kern_synch.c revision 1.68 1 1.68 thorpej /* $NetBSD: kern_synch.c,v 1.68 2000/03/23 06:30:12 thorpej Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.63 thorpej * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.63 thorpej * NASA Ames Research Center.
10 1.63 thorpej *
11 1.63 thorpej * Redistribution and use in source and binary forms, with or without
12 1.63 thorpej * modification, are permitted provided that the following conditions
13 1.63 thorpej * are met:
14 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.63 thorpej * notice, this list of conditions and the following disclaimer.
16 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.63 thorpej * documentation and/or other materials provided with the distribution.
19 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.63 thorpej * must display the following acknowledgement:
21 1.63 thorpej * This product includes software developed by the NetBSD
22 1.63 thorpej * Foundation, Inc. and its contributors.
23 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.63 thorpej * contributors may be used to endorse or promote products derived
25 1.63 thorpej * from this software without specific prior written permission.
26 1.63 thorpej *
27 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.63 thorpej */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.26 cgd * 3. All advertising materials mentioning features or use of this software
58 1.26 cgd * must display the following acknowledgement:
59 1.26 cgd * This product includes software developed by the University of
60 1.26 cgd * California, Berkeley and its contributors.
61 1.26 cgd * 4. Neither the name of the University nor the names of its contributors
62 1.26 cgd * may be used to endorse or promote products derived from this software
63 1.26 cgd * without specific prior written permission.
64 1.26 cgd *
65 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 1.26 cgd * SUCH DAMAGE.
76 1.26 cgd *
77 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 1.26 cgd */
79 1.48 mrg
80 1.52 jonathan #include "opt_ddb.h"
81 1.51 thorpej #include "opt_ktrace.h"
82 1.26 cgd
83 1.26 cgd #include <sys/param.h>
84 1.26 cgd #include <sys/systm.h>
85 1.68 thorpej #include <sys/callout.h>
86 1.26 cgd #include <sys/proc.h>
87 1.26 cgd #include <sys/kernel.h>
88 1.26 cgd #include <sys/buf.h>
89 1.26 cgd #include <sys/signalvar.h>
90 1.26 cgd #include <sys/resourcevar.h>
91 1.34 christos #include <vm/vm.h>
92 1.55 ross #include <sys/sched.h>
93 1.47 mrg
94 1.47 mrg #include <uvm/uvm_extern.h>
95 1.47 mrg
96 1.26 cgd #ifdef KTRACE
97 1.26 cgd #include <sys/ktrace.h>
98 1.26 cgd #endif
99 1.26 cgd
100 1.55 ross #define NICE_WEIGHT 2 /* priorities per nice level */
101 1.55 ross #define PPQ (128 / NQS) /* priorities per queue */
102 1.55 ross
103 1.55 ross #define ESTCPULIM(e) min((e), NICE_WEIGHT * PRIO_MAX - PPQ)
104 1.55 ross
105 1.26 cgd #include <machine/cpu.h>
106 1.34 christos
107 1.26 cgd u_char curpriority; /* usrpri of curproc */
108 1.26 cgd int lbolt; /* once a second sleep address */
109 1.26 cgd
110 1.34 christos void roundrobin __P((void *));
111 1.34 christos void schedcpu __P((void *));
112 1.34 christos void updatepri __P((struct proc *));
113 1.34 christos void endtsleep __P((void *));
114 1.34 christos
115 1.63 thorpej __inline void awaken __P((struct proc *));
116 1.63 thorpej
117 1.68 thorpej struct callout roundrobin_ch = CALLOUT_INITIALIZER;
118 1.68 thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
119 1.68 thorpej
120 1.26 cgd /*
121 1.26 cgd * Force switch among equal priority processes every 100ms.
