kern_synch.c revision 1.66.2.4 1 1.66.2.2 bouyer /* $NetBSD: kern_synch.c,v 1.66.2.4 2001/01/18 09:23:44 bouyer Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.66.2.1 bouyer * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.63 thorpej * NASA Ames Research Center.
10 1.63 thorpej *
11 1.63 thorpej * Redistribution and use in source and binary forms, with or without
12 1.63 thorpej * modification, are permitted provided that the following conditions
13 1.63 thorpej * are met:
14 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.63 thorpej * notice, this list of conditions and the following disclaimer.
16 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.63 thorpej * documentation and/or other materials provided with the distribution.
19 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.63 thorpej * must display the following acknowledgement:
21 1.63 thorpej * This product includes software developed by the NetBSD
22 1.63 thorpej * Foundation, Inc. and its contributors.
23 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.63 thorpej * contributors may be used to endorse or promote products derived
25 1.63 thorpej * from this software without specific prior written permission.
26 1.63 thorpej *
27 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.63 thorpej */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.26 cgd * 3. All advertising materials mentioning features or use of this software
58 1.26 cgd * must display the following acknowledgement:
59 1.26 cgd * This product includes software developed by the University of
60 1.26 cgd * California, Berkeley and its contributors.
61 1.26 cgd * 4. Neither the name of the University nor the names of its contributors
62 1.26 cgd * may be used to endorse or promote products derived from this software
63 1.26 cgd * without specific prior written permission.
64 1.26 cgd *
65 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 1.26 cgd * SUCH DAMAGE.
76 1.26 cgd *
77 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 1.26 cgd */
79 1.48 mrg
80 1.52 jonathan #include "opt_ddb.h"
81 1.51 thorpej #include "opt_ktrace.h"
82 1.66.2.1 bouyer #include "opt_lockdebug.h"
83 1.66.2.1 bouyer #include "opt_multiprocessor.h"
84 1.26 cgd
85 1.26 cgd #include <sys/param.h>
86 1.26 cgd #include <sys/systm.h>
87 1.66.2.1 bouyer #include <sys/callout.h>
88 1.26 cgd #include <sys/proc.h>
89 1.26 cgd #include <sys/kernel.h>
90 1.26 cgd #include <sys/buf.h>
91 1.26 cgd #include <sys/signalvar.h>
92 1.26 cgd #include <sys/resourcevar.h>
93 1.55 ross #include <sys/sched.h>
94 1.47 mrg
95 1.47 mrg #include <uvm/uvm_extern.h>
96 1.47 mrg
97 1.26 cgd #ifdef KTRACE
98 1.26 cgd #include <sys/ktrace.h>
99 1.26 cgd #endif
100 1.26 cgd
101 1.26 cgd #include <machine/cpu.h>
102 1.34 christos
103 1.26 cgd int lbolt; /* once a second sleep address */
104 1.66.2.1 bouyer int rrticks; /* number of hardclock ticks per roundrobin() */
105 1.66.2.1 bouyer
106 1.66.2.1 bouyer /*
107 1.66.2.1 bouyer * The global scheduler state.
108 1.66.2.1 bouyer */
109 1.66.2.1 bouyer struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
110 1.66.2.1 bouyer __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
111 1.66.2.1 bouyer struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
112 1.66.2.1 bouyer
113 1.66.2.1 bouyer struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
114 1.66.2.1 bouyer #if defined(MULTIPROCESSOR)
115 1.66.2.1 bouyer struct lock kernel_lock;
116 1.66.2.1 bouyer #endif
117 1.26 cgd
118 1.66.2.1 bouyer void schedcpu(void *);
119 1.66.2.1 bouyer void updatepri(struct proc *);
120 1.66.2.1 bouyer void endtsleep(void *);
121 1.34 christos
122 1.66.2.1 bouyer __inline void awaken(struct proc *);
123 1.66.2.1 bouyer
124 1.66.2.1 bouyer struct callout schedcpu_ch = CALLOUT_INITIALIZER;
125 1.63 thorpej
126 1.26 cgd /*
127 1.26 cgd * Force switch among equal priority processes every 100ms.
128 1.66.2.1 bouyer * Called from hardclock every hz/10 == rrticks hardclock ticks.
129 1.26 cgd */
130 1.26 cgd /* ARGSUSED */
131 1.26 cgd void
132 1.66.2.1 bouyer roundrobin(struct cpu_info *ci)
133 1.26 cgd {
134 1.66.2.1 bouyer struct schedstate_percpu *spc = &ci->ci_schedstate;
135 1.26 cgd
136 1.66.2.1 bouyer spc->spc_rrticks = rrticks;
137 1.66.2.1 bouyer
138 1.66.2.1 bouyer if (curproc != NULL) {
139 1.66.2.1 bouyer if (spc->spc_flags & SPCF_SEENRR) {
140 1.66.2.1 bouyer /*
141 1.66.2.1 bouyer * The process has already been through a roundrobin
142 1.66.2.1 bouyer * without switching and may be hogging the CPU.
143 1.66.2.1 bouyer * Indicate that the process should yield.
