SCHED_ASSERT_LOCKED();
    778  1.66.2.1    bouyer 
    779  1.66.2.1    bouyer #if defined(MULTIPROCESSOR)
    780  1.66.2.1    bouyer 	/*
    781  1.66.2.1    bouyer 	 * Release the kernel_lock, as we are about to yield the CPU.
    782  1.66.2.1    bouyer 	 * The scheduler lock is still held until cpu_switch()
    783  1.66.2.1    bouyer 	 * selects a new process and removes it from the run queue.
    784  1.66.2.1    bouyer 	 */
    785  1.66.2.1    bouyer 	if (p->p_flag & P_BIGLOCK)
    786  1.66.2.1    bouyer 		hold_count = spinlock_release_all(&kernel_lock);
    787      1.54       chs #endif
    788  1.66.2.1    bouyer 
    789  1.66.2.1    bouyer 	KDASSERT(p->p_cpu != NULL);
    790  1.66.2.1    bouyer 	KDASSERT(p->p_cpu == curcpu());
    791  1.66.2.1    bouyer 
    792  1.66.2.1    bouyer 	spc = &p->p_cpu->ci_schedstate;
    793  1.66.2.1    bouyer 
    794  1.66.2.1    bouyer #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    795  1.66.2.1    bouyer 	spinlock_switchcheck();
    796      1.50      fvdl #endif
    797  1.66.2.1    bouyer #ifdef LOCKDEBUG
    798  1.66.2.1    bouyer 	simple_lock_switchcheck();
    799  1.66.2.1    bouyer #endif
    800  1.66.2.1    bouyer 
    801      1.26       cgd 	/*
    802      1.26       cgd 	 * Compute the amount of time during which the current
    803      1.26       cgd 	 * process was running, and add that to its total so far.
    804      1.26       cgd 	 */
    805      1.26       cgd 	microtime(&tv);
    806  1.66.2.1    bouyer 	u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    807  1.66.2.1    bouyer 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    808      1.26       cgd 	if (u < 0) {
    809      1.26       cgd 		u += 1000000;
    810      1.26       cgd 		s--;
    811      1.26       cgd 	} else if (u >= 1000000) {
    812      1.26       cgd 		u -= 1000000;
    813      1.26       cgd 		s++;
    814      1.26       cgd 	}
    815      1.26       cgd 	p->p_rtime.tv_usec = u;
    816      1.26       cgd 	p->p_rtime.tv_sec = s;
    817      1.26       cgd 
    818      1.26       cgd 	/*
    819      1.26       cgd 	 * Check if the process exceeds its cpu resource allocation.
    820      1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    821      1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    822      1.26       cgd 	 */
    823      1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    824      1.26       cgd 	if (s >= rlim->rlim_cur) {
    825      1.26       cgd 		if (s >= rlim->rlim_max)
    826      1.26       cgd 			psignal(p, SIGKILL);
    827      1.26       cgd 		else {
    828      1.26       cgd 			psignal(p, SIGXCPU);
    829      1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    830      1.26       cgd 				rlim->rlim_cur += 5;
    831      1.26       cgd 		}
    832      1.26       cgd 	}
    833  1.66.2.1    bouyer 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    834  1.66.2.1    bouyer 	    p->p_nice == NZERO) {
    835      1.39        ws 		p->p_nice = autoniceval + NZERO;
    836      1.26       cgd 		resetpriority(p);
    837      1.26       cgd 	}
    838      1.26       cgd 
    839      1.26       cgd 	/*
    840  1.66.2.1    bouyer 	 * Process is about to yield the CPU; clear the appropriate
    841  1.66.2.1    bouyer 	 * scheduling flags.
    842  1.66.2.1    bouyer 	 */
    843  1.66.2.1    bouyer 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    844  1.66.2.1    bouyer 
    845  1.66.2.1    bouyer 	/*
    846  1.66.2.1    bouyer 	 * Pick a new current process and switch to it.  When we
    847  1.66.2.1    bouyer 	 * run again, we'll return back here.
    848      1.26       cgd 	 */
    849      1.47       mrg 	uvmexp.swtch++;
    850      1.26       cgd 	cpu_switch(p);
    851  1.66.2.1    bouyer 
    852  1.66.2.1    bouyer 	/*
    853  1.66.2.1    bouyer 	 * Make sure that MD code released the scheduler lock before
    854  1.66.2.1    bouyer 	 * resuming us.
    855  1.66.2.1    bouyer 	 */
    856  1.66.2.1    bouyer 	SCHED_ASSERT_UNLOCKED();
    857  1.66.2.1    bouyer 
    858  1.66.2.1    bouyer 	/*
    859  1.66.2.1    bouyer 	 * We're running again; record our new start time.  We might
    860  1.66.2.1    bouyer 	 * be running on a new CPU now, so don't use the cache'd
    861  1.66.2.1    bouyer 	 * schedstate_percpu pointer.