122 1.26 cgd */
123 1.26 cgd /* ARGSUSED */
124 1.26 cgd void
125 1.26 cgd roundrobin(arg)
126 1.26 cgd void *arg;
127 1.26 cgd {
128 1.26 cgd
129 1.26 cgd need_resched();
130 1.68 thorpej callout_reset(&roundrobin_ch, hz / 10, roundrobin, NULL);
131 1.26 cgd }
132 1.26 cgd
133 1.26 cgd /*
134 1.26 cgd * Constants for digital decay and forget:
135 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
136 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
137 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
138 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
139 1.26 cgd *
140 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
141 1.26 cgd *
142 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
143 1.26 cgd * That is, the system wants to compute a value of decay such
144 1.26 cgd * that the following for loop:
145 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
146 1.26 cgd * p_estcpu *= decay;
147 1.26 cgd * will compute
148 1.26 cgd * p_estcpu *= 0.1;
149 1.26 cgd * for all values of loadavg:
150 1.26 cgd *
151 1.26 cgd * Mathematically this loop can be expressed by saying:
152 1.26 cgd * decay ** (5 * loadavg) ~= .1
153 1.26 cgd *
154 1.26 cgd * The system computes decay as:
155 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
156 1.26 cgd *
157 1.26 cgd * We wish to prove that the system's computation of decay
158 1.26 cgd * will always fulfill the equation:
159 1.26 cgd * decay ** (5 * loadavg) ~= .1
160 1.26 cgd *
161 1.26 cgd * If we compute b as:
162 1.26 cgd * b = 2 * loadavg
163 1.26 cgd * then
164 1.26 cgd * decay = b / (b + 1)
165 1.26 cgd *
166 1.26 cgd * We now need to prove two things:
167 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
168 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
169 1.26 cgd *
170 1.26 cgd * Facts:
171 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
172 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
173 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
174 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
175 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
176 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
177 1.26 cgd * ln(.1) =~ -2.30
178 1.26 cgd *
179 1.26 cgd * Proof of (1):
180 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
181 1.26 cgd * solving for factor,
182 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
183 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
184 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
185 1.26 cgd *
186 1.26 cgd * Proof of (2):
187 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
188 1.26 cgd * solving for power,
189 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
190 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
191 1.26 cgd *
192 1.26 cgd * Actual power values for the implemented algorithm are as follows:
193 1.26 cgd * loadav: 1 2 3 4
194 1.26 cgd * power: 5.68 10.32 14.94 19.55
195 1.26 cgd */
196 1.26 cgd
197 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
198 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
199 1.26 cgd #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
200 1.26 cgd
201 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
202 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
203 1.26 cgd
204 1.26 cgd /*
205 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
206 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
207 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
208 1.26 cgd *
209 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
210 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
211 1.26 cgd *
212 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
213 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
214 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
215 1.26 cgd */
216 1.26 cgd #define CCPU_SHIFT 11
217 1.26 cgd
218 1.26 cgd /*
219 1.26 cgd * Recompute process priorities, every hz ticks.
220 1.26 cgd */
221 1.26 cgd /* ARGSUSED */
222 1.26 cgd void
223 1.26 cgd schedcpu(arg)
224 1.26 cgd void *arg;
225 1.26 cgd {
226 1.26 cgd register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
227 1.26 cgd register struct proc *p;
228 1.26 cgd register int s;
229 1.26 cgd register unsigned int newcpu;
230 1.66 ross int clkhz;
231 1.26 cgd
232 1.62 thorpej proclist_lock_read();
233 1.27 mycroft for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
234 1.26 cgd /*
235 1.26 cgd * Increment time in/out of memory and sleep time
236 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
237 1.26 cgd * (remember them?) overflow takes 45 days.
238 1.26 cgd */
239 1.26 cgd p->p_swtime++;
240 1.26 cgd if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
241 1.26 cgd p->p_slptime++;
242 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
243 1.26 cgd /*
244 1.26 cgd * If the process has slept the entire second,
245 1.26 cgd * stop recalculating its priority until it wakes up.
246 1.26 cgd */
247 1.26 cgd if (p->p_slptime > 1)
248 1.26 cgd continue;
249 1.26 cgd s = splstatclock(); /* prevent state changes */
250 1.26 cgd /*
251 1.26 cgd * p_pctcpu is only for ps.
252 1.26 cgd */
253 1.66 ross clkhz = stathz != 0 ? stathz : hz;
254 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
255 1.66 ross p->p_pctcpu += (clkhz == 100)?