144 1.66.2.1 bouyer */
145 1.66.2.1 bouyer spc->spc_flags |= SPCF_SHOULDYIELD;
146 1.66.2.1 bouyer } else
147 1.66.2.1 bouyer spc->spc_flags |= SPCF_SEENRR;
148 1.66.2.1 bouyer }
149 1.66.2.1 bouyer need_resched(curcpu());
150 1.26 cgd }
151 1.26 cgd
152 1.26 cgd /*
153 1.26 cgd * Constants for digital decay and forget:
154 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
155 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
156 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
157 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
158 1.26 cgd *
159 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
160 1.26 cgd *
161 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
162 1.26 cgd * That is, the system wants to compute a value of decay such
163 1.26 cgd * that the following for loop:
164 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
165 1.26 cgd * p_estcpu *= decay;
166 1.26 cgd * will compute
167 1.26 cgd * p_estcpu *= 0.1;
168 1.26 cgd * for all values of loadavg:
169 1.26 cgd *
170 1.26 cgd * Mathematically this loop can be expressed by saying:
171 1.26 cgd * decay ** (5 * loadavg) ~= .1
172 1.26 cgd *
173 1.26 cgd * The system computes decay as:
174 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
175 1.26 cgd *
176 1.26 cgd * We wish to prove that the system's computation of decay
177 1.26 cgd * will always fulfill the equation:
178 1.26 cgd * decay ** (5 * loadavg) ~= .1
179 1.26 cgd *
180 1.26 cgd * If we compute b as:
181 1.26 cgd * b = 2 * loadavg
182 1.26 cgd * then
183 1.26 cgd * decay = b / (b + 1)
184 1.26 cgd *
185 1.26 cgd * We now need to prove two things:
186 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
187 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
188 1.26 cgd *
189 1.26 cgd * Facts:
190 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
191 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
192 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
193 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
194 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
195 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
196 1.26 cgd * ln(.1) =~ -2.30
197 1.26 cgd *
198 1.26 cgd * Proof of (1):
199 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
200 1.26 cgd * solving for factor,
201 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
202 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
203 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
204 1.26 cgd *
205 1.26 cgd * Proof of (2):
206 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
207 1.26 cgd * solving for power,
208 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
209 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
210 1.26 cgd *
211 1.26 cgd * Actual power values for the implemented algorithm are as follows:
212 1.26 cgd * loadav: 1 2 3 4
213 1.26 cgd * power: 5.68 10.32 14.94 19.55
214 1.26 cgd */
215 1.26 cgd
216 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
217 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
218 1.26 cgd #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
219 1.26 cgd
220 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
221 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
222 1.26 cgd
223 1.26 cgd /*
224 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
225 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
226 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
227 1.26 cgd *
228 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
229 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
230 1.26 cgd *
231 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
232 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
233 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
234 1.26 cgd */
235 1.26 cgd #define CCPU_SHIFT 11
236 1.26 cgd
237 1.26 cgd /*
238 1.26 cgd * Recompute process priorities, every hz ticks.
239 1.26 cgd */
240 1.26 cgd /* ARGSUSED */
241 1.26 cgd void
242 1.66.2.1 bouyer schedcpu(void *arg)
243 1.26 cgd {
244 1.66.2.1 bouyer fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
245 1.66.2.1 bouyer struct proc *p;
246 1.66.2.1 bouyer int s, s1;
247 1.66.2.1 bouyer unsigned int newcpu;
248 1.66 ross int clkhz;
249 1.26 cgd
250 1.62 thorpej proclist_lock_read();
251 1.27 mycroft for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
252 1.26 cgd /*
253 1.26 cgd * Increment time in/out of memory and sleep time
254 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
255 1.26 cgd * (remember them?) overflow takes 45 days.
256 1.26 cgd */
257 1.26 cgd p->p_swtime++;
258 1.26 cgd if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
259 1.26 cgd p->p_slptime++;
260 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
261 1.26 cgd /*
262 1.26 cgd * If the process has slept the entire second,
263 1.26 cgd * stop recalculating its priority until it wakes up.
264 1.26 cgd */
265 1.26 cgd if (p->p_slptime > 1)
266 1.26 cgd continue;
267 1.26 cgd s = splstatclock(); /* prevent state changes */
268 1.26 cgd /*
269 1.26 cgd * p_pctcpu is only for ps.
270 1.26 cgd */
271 1.66 ross clkhz = stathz != 0 ? stathz : hz;
272 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
273 1.66 ross p->p_pctcpu += (clkhz == 100)?
274 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
275 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
276 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
277 1.26 cgd #else
278 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
279 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
280 1.26 cgd #endif
281 1.26 cgd p->p_cpticks = 0;
282 1.55 ross newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
283 1.55 ross p->p_estcpu = newcpu;
284 1.66.2.1 bouyer SCHED_LOCK(s1);
285 1.26 cgd resetpriority(p);
286 1.26 cgd if (p->p_priority >= PUSER) {
287 1.66.2.1 bouyer if (p->p_stat == SRUN &&
288 1.26 cgd (p->p_flag & P_INMEM) &&
289 1.26 cgd (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
290 1.43 cgd remrunqueue(p);
291 1.26 cgd p->p_priority = p->p_usrpri;
292 1.26 cgd setrunqueue(p);
293 1.26 cgd } else
294 1.26 cgd p->p_priority = p->p_usrpri;
295 1.26 cgd }
296 1.66.2.1 bouyer SCHED_UNLOCK(s1);
297 1.26 cgd splx(s);
298 1.26 cgd }
299 1.61 thorpej proclist_unlock_read();
300 1.47 mrg uvm_meter();
301 1.66.2.1 bouyer wakeup((caddr_t)&lbolt);
302 1.66.2.1 bouyer callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
303 1.26 cgd }
304 1.26 cgd
305 1.26 cgd /*
306 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
307 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
308 1.26 cgd * least six times the loadfactor will decay p_estcpu to zero.
309 1.26 cgd */
310 1.26 cgd void
311 1.66.2.1 bouyer updatepri(struct proc *p)
312 1.26 cgd {
313 1.66.2.1 bouyer unsigned int newcpu;
314 1.66.2.1 bouyer fixpt_t loadfac;
315 1.66.2.1 bouyer
316 1.66.2.1 bouyer SCHED_ASSERT_LOCKED();
317 1.66.2.1 bouyer
318 1.66.2.1 bouyer newcpu = p->p_estcpu;
319 1.66.2.1 bouyer loadfac = loadfactor(averunnable.ldavg[0]);
320 1.26 cgd
321 1.26 cgd if (p->p_slptime > 5 * loadfac)
322 1.26 cgd p->p_estcpu = 0;
323 1.26 cgd else {
324 1.26 cgd p->p_slptime--; /* the first time was done in schedcpu */
325 1.26 cgd while (newcpu && --p->p_slptime)
326 1.26 cgd newcpu = (int) decay_cpu(loadfac, newcpu);
327 1.55 ross p->p_estcpu = newcpu;
328 1.26 cgd }
329 1.26 cgd resetpriority(p);
330 1.26 cgd }
331 1.26 cgd
332 1.26 cgd /*
333 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
334 1.26 cgd * lower the priority briefly to allow interrupts, then return.