    862  1.66.2.1    bouyer 	 */
    863  1.66.2.1    bouyer 	KDASSERT(p->p_cpu != NULL);
    864  1.66.2.1    bouyer 	KDASSERT(p->p_cpu == curcpu());
    865  1.66.2.1    bouyer 	microtime(&p->p_cpu->ci_schedstate.spc_runtime);
    866  1.66.2.1    bouyer 
    867  1.66.2.1    bouyer #if defined(MULTIPROCESSOR)
    868  1.66.2.1    bouyer 	/*
    869  1.66.2.1    bouyer 	 * Reacquire the kernel_lock now.  We do this after we've
    870  1.66.2.1    bouyer 	 * released the scheduler lock to avoid deadlock, and before
    871  1.66.2.1    bouyer 	 * we reacquire the interlock.
    872  1.66.2.1    bouyer 	 */
    873  1.66.2.1    bouyer 	if (p->p_flag & P_BIGLOCK)
    874  1.66.2.1    bouyer 		spinlock_acquire_count(&kernel_lock, hold_count);
    875  1.66.2.1    bouyer #endif
    876      1.26       cgd }
    877      1.26       cgd 
    878      1.26       cgd /*
    879      1.26       cgd  * Initialize the (doubly-linked) run queues
    880      1.26       cgd  * to be empty.
    881      1.26       cgd  */
    882      1.26       cgd void
    883      1.26       cgd rqinit()
    884      1.26       cgd {
    885  1.66.2.1    bouyer 	int i;
    886      1.26       cgd 
    887  1.66.2.1    bouyer 	for (i = 0; i < RUNQUE_NQS; i++)
    888  1.66.2.1    bouyer 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    889  1.66.2.1    bouyer 		    (struct proc *)&sched_qs[i];
    890      1.26       cgd }
    891      1.26       cgd 
    892      1.26       cgd /*
    893      1.26       cgd  * Change process state to be runnable,
    894      1.26       cgd  * placing it on the run queue if it is in memory,
    895      1.26       cgd  * and awakening the swapper if it isn't in memory.
    896      1.26       cgd  */
    897      1.26       cgd void
    898  1.66.2.1    bouyer setrunnable(struct proc *p)
    899      1.26       cgd {
    900      1.26       cgd 
    901  1.66.2.1    bouyer 	SCHED_ASSERT_LOCKED();
    902  1.66.2.1    bouyer 
    903      1.26       cgd 	switch (p->p_stat) {
    904      1.26       cgd 	case 0:
    905      1.26       cgd 	case SRUN:
    906  1.66.2.1    bouyer 	case SONPROC:
    907      1.26       cgd 	case SZOMB:
    908      1.60   thorpej 	case SDEAD:
    909      1.26       cgd 	default:
    910      1.26       cgd 		panic("setrunnable");
    911      1.26       cgd 	case SSTOP:
    912      1.33   mycroft 		/*
    913      1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    914      1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    915      1.33   mycroft 		 */
    916      1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    917      1.53   mycroft 			sigaddset(&p->p_siglist, p->p_xstat);
    918      1.53   mycroft 			p->p_sigcheck = 1;
    919      1.53   mycroft 		}
    920      1.26       cgd 	case SSLEEP:
    921      1.26       cgd 		unsleep(p);		/* e.g. when sending signals */
    922      1.26       cgd 		break;
    923      1.26       cgd 
    924      1.26       cgd 	case SIDL:
    925      1.26       cgd 		break;
    926      1.26       cgd 	}
    927      1.26       cgd 	p->p_stat = SRUN;
    928      1.26       cgd 	if (p->p_flag & P_INMEM)
    929      1.26       cgd 		setrunqueue(p);
    930  1.66.2.1    bouyer 
    931      1.26       cgd 	if (p->p_slptime > 1)
    932      1.26       cgd 		updatepri(p);
    933      1.26       cgd 	p->p_slptime = 0;
    934      1.26       cgd 	if ((p->p_flag & P_INMEM) == 0)
    935  1.66.2.1    bouyer 		sched_wakeup((caddr_t)&proc0);
    936  1.66.2.1    bouyer 	else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
    937  1.66.2.1    bouyer 		/*
    938  1.66.2.1    bouyer 		 * XXXSMP
    939  1.66.2.1    bouyer 		 * This is not exactly right.  Since p->p_cpu persists
    940  1.66.2.1    bouyer 		 * across a context switch, this gives us some sort
    941  1.66.2.1    bouyer 		 * of processor affinity.  But we need to figure out
    942  1.66.2.1    bouyer 		 * at what point it's better to reschedule on a different
    943  1.66.2.1    bouyer 		 * CPU than the last one.
    944  1.66.2.1    bouyer 		 */
    945  1.66.2.1    bouyer 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    946  1.66.2.1    bouyer 	}
    947      1.26       cgd }
    948      1.26       cgd 
    949      1.26       cgd /*
    950      1.26       cgd  * Compute the priority of a process when running in user mode.