256 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
257 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
258 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
259 1.26 cgd #else
260 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
261 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
262 1.26 cgd #endif
263 1.26 cgd p->p_cpticks = 0;
264 1.55 ross newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
265 1.55 ross p->p_estcpu = newcpu;
266 1.26 cgd resetpriority(p);
267 1.26 cgd if (p->p_priority >= PUSER) {
268 1.26 cgd if ((p != curproc) &&
269 1.26 cgd p->p_stat == SRUN &&
270 1.26 cgd (p->p_flag & P_INMEM) &&
271 1.26 cgd (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
272 1.43 cgd remrunqueue(p);
273 1.26 cgd p->p_priority = p->p_usrpri;
274 1.26 cgd setrunqueue(p);
275 1.26 cgd } else
276 1.26 cgd p->p_priority = p->p_usrpri;
277 1.26 cgd }
278 1.26 cgd splx(s);
279 1.26 cgd }
280 1.61 thorpej proclist_unlock_read();
281 1.47 mrg uvm_meter();
282 1.67 fvdl wakeup((caddr_t)&lbolt);
283 1.68 thorpej callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
284 1.26 cgd }
285 1.26 cgd
286 1.26 cgd /*
287 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
288 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
289 1.26 cgd * least six times the loadfactor will decay p_estcpu to zero.
290 1.26 cgd */
291 1.26 cgd void
292 1.26 cgd updatepri(p)
293 1.26 cgd register struct proc *p;
294 1.26 cgd {
295 1.26 cgd register unsigned int newcpu = p->p_estcpu;
296 1.26 cgd register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
297 1.26 cgd
298 1.26 cgd if (p->p_slptime > 5 * loadfac)
299 1.26 cgd p->p_estcpu = 0;
300 1.26 cgd else {
301 1.26 cgd p->p_slptime--; /* the first time was done in schedcpu */
302 1.26 cgd while (newcpu && --p->p_slptime)
303 1.26 cgd newcpu = (int) decay_cpu(loadfac, newcpu);
304 1.55 ross p->p_estcpu = newcpu;
305 1.26 cgd }
306 1.26 cgd resetpriority(p);
307 1.26 cgd }
308 1.26 cgd
309 1.26 cgd /*
310 1.26 cgd * We're only looking at 7 bits of the address; everything is
311 1.26 cgd * aligned to 4, lots of things are aligned to greater powers
312 1.26 cgd * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
313 1.26 cgd */
314 1.26 cgd #define TABLESIZE 128
315 1.30 cgd #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
316 1.26 cgd struct slpque {
317 1.26 cgd struct proc *sq_head;
318 1.26 cgd struct proc **sq_tailp;
319 1.26 cgd } slpque[TABLESIZE];
320 1.26 cgd
321 1.26 cgd /*
322 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
323 1.26 cgd * lower the priority briefly to allow interrupts, then return.
324 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
325 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
326 1.26 cgd * This priority will typically be 0, or the lowest priority
327 1.26 cgd * that is safe for use on the interrupt stack; it can be made
328 1.26 cgd * higher to block network software interrupts after panics.
329 1.26 cgd */
330 1.26 cgd int safepri;
331 1.26 cgd
332 1.26 cgd /*
333 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
334 1.26 cgd * performed on the specified identifier. The process will then be made
335 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
336 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
337 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
338 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
339 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
340 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
341 1.26 cgd * call should be interrupted by the signal (return EINTR).
342 1.26 cgd */
343 1.26 cgd int
344 1.26 cgd tsleep(ident, priority, wmesg, timo)
345 1.26 cgd void *ident;
346 1.26 cgd int priority, timo;
347 1.45 mycroft const char *wmesg;
348 1.26 cgd {
349 1.26 cgd register struct proc *p = curproc;
350 1.26 cgd register struct slpque *qp;
351 1.49 kleink register int s;
352 1.26 cgd int sig, catch = priority & PCATCH;
353 1.26 cgd void endtsleep __P((void *));
354 1.26 cgd
355 1.26 cgd if (cold || panicstr) {
356 1.26 cgd /*
357 1.26 cgd * After a panic, or during autoconfiguration,
358 1.26 cgd * just give interrupts a chance, then just return;
359 1.26 cgd * don't run any other procs or panic below,
360 1.26 cgd * in case this is the idle process and already asleep.