335 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
336 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
337 1.26 cgd * This priority will typically be 0, or the lowest priority
338 1.26 cgd * that is safe for use on the interrupt stack; it can be made
339 1.26 cgd * higher to block network software interrupts after panics.
340 1.26 cgd */
341 1.26 cgd int safepri;
342 1.26 cgd
343 1.26 cgd /*
344 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
345 1.26 cgd * performed on the specified identifier. The process will then be made
346 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
347 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
348 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
349 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
350 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
351 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
352 1.26 cgd * call should be interrupted by the signal (return EINTR).
353 1.66.2.1 bouyer *
354 1.66.2.1 bouyer * The interlock is held until the scheduler_slock is held. The
355 1.66.2.1 bouyer * interlock will be locked before returning back to the caller
356 1.66.2.1 bouyer * unless the PNORELOCK flag is specified, in which case the
357 1.66.2.1 bouyer * interlock will always be unlocked upon return.
358 1.26 cgd */
359 1.26 cgd int
360 1.66.2.1 bouyer ltsleep(void *ident, int priority, const char *wmesg, int timo,
361 1.66.2.1 bouyer __volatile struct simplelock *interlock)
362 1.66.2.1 bouyer {
363 1.66.2.1 bouyer struct proc *p = curproc;
364 1.66.2.1 bouyer struct slpque *qp;
365 1.66.2.1 bouyer int sig, s;
366 1.66.2.1 bouyer int catch = priority & PCATCH;
367 1.66.2.1 bouyer int relock = (priority & PNORELOCK) == 0;
368 1.26 cgd
369 1.66.2.1 bouyer /*
370 1.66.2.1 bouyer * XXXSMP
371 1.66.2.1 bouyer * This is probably bogus. Figure out what the right
372 1.66.2.1 bouyer * thing to do here really is.
373 1.66.2.1 bouyer * Note that not sleeping if ltsleep is called with curproc == NULL
374 1.66.2.1 bouyer * in the shutdown case is disgusting but partly necessary given
375 1.66.2.1 bouyer * how shutdown (barely) works.
376 1.66.2.1 bouyer */
377 1.66.2.1 bouyer if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
378 1.26 cgd /*
379 1.26 cgd * After a panic, or during autoconfiguration,
380 1.26 cgd * just give interrupts a chance, then just return;
381 1.26 cgd * don't run any other procs or panic below,
382 1.26 cgd * in case this is the idle process and already asleep.
383 1.26 cgd */
384 1.42 cgd s = splhigh();
385 1.26 cgd splx(safepri);
386 1.26 cgd splx(s);
387 1.66.2.1 bouyer if (interlock != NULL && relock == 0)
388 1.66.2.1 bouyer simple_unlock(interlock);
389 1.26 cgd return (0);
390 1.26 cgd }
391 1.42 cgd
392 1.66.2.1 bouyer
393 1.42 cgd #ifdef KTRACE
394 1.42 cgd if (KTRPOINT(p, KTR_CSW))
395 1.66.2.1 bouyer ktrcsw(p, 1, 0);
396 1.42 cgd #endif
397 1.66.2.1 bouyer
398 1.66.2.1 bouyer SCHED_LOCK(s);
399 1.42 cgd
400 1.26 cgd #ifdef DIAGNOSTIC
401 1.64 thorpej if (ident == NULL)
402 1.66.2.1 bouyer panic("ltsleep: ident == NULL");
403 1.66.2.1 bouyer if (p->p_stat != SONPROC)
404 1.66.2.1 bouyer panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
405 1.64 thorpej if (p->p_back != NULL)
406 1.66.2.1 bouyer panic("ltsleep: p_back != NULL");
407 1.26 cgd #endif
408 1.66.2.1 bouyer
409 1.26 cgd p->p_wchan = ident;
410 1.26 cgd p->p_wmesg = wmesg;
411 1.26 cgd p->p_slptime = 0;
412 1.26 cgd p->p_priority = priority & PRIMASK;
413 1.66.2.1 bouyer
414 1.66.2.1 bouyer qp = SLPQUE(ident);
415 1.26 cgd if (qp->sq_head == 0)
416 1.26 cgd qp->sq_head = p;
417 1.26 cgd else
418 1.26 cgd *qp->sq_tailp = p;
419 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
420 1.66.2.1 bouyer
421 1.26 cgd if (timo)
422 1.66.2.1 bouyer callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
423 1.66.2.1 bouyer
424 1.66.2.1 bouyer /*
425 1.66.2.1 bouyer * We can now release the interlock; the scheduler_slock
426 1.66.2.1 bouyer * is held, so a thread can't get in to do wakeup() before
427 1.66.2.1 bouyer * we do the switch.
428 1.66.2.1 bouyer *
429 1.66.2.1 bouyer * XXX We leave the code block here, after inserting ourselves
430 1.66.2.1 bouyer * on the sleep queue, because we might want a more clever
431 1.66.2.1 bouyer * data structure for the sleep queues at some point.