    951      1.26       cgd  * Arrange to reschedule if the resulting priority is better
    952      1.26       cgd  * than that of the current process.
    953      1.26       cgd  */
    954      1.26       cgd void
    955  1.66.2.1    bouyer resetpriority(struct proc *p)
    956      1.26       cgd {
    957  1.66.2.1    bouyer 	unsigned int newpriority;
    958  1.66.2.1    bouyer 
    959  1.66.2.1    bouyer 	SCHED_ASSERT_LOCKED();
    960      1.26       cgd 
    961      1.55      ross 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
    962      1.26       cgd 	newpriority = min(newpriority, MAXPRI);
    963      1.26       cgd 	p->p_usrpri = newpriority;
    964  1.66.2.1    bouyer 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
    965  1.66.2.1    bouyer 		/*
    966  1.66.2.1    bouyer 		 * XXXSMP
    967  1.66.2.1    bouyer 		 * Same applies as in setrunnable() above.
    968  1.66.2.1    bouyer 		 */
    969  1.66.2.1    bouyer 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    970  1.66.2.1    bouyer 	}
    971      1.55      ross }
    972      1.55      ross 
    973      1.55      ross /*
    974      1.56      ross  * We adjust the priority of the current process.  The priority of a process
    975      1.56      ross  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
    976      1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
    977      1.56      ross  * will compute a different value each time p_estcpu increases. This can
    978      1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    979      1.56      ross  * queue will not change.  The cpu usage estimator ramps up quite quickly
    980      1.56      ross  * when the process is running (linearly), and decays away exponentially, at
    981      1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
    982  1.66.2.1    bouyer  * principle is that the system will 90% forget that the process used a lot
    983      1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    984      1.56      ross  * processes which haven't run much recently, and to round-robin among other
    985      1.56      ross  * processes.
    986      1.55      ross  */
    987      1.55      ross 
    988      1.55      ross void
    989  1.66.2.1    bouyer schedclock(struct proc *p)
    990      1.55      ross {
    991  1.66.2.1    bouyer 	int s;
    992  1.66.2.1    bouyer 
    993      1.55      ross 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
    994  1.66.2.1    bouyer 
    995  1.66.2.1    bouyer 	SCHED_LOCK(s);
    996      1.55      ross 	resetpriority(p);
    997  1.66.2.1    bouyer 	SCHED_UNLOCK(s);
    998  1.66.2.1    bouyer 
    999      1.55      ross 	if (p->p_priority >= PUSER)
   1000      1.55      ross 		p->p_priority = p->p_usrpri;
   1001  1.66.2.1    bouyer }
   1002  1.66.2.1    bouyer 
   1003  1.66.2.1    bouyer void
   1004  1.66.2.1    bouyer suspendsched()
   1005  1.66.2.1    bouyer {
   1006  1.66.2.1    bouyer 	struct proc *p;
   1007  1.66.2.1    bouyer 	int s;
   1008  1.66.2.1    bouyer 
   1009  1.66.2.1    bouyer 	/*
   1010  1.66.2.1    bouyer 	 * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
   1011  1.66.2.1    bouyer 	 */
   1012  1.66.2.1    bouyer 	proclist_lock_read();
   1013  1.66.2.1    bouyer 	SCHED_LOCK(s);
   1014  1.66.2.1    bouyer 	for (p = LIST_FIRST(&allproc); p != NULL; p = LIST_NEXT(p, p_list)) {
   1015  1.66.2.1    bouyer 		if ((p->p_flag & P_SYSTEM) != 0)
   1016  1.66.2.1    bouyer 			continue;
   1017  1.66.2.1    bouyer 		switch (p->p_stat) {
   1018  1.66.2.1    bouyer 		case SRUN:
   1019  1.66.2.1    bouyer 			if ((p->p_flag & P_INMEM) != 0)
   1020  1.66.2.1    bouyer 				remrunqueue(p);
   1021  1.66.2.1    bouyer 			/* FALLTHROUGH */
   1022  1.66.2.1    bouyer 		case SSLEEP:
   1023  1.66.2.1    bouyer 			p->p_stat = SSTOP;
   1024  1.66.2.1    bouyer 			break;
   1025  1.66.2.1    bouyer 		case SONPROC:
   1026  1.66.2.1    bouyer 			/*
   1027  1.66.2.1    bouyer 			 * XXX SMP: we need to deal with processes on
   1028  1.66.2.1    bouyer 			 * others CPU !
   1029  1.66.2.1    bouyer 			 */
   1030  1.66.2.1    bouyer 			break;
   1031  1.66.2.1    bouyer 		default:
   1032  1.66.2.1    bouyer 			break;
   1033  1.66.2.1    bouyer 		}
   1034  1.66.2.1    bouyer 	}
   1035  1.66.2.1    bouyer 	SCHED_UNLOCK(s);
   1036  1.66.2.1    bouyer 	proclist_unlock_read();
   1037      1.26       cgd }
   1038