361 1.26 cgd */
362 1.42 cgd s = splhigh();
363 1.26 cgd splx(safepri);
364 1.26 cgd splx(s);
365 1.26 cgd return (0);
366 1.26 cgd }
367 1.42 cgd
368 1.42 cgd #ifdef KTRACE
369 1.42 cgd if (KTRPOINT(p, KTR_CSW))
370 1.42 cgd ktrcsw(p->p_tracep, 1, 0);
371 1.42 cgd #endif
372 1.42 cgd s = splhigh();
373 1.42 cgd
374 1.26 cgd #ifdef DIAGNOSTIC
375 1.64 thorpej if (ident == NULL)
376 1.64 thorpej panic("tsleep: ident == NULL");
377 1.64 thorpej if (p->p_stat != SRUN)
378 1.64 thorpej panic("tsleep: p_stat %d != SRUN", p->p_stat);
379 1.64 thorpej if (p->p_back != NULL)
380 1.64 thorpej panic("tsleep: p_back != NULL");
381 1.26 cgd #endif
382 1.26 cgd p->p_wchan = ident;
383 1.26 cgd p->p_wmesg = wmesg;
384 1.26 cgd p->p_slptime = 0;
385 1.26 cgd p->p_priority = priority & PRIMASK;
386 1.26 cgd qp = &slpque[LOOKUP(ident)];
387 1.26 cgd if (qp->sq_head == 0)
388 1.26 cgd qp->sq_head = p;
389 1.26 cgd else
390 1.26 cgd *qp->sq_tailp = p;
391 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
392 1.26 cgd if (timo)
393 1.68 thorpej callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
394 1.26 cgd /*
395 1.26 cgd * We put ourselves on the sleep queue and start our timeout
396 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
397 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
398 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
399 1.26 cgd * without resuming us, thus we must be ready for sleep
400 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
401 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
402 1.26 cgd */
403 1.26 cgd if (catch) {
404 1.26 cgd p->p_flag |= P_SINTR;
405 1.34 christos if ((sig = CURSIG(p)) != 0) {
406 1.26 cgd if (p->p_wchan)
407 1.26 cgd unsleep(p);
408 1.26 cgd p->p_stat = SRUN;
409 1.26 cgd goto resume;
410 1.26 cgd }
411 1.26 cgd if (p->p_wchan == 0) {
412 1.26 cgd catch = 0;
413 1.26 cgd goto resume;
414 1.26 cgd }
415 1.26 cgd } else
416 1.26 cgd sig = 0;
417 1.26 cgd p->p_stat = SSLEEP;
418 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
419 1.26 cgd mi_switch();
420 1.26 cgd #ifdef DDB
421 1.26 cgd /* handy breakpoint location after process "wakes" */
422 1.26 cgd asm(".globl bpendtsleep ; bpendtsleep:");
423 1.26 cgd #endif
424 1.26 cgd resume:
425 1.26 cgd curpriority = p->p_usrpri;
426 1.26 cgd splx(s);
427 1.26 cgd p->p_flag &= ~P_SINTR;
428 1.26 cgd if (p->p_flag & P_TIMEOUT) {
429 1.26 cgd p->p_flag &= ~P_TIMEOUT;
430 1.26 cgd if (sig == 0) {
431 1.26 cgd #ifdef KTRACE
432 1.26 cgd if (KTRPOINT(p, KTR_CSW))
433 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
434 1.26 cgd #endif
435 1.26 cgd return (EWOULDBLOCK);
436 1.26 cgd }
437 1.26 cgd } else if (timo)
438 1.68 thorpej callout_stop(&p->p_tsleep_ch);
439 1.34 christos if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
440 1.26 cgd #ifdef KTRACE
441 1.26 cgd if (KTRPOINT(p, KTR_CSW))
442 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
443 1.26 cgd #endif
444 1.53 mycroft if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
445 1.26 cgd return (EINTR);
446 1.26 cgd return (ERESTART);
447 1.26 cgd }
448 1.26 cgd #ifdef KTRACE
449 1.26 cgd if (KTRPOINT(p, KTR_CSW))
450 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
451 1.26 cgd #endif
452 1.26 cgd return (0);
453 1.26 cgd }
454 1.26 cgd
455 1.26 cgd /*
456 1.26 cgd * Implement timeout for tsleep.
457 1.26 cgd * If process hasn't been awakened (wchan non-zero),
458 1.26 cgd * set timeout flag and undo the sleep. If proc
459 1.26 cgd * is stopped, just unsleep so it will remain stopped.