432 1.66.2.1 bouyer */
433 1.66.2.1 bouyer if (interlock != NULL)
434 1.66.2.1 bouyer simple_unlock(interlock);
435 1.66.2.1 bouyer
436 1.26 cgd /*
437 1.26 cgd * We put ourselves on the sleep queue and start our timeout
438 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
439 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
440 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
441 1.26 cgd * without resuming us, thus we must be ready for sleep
442 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
443 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
444 1.26 cgd */
445 1.26 cgd if (catch) {
446 1.26 cgd p->p_flag |= P_SINTR;
447 1.34 christos if ((sig = CURSIG(p)) != 0) {
448 1.66.2.1 bouyer if (p->p_wchan != NULL)
449 1.26 cgd unsleep(p);
450 1.66.2.1 bouyer p->p_stat = SONPROC;
451 1.66.2.1 bouyer SCHED_UNLOCK(s);
452 1.26 cgd goto resume;
453 1.26 cgd }
454 1.66.2.1 bouyer if (p->p_wchan == NULL) {
455 1.26 cgd catch = 0;
456 1.66.2.1 bouyer SCHED_UNLOCK(s);
457 1.26 cgd goto resume;
458 1.26 cgd }
459 1.26 cgd } else
460 1.26 cgd sig = 0;
461 1.26 cgd p->p_stat = SSLEEP;
462 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
463 1.66.2.1 bouyer
464 1.66.2.1 bouyer SCHED_ASSERT_LOCKED();
465 1.66.2.1 bouyer mi_switch(p);
466 1.66.2.1 bouyer
467 1.26 cgd #ifdef DDB
468 1.26 cgd /* handy breakpoint location after process "wakes" */
469 1.26 cgd asm(".globl bpendtsleep ; bpendtsleep:");
470 1.26 cgd #endif
471 1.66.2.1 bouyer
472 1.66.2.1 bouyer SCHED_ASSERT_UNLOCKED();
473 1.26 cgd splx(s);
474 1.66.2.1 bouyer
475 1.66.2.1 bouyer resume:
476 1.66.2.1 bouyer KDASSERT(p->p_cpu != NULL);
477 1.66.2.1 bouyer KDASSERT(p->p_cpu == curcpu());
478 1.66.2.1 bouyer p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
479 1.66.2.1 bouyer
480 1.26 cgd p->p_flag &= ~P_SINTR;
481 1.26 cgd if (p->p_flag & P_TIMEOUT) {
482 1.26 cgd p->p_flag &= ~P_TIMEOUT;
483 1.26 cgd if (sig == 0) {
484 1.26 cgd #ifdef KTRACE
485 1.26 cgd if (KTRPOINT(p, KTR_CSW))
486 1.66.2.1 bouyer ktrcsw(p, 0, 0);
487 1.26 cgd #endif
488 1.66.2.1 bouyer if (relock && interlock != NULL)
489 1.66.2.1 bouyer simple_lock(interlock);
490 1.26 cgd return (EWOULDBLOCK);
491 1.26 cgd }
492 1.26 cgd } else if (timo)
493 1.66.2.1 bouyer callout_stop(&p->p_tsleep_ch);
494 1.34 christos if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
495 1.26 cgd #ifdef KTRACE
496 1.26 cgd if (KTRPOINT(p, KTR_CSW))
497 1.66.2.1 bouyer ktrcsw(p, 0, 0);
498 1.26 cgd #endif
499 1.66.2.1 bouyer if (relock && interlock != NULL)
500 1.66.2.1 bouyer simple_lock(interlock);
501 1.66.2.2 bouyer if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
502 1.26 cgd return (EINTR);
503 1.26 cgd return (ERESTART);
504 1.26 cgd }
505 1.26 cgd #ifdef KTRACE
506 1.26 cgd if (KTRPOINT(p, KTR_CSW))
507 1.66.2.1 bouyer ktrcsw(p, 0, 0);
508 1.26 cgd #endif
509 1.66.2.1 bouyer if (relock && interlock != NULL)
510 1.66.2.1 bouyer simple_lock(interlock);
511 1.26 cgd return (0);
512 1.26 cgd }
513 1.26 cgd
514 1.26 cgd /*
515 1.26 cgd * Implement timeout for tsleep.
516 1.26 cgd * If process hasn't been awakened (wchan non-zero),
517 1.26 cgd * set timeout flag and undo the sleep. If proc
518 1.26 cgd * is stopped, just unsleep so it will remain stopped.
519 1.26 cgd */
520 1.26 cgd void
521 1.66.2.1 bouyer endtsleep(void *arg)
522 1.26 cgd {
523 1.66.2.1 bouyer struct proc *p;
524 1.26 cgd int s;
525 1.26 cgd
526 1.26 cgd p = (struct proc *)arg;
527 1.66.2.1 bouyer
528 1.66.2.1 bouyer SCHED_LOCK(s);
529 1.26 cgd if (p->p_wchan) {
530 1.26 cgd if (p->p_stat == SSLEEP)
531 1.26 cgd setrunnable(p);
532 1.26 cgd else
533 1.26 cgd unsleep(p);
534 1.26 cgd p->p_flag |= P_TIMEOUT;
535 1.26 cgd }
536 1.66.2.1 bouyer SCHED_UNLOCK(s);
537 1.26 cgd }
538 1.26 cgd
539 1.26 cgd /*
540 1.26 cgd * Remove a process from its wait queue
541 1.26 cgd */
542 1.26 cgd void
543 1.66.2.1 bouyer unsleep(struct proc *p)
544 1.26 cgd {
545 1.66.2.1 bouyer struct slpque *qp;
546 1.66.2.1 bouyer struct proc **hp;
547 1.66.2.1 bouyer
548 1.66.2.1 bouyer SCHED_ASSERT_LOCKED();
549 1.26 cgd
550 1.26 cgd if (p->p_wchan) {
551 1.66.2.1 bouyer hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
552 1.26 cgd while (*hp != p)
553 1.26 cgd hp = &(*hp)->p_forw;
554 1.26 cgd *hp = p->p_forw;
555 1.26 cgd if (qp->sq_tailp == &p->p_forw)
556 1.26 cgd qp->sq_tailp = hp;
557 1.26 cgd p->p_wchan = 0;
558 1.26 cgd }
559 1.26 cgd }
560 1.26 cgd
561 1.26 cgd /*
562 1.63 thorpej * Optimized-for-wakeup() version of setrunnable().
563 1.63 thorpej */
564 1.63 thorpej __inline void
565 1.66.2.1 bouyer awaken(struct proc *p)
566 1.63 thorpej {
567 1.63 thorpej
568 1.66.2.1 bouyer SCHED_ASSERT_LOCKED();
569 1.66.2.1 bouyer
570 1.63 thorpej if (p->p_slptime > 1)
571 1.63 thorpej updatepri(p);
572 1.63 thorpej p->p_slptime = 0;
573 1.63 thorpej p->p_stat = SRUN;
574 1.66.2.1 bouyer
575 1.63 thorpej /*
576 1.63 thorpej * Since curpriority is a user priority, p->p_priority
577 1.63 thorpej * is always better than curpriority.