460 1.26 cgd */
461 1.26 cgd void
462 1.26 cgd endtsleep(arg)
463 1.26 cgd void *arg;
464 1.26 cgd {
465 1.26 cgd register struct proc *p;
466 1.26 cgd int s;
467 1.26 cgd
468 1.26 cgd p = (struct proc *)arg;
469 1.26 cgd s = splhigh();
470 1.26 cgd if (p->p_wchan) {
471 1.26 cgd if (p->p_stat == SSLEEP)
472 1.26 cgd setrunnable(p);
473 1.26 cgd else
474 1.26 cgd unsleep(p);
475 1.26 cgd p->p_flag |= P_TIMEOUT;
476 1.26 cgd }
477 1.26 cgd splx(s);
478 1.26 cgd }
479 1.26 cgd
480 1.26 cgd /*
481 1.26 cgd * Short-term, non-interruptable sleep.
482 1.26 cgd */
483 1.26 cgd void
484 1.26 cgd sleep(ident, priority)
485 1.26 cgd void *ident;
486 1.26 cgd int priority;
487 1.26 cgd {
488 1.26 cgd register struct proc *p = curproc;
489 1.26 cgd register struct slpque *qp;
490 1.49 kleink register int s;
491 1.26 cgd
492 1.26 cgd #ifdef DIAGNOSTIC
493 1.26 cgd if (priority > PZERO) {
494 1.41 christos printf("sleep called with priority %d > PZERO, wchan: %p\n",
495 1.26 cgd priority, ident);
496 1.26 cgd panic("old sleep");
497 1.26 cgd }
498 1.26 cgd #endif
499 1.26 cgd s = splhigh();
500 1.26 cgd if (cold || panicstr) {
501 1.26 cgd /*
502 1.26 cgd * After a panic, or during autoconfiguration,
503 1.26 cgd * just give interrupts a chance, then just return;
504 1.26 cgd * don't run any other procs or panic below,
505 1.26 cgd * in case this is the idle process and already asleep.
506 1.26 cgd */
507 1.26 cgd splx(safepri);
508 1.26 cgd splx(s);
509 1.26 cgd return;
510 1.26 cgd }
511 1.26 cgd #ifdef DIAGNOSTIC
512 1.26 cgd if (ident == NULL || p->p_stat != SRUN || p->p_back)
513 1.26 cgd panic("sleep");
514 1.26 cgd #endif
515 1.26 cgd p->p_wchan = ident;
516 1.26 cgd p->p_wmesg = NULL;
517 1.26 cgd p->p_slptime = 0;
518 1.26 cgd p->p_priority = priority;
519 1.26 cgd qp = &slpque[LOOKUP(ident)];
520 1.26 cgd if (qp->sq_head == 0)
521 1.26 cgd qp->sq_head = p;
522 1.26 cgd else
523 1.26 cgd *qp->sq_tailp = p;
524 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
525 1.26 cgd p->p_stat = SSLEEP;
526 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
527 1.26 cgd #ifdef KTRACE
528 1.26 cgd if (KTRPOINT(p, KTR_CSW))
529 1.26 cgd ktrcsw(p->p_tracep, 1, 0);
530 1.26 cgd #endif
531 1.26 cgd mi_switch();
532 1.26 cgd #ifdef DDB
533 1.26 cgd /* handy breakpoint location after process "wakes" */
534 1.26 cgd asm(".globl bpendsleep ; bpendsleep:");
535 1.26 cgd #endif
536 1.26 cgd #ifdef KTRACE
537 1.26 cgd if (KTRPOINT(p, KTR_CSW))
538 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
539 1.26 cgd #endif
540 1.26 cgd curpriority = p->p_usrpri;
541 1.26 cgd splx(s);
542 1.26 cgd }
543 1.26 cgd
544 1.26 cgd /*
545 1.26 cgd * Remove a process from its wait queue
546 1.26 cgd */
547 1.26 cgd void
548 1.26 cgd unsleep(p)
549 1.26 cgd register struct proc *p;
550 1.26 cgd {
551 1.26 cgd register struct slpque *qp;
552 1.26 cgd register struct proc **hp;
553 1.26 cgd int s;
554 1.26 cgd
555 1.26 cgd s = splhigh();
556 1.26 cgd if (p->p_wchan) {
557 1.26 cgd hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
558 1.26 cgd while (*hp != p)
559 1.26 cgd hp = &(*hp)->p_forw;
560 1.26 cgd *hp = p->p_forw;
561 1.26 cgd if (qp->sq_tailp == &p->p_forw)
562 1.26 cgd qp->sq_tailp = hp;
563 1.26 cgd p->p_wchan = 0;
564 1.26 cgd }
565 1.26 cgd splx(s);
566 1.26 cgd }
567 1.26 cgd
568 1.26 cgd /*
569 1.63 thorpej * Optimized-for-wakeup() version of setrunnable().