578 1.63 thorpej */
579 1.63 thorpej if (p->p_flag & P_INMEM) {
580 1.63 thorpej setrunqueue(p);
581 1.66.2.1 bouyer KASSERT(p->p_cpu != NULL);
582 1.66.2.1 bouyer need_resched(p->p_cpu);
583 1.63 thorpej } else
584 1.66.2.1 bouyer sched_wakeup(&proc0);
585 1.63 thorpej }
586 1.63 thorpej
587 1.66.2.1 bouyer #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
588 1.66.2.1 bouyer void
589 1.66.2.1 bouyer sched_unlock_idle(void)
590 1.66.2.1 bouyer {
591 1.66.2.1 bouyer
592 1.66.2.1 bouyer simple_unlock(&sched_lock);
593 1.66.2.1 bouyer }
594 1.66.2.1 bouyer
595 1.66.2.1 bouyer void
596 1.66.2.1 bouyer sched_lock_idle(void)
597 1.66.2.1 bouyer {
598 1.66.2.1 bouyer
599 1.66.2.1 bouyer simple_lock(&sched_lock);
600 1.66.2.1 bouyer }
601 1.66.2.1 bouyer #endif /* MULTIPROCESSOR || LOCKDEBUG */
602 1.66.2.1 bouyer
603 1.63 thorpej /*
604 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
605 1.26 cgd */
606 1.66.2.1 bouyer
607 1.26 cgd void
608 1.66.2.1 bouyer wakeup(void *ident)
609 1.26 cgd {
610 1.26 cgd int s;
611 1.26 cgd
612 1.66.2.1 bouyer SCHED_ASSERT_UNLOCKED();
613 1.66.2.1 bouyer
614 1.66.2.1 bouyer SCHED_LOCK(s);
615 1.66.2.1 bouyer sched_wakeup(ident);
616 1.66.2.1 bouyer SCHED_UNLOCK(s);
617 1.66.2.1 bouyer }
618 1.66.2.1 bouyer
619 1.66.2.1 bouyer void
620 1.66.2.1 bouyer sched_wakeup(void *ident)
621 1.66.2.1 bouyer {
622 1.66.2.1 bouyer struct slpque *qp;
623 1.66.2.1 bouyer struct proc *p, **q;
624 1.66.2.1 bouyer
625 1.66.2.1 bouyer SCHED_ASSERT_LOCKED();
626 1.66.2.1 bouyer
627 1.66.2.1 bouyer qp = SLPQUE(ident);
628 1.66.2.1 bouyer restart:
629 1.34 christos for (q = &qp->sq_head; (p = *q) != NULL; ) {
630 1.26 cgd #ifdef DIAGNOSTIC
631 1.34 christos if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
632 1.26 cgd panic("wakeup");
633 1.26 cgd #endif
634 1.26 cgd if (p->p_wchan == ident) {
635 1.26 cgd p->p_wchan = 0;
636 1.26 cgd *q = p->p_forw;
637 1.26 cgd if (qp->sq_tailp == &p->p_forw)
638 1.26 cgd qp->sq_tailp = q;
639 1.26 cgd if (p->p_stat == SSLEEP) {
640 1.63 thorpej awaken(p);
641 1.26 cgd goto restart;
642 1.26 cgd }
643 1.26 cgd } else
644 1.26 cgd q = &p->p_forw;
645 1.63 thorpej }
646 1.63 thorpej }
647 1.63 thorpej
648 1.63 thorpej /*
649 1.63 thorpej * Make the highest priority process first in line on the specified
650 1.63 thorpej * identifier runnable.
651 1.63 thorpej */
652 1.63 thorpej void
653 1.66.2.1 bouyer wakeup_one(void *ident)
654 1.63 thorpej {
655 1.63 thorpej struct slpque *qp;
656 1.63 thorpej struct proc *p, **q;
657 1.63 thorpej struct proc *best_sleepp, **best_sleepq;
658 1.63 thorpej struct proc *best_stopp, **best_stopq;
659 1.63 thorpej int s;
660 1.63 thorpej
661 1.63 thorpej best_sleepp = best_stopp = NULL;
662 1.63 thorpej best_sleepq = best_stopq = NULL;
663 1.63 thorpej
664 1.66.2.1 bouyer SCHED_LOCK(s);
665 1.66.2.1 bouyer
666 1.66.2.1 bouyer qp = SLPQUE(ident);
667 1.66.2.1 bouyer
668 1.63 thorpej for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
669 1.63 thorpej #ifdef DIAGNOSTIC
670 1.63 thorpej if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
671 1.63 thorpej panic("wakeup_one");
672 1.63 thorpej #endif
673 1.63 thorpej if (p->p_wchan == ident) {
674 1.63 thorpej if (p->p_stat == SSLEEP) {
675 1.63 thorpej if (best_sleepp == NULL ||
676 1.63 thorpej p->p_priority < best_sleepp->p_priority) {
677 1.63 thorpej best_sleepp = p;
678 1.63 thorpej best_sleepq = q;
679 1.63 thorpej }
680 1.63 thorpej } else {
681 1.63 thorpej if (best_stopp == NULL ||
682 1.63 thorpej p->p_priority < best_stopp->p_priority) {
683 1.63 thorpej best_stopp = p;
684 1.63 thorpej best_stopq = q;
685 1.63 thorpej }
686 1.63 thorpej }
687 1.63 thorpej }
688 1.63 thorpej }
689 1.63 thorpej
690 1.63 thorpej /*
691 1.63 thorpej * Consider any SSLEEP process higher than the highest priority SSTOP
692 1.63 thorpej * process.
693 1.63 thorpej */
694 1.63 thorpej if (best_sleepp != NULL) {
695 1.63 thorpej p = best_sleepp;
696 1.63 thorpej q = best_sleepq;
697 1.63 thorpej } else {
698 1.63 thorpej p = best_stopp;
699 1.63 thorpej q = best_stopq;
700 1.63 thorpej }
701 1.63 thorpej
702 1.63 thorpej if (p != NULL) {
703 1.66.2.1 bouyer p->p_wchan = NULL;
704 1.63 thorpej *q = p->p_forw;
705 1.63 thorpej if (qp->sq_tailp == &p->p_forw)
706 1.63 thorpej qp->sq_tailp = q;
707 1.63 thorpej if (p->p_stat == SSLEEP)
708 1.63 thorpej awaken(p);
709 1.26 cgd }
710 1.66.2.1 bouyer SCHED_UNLOCK(s);
711 1.66.2.1 bouyer }
712 1.66.2.1 bouyer
713 1.66.2.1 bouyer /*
714 1.66.2.1 bouyer * General yield call. Puts the current process back on its run queue and
715 1.66.2.1 bouyer * performs a voluntary context switch.
716 1.66.2.1 bouyer */
717 1.66.2.1 bouyer void
718 1.66.2.1 bouyer yield(void)
719 1.66.2.1 bouyer {
720 1.66.2.1 bouyer struct proc *p = curproc;
721 1.66.2.1 bouyer int s;
722 1.66.2.1 bouyer
723 1.66.2.1 bouyer SCHED_LOCK(s);
724 1.66.2.1 bouyer p->p_priority = p->p_usrpri;
725 1.66.2.1 bouyer p->p_stat = SRUN;
726 1.66.2.1 bouyer setrunqueue(p);
727 1.66.2.1 bouyer p->p_stats->p_ru.ru_nvcsw++;
728 1.66.2.1 bouyer mi_switch(p);
729 1.66.2.1 bouyer SCHED_ASSERT_UNLOCKED();
730 1.26 cgd splx(s);
731 1.26 cgd }
732 1.26 cgd
733 1.26 cgd /*
734 1.66.2.1 bouyer * General preemption call. Puts the current process back on its run queue
735 1.66.2.1 bouyer * and performs an involuntary context switch. If a process is supplied,
736 1.66.2.1 bouyer * we switch to that process. Otherwise, we use the normal process selection
737 1.66.2.1 bouyer * criteria.
738 1.26 cgd */
739 1.26 cgd void
740 1.66.2.1 bouyer preempt(struct proc *newp)
741 1.26 cgd {
742 1.66.2.1 bouyer struct proc *p = curproc;
743 1.66.2.1 bouyer int s;
744 1.66.2.1 bouyer
745 1.66.2.1 bouyer /*
746 1.66.2.1 bouyer * XXX Switching to a specific process is not supported yet.
747 1.66.2.1 bouyer */
748 1.66.2.1 bouyer if (newp != NULL)
749 1.66.2.1 bouyer panic("preempt: cpu_preempt not yet implemented");
750 1.66.2.1 bouyer
751 1.66.2.1 bouyer SCHED_LOCK(s);
752 1.66.2.1 bouyer p->p_priority = p->p_usrpri;
753 1.66.2.1 bouyer p->p_stat = SRUN;
754 1.66.2.1 bouyer setrunqueue(p);
755 1.66.2.1 bouyer p->p_stats->p_ru.ru_nivcsw++;
756 1.66.2.1 bouyer mi_switch(p);
757 1.66.2.1 bouyer SCHED_ASSERT_UNLOCKED();
758 1.66.2.1 bouyer splx(s);
759 1.66.2.1 bouyer }
760 1.66.2.1 bouyer
761 1.66.2.1 bouyer /*
762 1.66.2.1 bouyer * The machine independent parts of context switch.
763 1.66.2.1 bouyer * Must be called at splsched() (no higher!) and with
764 1.66.2.1 bouyer * the sched_lock held.
765 1.66.2.1 bouyer */
766 1.66.2.1 bouyer void
767 1.66.2.1 bouyer mi_switch(struct proc *p)
768 1.66.2.1 bouyer {
769 1.66.2.1 bouyer struct schedstate_percpu *spc;
770 1.66.2.1 bouyer struct rlimit *rlim;
771 1.66.2.1 bouyer long s, u;
772 1.26 cgd struct timeval tv;
773 1.66.2.1 bouyer #if defined(MULTIPROCESSOR)
774 1.66.2.1 bouyer int hold_count;
775 1.66.2.1 bouyer #endif
776 1.26 cgd
777 1.66.2.1 bouyer SCHED_ASSERT_LOCKED();
778 1.66.2.1 bouyer
779 1.66.2.1 bouyer #if defined(MULTIPROCESSOR)
780 1.66.2.1 bouyer /*
781 1.66.2.1 bouyer * Release the kernel_lock, as we are about to yield the CPU.
782 1.66.2.1 bouyer * The scheduler lock is still held until cpu_switch()
783 1.66.2.1 bouyer * selects a new process and removes it from the run queue.
784 1.66.2.1 bouyer */
785 1.66.2.1 bouyer if (p->p_flag & P_BIGLOCK)
786 1.66.2.1 bouyer hold_count = spinlock_release_all(&kernel_lock);
787 1.54 chs #endif
788 1.66.2.1 bouyer
789 1.66.2.1 bouyer KDASSERT(p->p_cpu != NULL);
790 1.66.2.1 bouyer KDASSERT(p->p_cpu == curcpu());
791 1.66.2.1 bouyer
792 1.66.2.1 bouyer spc = &p->p_cpu->ci_schedstate;
793 1.66.2.1 bouyer
794 1.66.2.1 bouyer #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
795 1.66.2.1 bouyer spinlock_switchcheck();
796 1.50 fvdl #endif
797 1.66.2.1 bouyer #ifdef LOCKDEBUG
798 1.66.2.1 bouyer simple_lock_switchcheck();
799 1.66.2.1 bouyer #endif
800 1.66.2.1 bouyer
801 1.26 cgd /*
802 1.26 cgd * Compute the amount of time during which the current
803 1.26 cgd * process was running, and add that to its total so far.
804 1.26 cgd */
805 1.26 cgd microtime(&tv);
806 1.66.2.1 bouyer u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
807 1.66.2.1 bouyer s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
808 1.26 cgd if (u < 0) {
809 1.26 cgd u += 1000000;
810 1.26 cgd s--;
811 1.26 cgd } else if (u >= 1000000) {
812 1.26 cgd u -= 1000000;
813 1.26 cgd s++;
814 1.26 cgd }
815 1.26 cgd p->p_rtime.tv_usec = u;
816 1.26 cgd p->p_rtime.tv_sec = s;
817 1.26 cgd
818 1.26 cgd /*
819 1.26 cgd * Check if the process exceeds its cpu resource allocation.
820 1.26 cgd * If over max, kill it. In any case, if it has run for more
821 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
822 1.26 cgd */
823 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
824 1.26 cgd if (s >= rlim->rlim_cur) {
825 1.66.2.3 bouyer /*
826 1.66.2.3 bouyer * XXXSMP: we're inside the scheduler lock perimeter;
827 1.66.2.3 bouyer * use sched_psignal.
828 1.66.2.3 bouyer */
829 1.26 cgd if (s >= rlim->rlim_max)
830 1.66.2.3 bouyer sched_psignal(p, SIGKILL);
831 1.26 cgd else {
832 1.66.2.3 bouyer sched_psignal(p, SIGXCPU);
833 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
834 1.26 cgd rlim->rlim_cur += 5;
835 1.26 cgd }
836 1.26 cgd }
837 1.66.2.1 bouyer if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
838 1.66.2.1 bouyer p->p_nice == NZERO) {
839 1.39 ws p->p_nice = autoniceval + NZERO;
840 1.26 cgd resetpriority(p);
841 1.26 cgd }
842 1.26 cgd
843 1.26 cgd /*
844 1.66.2.1 bouyer * Process is about to yield the CPU; clear the appropriate
845 1.66.2.1 bouyer * scheduling flags.
846 1.66.2.1 bouyer */
847 1.66.2.1 bouyer spc->spc_flags &= ~SPCF_SWITCHCLEAR;
848 1.66.2.1 bouyer
849 1.66.2.1 bouyer /*
850 1.66.2.1 bouyer * Pick a new current process and switch to it. When we
851 1.66.2.1 bouyer * run again, we'll return back here.
852 1.26 cgd */
853 1.47 mrg uvmexp.swtch++;
854 1.26 cgd cpu_switch(p);
855 1.66.2.1 bouyer
856 1.66.2.1 bouyer /*
857 1.66.2.1 bouyer * Make sure that MD code released the scheduler lock before
858 1.66.2.1 bouyer * resuming us.
859 1.66.2.1 bouyer */
860 1.66.2.1 bouyer SCHED_ASSERT_UNLOCKED();
861 1.66.2.1 bouyer
862 1.66.2.1 bouyer /*
863 1.66.2.1 bouyer * We're running again; record our new start time. We might
864 1.66.2.1 bouyer * be running on a new CPU now, so don't use the cache'd
865 1.66.2.1 bouyer * schedstate_percpu pointer.
866 1.66.2.1 bouyer */
867 1.66.2.1 bouyer KDASSERT(p->p_cpu != NULL);
868 1.66.2.1 bouyer KDASSERT(p->p_cpu == curcpu());
869 1.66.2.1 bouyer microtime(&p->p_cpu->ci_schedstate.spc_runtime);
870 1.66.2.1 bouyer
871 1.66.2.1 bouyer #if defined(MULTIPROCESSOR)
872 1.66.2.1 bouyer /*
873 1.66.2.1 bouyer * Reacquire the kernel_lock now. We do this after we've
874 1.66.2.1 bouyer * released the scheduler lock to avoid deadlock, and before
875 1.66.2.1 bouyer * we reacquire the interlock.
876 1.66.2.1 bouyer */
877 1.66.2.1 bouyer if (p->p_flag & P_BIGLOCK)
878 1.66.2.1 bouyer spinlock_acquire_count(&kernel_lock, hold_count);
879 1.66.2.1 bouyer #endif
880 1.26 cgd }
881 1.26 cgd
882 1.26 cgd /*
883 1.26 cgd * Initialize the (doubly-linked) run queues
884 1.26 cgd * to be empty.
885 1.26 cgd */
886 1.26 cgd void
887 1.26 cgd rqinit()
888 1.26 cgd {
889 1.66.2.1 bouyer int i;
890 1.26 cgd
891 1.66.2.1 bouyer for (i = 0; i < RUNQUE_NQS; i++)
892 1.66.2.1 bouyer sched_qs[i].ph_link = sched_qs[i].ph_rlink =
893 1.66.2.1 bouyer (struct proc *)&sched_qs[i];
894 1.26 cgd }
895 1.26 cgd
896 1.26 cgd /*
897 1.26 cgd * Change process state to be runnable,
898 1.26 cgd * placing it on the run queue if it is in memory,
899 1.26 cgd * and awakening the swapper if it isn't in memory.
900 1.26 cgd */
901 1.26 cgd void
902 1.66.2.1 bouyer setrunnable(struct proc *p)
903 1.26 cgd {
904 1.26 cgd
905 1.66.2.1 bouyer SCHED_ASSERT_LOCKED();
906 1.66.2.1 bouyer
907 1.26 cgd switch (p->p_stat) {
908 1.26 cgd case 0:
909 1.26 cgd case SRUN:
910 1.66.2.1 bouyer case SONPROC:
911 1.26 cgd case SZOMB:
912 1.60 thorpej case SDEAD:
913 1.26 cgd default:
914 1.26 cgd panic("setrunnable");
915 1.26 cgd case SSTOP:
916 1.33 mycroft /*
917 1.33 mycroft * If we're being traced (possibly because someone attached us
918 1.33 mycroft * while we were stopped), check for a signal from the debugger.
919 1.33 mycroft */
920 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
921 1.66.2.3 bouyer sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
922 1.66.2.4 bouyer CHECKSIGS(p);
923 1.53 mycroft }
924 1.26 cgd case SSLEEP:
925 1.26 cgd unsleep(p); /* e.g. when sending signals */
926 1.26 cgd break;
927 1.26 cgd
928 1.26 cgd case SIDL:
929 1.26 cgd break;
930 1.26 cgd }
931 1.26 cgd p->p_stat = SRUN;
932 1.26 cgd if (p->p_flag & P_INMEM)
933 1.26 cgd setrunqueue(p);
934 1.66.2.1 bouyer
935 1.26 cgd if (p->p_slptime > 1)
936 1.26 cgd updatepri(p);
937 1.26 cgd p->p_slptime = 0;
938 1.26 cgd if ((p->p_flag & P_INMEM) == 0)
939 1.66.2.1 bouyer sched_wakeup((caddr_t)&proc0);
940 1.66.2.1 bouyer else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
941 1.66.2.1 bouyer /*
942 1.66.2.1 bouyer * XXXSMP
943 1.66.2.1 bouyer * This is not exactly right. Since p->p_cpu persists
944 1.66.2.1 bouyer * across a context switch, this gives us some sort
945 1.66.2.1 bouyer * of processor affinity. But we need to figure out
946 1.66.2.1 bouyer * at what point it's better to reschedule on a different
947 1.66.2.1 bouyer * CPU than the last one.
948 1.66.2.1 bouyer */
949 1.66.2.1 bouyer need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
950 1.66.2.1 bouyer }
951 1.26 cgd }
952 1.26 cgd
953 1.26 cgd /*
954 1.26 cgd * Compute the priority of a process when running in user mode.
955 1.26 cgd * Arrange to reschedule if the resulting priority is better
956 1.26 cgd * than that of the current process.
957 1.26 cgd */
958 1.26 cgd void
959 1.66.2.1 bouyer resetpriority(struct proc *p)
960 1.26 cgd {
961 1.66.2.1 bouyer unsigned int newpriority;
962 1.66.2.1 bouyer
963 1.66.2.1 bouyer SCHED_ASSERT_LOCKED();
964 1.26 cgd
965 1.55 ross newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
966 1.26 cgd newpriority = min(newpriority, MAXPRI);
967 1.26 cgd p->p_usrpri = newpriority;
968 1.66.2.1 bouyer if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
969 1.66.2.1 bouyer /*
970 1.66.2.1 bouyer * XXXSMP
971 1.66.2.1 bouyer * Same applies as in setrunnable() above.
972 1.66.2.1 bouyer */
973 1.66.2.1 bouyer need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
974 1.66.2.1 bouyer }
975 1.55 ross }
976 1.55 ross
977 1.55 ross /*
978 1.56 ross * We adjust the priority of the current process. The priority of a process
979 1.56 ross * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
980 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
981 1.56 ross * will compute a different value each time p_estcpu increases. This can
982 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
983 1.56 ross * queue will not change. The cpu usage estimator ramps up quite quickly
984 1.56 ross * when the process is running (linearly), and decays away exponentially, at
985 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
986 1.66.2.1 bouyer * principle is that the system will 90% forget that the process used a lot
987 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
988 1.56 ross * processes which haven't run much recently, and to round-robin among other
989 1.56 ross * processes.
990 1.55 ross */
991 1.55 ross
992 1.55 ross void
993 1.66.2.1 bouyer schedclock(struct proc *p)
994 1.55 ross {
995 1.66.2.1 bouyer int s;
996 1.66.2.1 bouyer
997 1.55 ross p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
998 1.66.2.1 bouyer
999 1.66.2.1 bouyer SCHED_LOCK(s);
1000 1.55 ross resetpriority(p);
1001 1.66.2.1 bouyer SCHED_UNLOCK(s);
1002 1.66.2.1 bouyer
1003 1.55 ross if (p->p_priority >= PUSER)
1004 1.55 ross p->p_priority = p->p_usrpri;
1005 1.66.2.1 bouyer }
1006 1.66.2.1 bouyer
1007 1.66.2.1 bouyer void
1008 1.66.2.1 bouyer suspendsched()
1009 1.66.2.1 bouyer {
1010 1.66.2.1 bouyer struct proc *p;
1011 1.66.2.1 bouyer int s;
1012 1.66.2.1 bouyer
1013 1.66.2.1 bouyer /*
1014 1.66.2.1 bouyer * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
1015 1.66.2.1 bouyer */
1016 1.66.2.1 bouyer proclist_lock_read();
1017 1.66.2.1 bouyer SCHED_LOCK(s);
1018 1.66.2.1 bouyer for (p = LIST_FIRST(&allproc); p != NULL; p = LIST_NEXT(p, p_list)) {
1019 1.66.2.1 bouyer if ((p->p_flag & P_SYSTEM) != 0)
1020 1.66.2.1 bouyer continue;
1021 1.66.2.1 bouyer switch (p->p_stat) {
1022 1.66.2.1 bouyer case SRUN:
1023 1.66.2.1 bouyer if ((p->p_flag & P_INMEM) != 0)
1024 1.66.2.1 bouyer remrunqueue(p);
1025 1.66.2.1 bouyer /* FALLTHROUGH */
1026 1.66.2.1 bouyer case SSLEEP:
1027 1.66.2.1 bouyer p->p_stat = SSTOP;
1028 1.66.2.1 bouyer break;
1029 1.66.2.1 bouyer case SONPROC:
1030 1.66.2.1 bouyer /*
1031 1.66.2.1 bouyer * XXX SMP: we need to deal with processes on
1032 1.66.2.1 bouyer * others CPU !
1033 1.66.2.1 bouyer */
1034 1.66.2.1 bouyer break;
1035 1.66.2.1 bouyer default:
1036 1.66.2.1 bouyer break;
1037 1.66.2.1 bouyer }
1038 1.66.2.1 bouyer }
1039 1.66.2.1 bouyer SCHED_UNLOCK(s);
1040 1.66.2.1 bouyer proclist_unlock_read();
1041 1.26 cgd }
1042