570 1.63 thorpej */
571 1.63 thorpej __inline void
572 1.63 thorpej awaken(p)
573 1.63 thorpej struct proc *p;
574 1.63 thorpej {
575 1.63 thorpej
576 1.63 thorpej if (p->p_slptime > 1)
577 1.63 thorpej updatepri(p);
578 1.63 thorpej p->p_slptime = 0;
579 1.63 thorpej p->p_stat = SRUN;
580 1.63 thorpej /*
581 1.63 thorpej * Since curpriority is a user priority, p->p_priority
582 1.63 thorpej * is always better than curpriority.
583 1.63 thorpej */
584 1.63 thorpej if (p->p_flag & P_INMEM) {
585 1.63 thorpej setrunqueue(p);
586 1.63 thorpej need_resched();
587 1.63 thorpej } else
588 1.63 thorpej wakeup((caddr_t)&proc0);
589 1.63 thorpej }
590 1.63 thorpej
591 1.63 thorpej /*
592 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
593 1.26 cgd */
594 1.26 cgd void
595 1.26 cgd wakeup(ident)
596 1.26 cgd register void *ident;
597 1.26 cgd {
598 1.26 cgd register struct slpque *qp;
599 1.26 cgd register struct proc *p, **q;
600 1.26 cgd int s;
601 1.26 cgd
602 1.26 cgd s = splhigh();
603 1.26 cgd qp = &slpque[LOOKUP(ident)];
604 1.26 cgd restart:
605 1.34 christos for (q = &qp->sq_head; (p = *q) != NULL; ) {
606 1.26 cgd #ifdef DIAGNOSTIC
607 1.34 christos if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
608 1.26 cgd panic("wakeup");
609 1.26 cgd #endif
610 1.26 cgd if (p->p_wchan == ident) {
611 1.26 cgd p->p_wchan = 0;
612 1.26 cgd *q = p->p_forw;
613 1.26 cgd if (qp->sq_tailp == &p->p_forw)
614 1.26 cgd qp->sq_tailp = q;
615 1.26 cgd if (p->p_stat == SSLEEP) {
616 1.63 thorpej awaken(p);
617 1.26 cgd goto restart;
618 1.26 cgd }
619 1.26 cgd } else
620 1.26 cgd q = &p->p_forw;
621 1.63 thorpej }
622 1.63 thorpej splx(s);
623 1.63 thorpej }
624 1.63 thorpej
625 1.63 thorpej /*
626 1.63 thorpej * Make the highest priority process first in line on the specified
627 1.63 thorpej * identifier runnable.
628 1.63 thorpej */
629 1.63 thorpej void
630 1.63 thorpej wakeup_one(ident)
631 1.63 thorpej void *ident;
632 1.63 thorpej {
633 1.63 thorpej struct slpque *qp;
634 1.63 thorpej struct proc *p, **q;
635 1.63 thorpej struct proc *best_sleepp, **best_sleepq;
636 1.63 thorpej struct proc *best_stopp, **best_stopq;
637 1.63 thorpej int s;
638 1.63 thorpej
639 1.63 thorpej best_sleepp = best_stopp = NULL;
640 1.63 thorpej best_sleepq = best_stopq = NULL;
641 1.63 thorpej
642 1.63 thorpej s = splhigh();
643 1.63 thorpej qp = &slpque[LOOKUP(ident)];
644 1.63 thorpej for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
645 1.63 thorpej #ifdef DIAGNOSTIC
646 1.63 thorpej if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
647 1.63 thorpej panic("wakeup_one");
648 1.63 thorpej #endif
649 1.63 thorpej if (p->p_wchan == ident) {
650 1.63 thorpej if (p->p_stat == SSLEEP) {
651 1.63 thorpej if (best_sleepp == NULL ||
652 1.63 thorpej p->p_priority < best_sleepp->p_priority) {
653 1.63 thorpej best_sleepp = p;
654 1.63 thorpej best_sleepq = q;
655 1.63 thorpej }
656 1.63 thorpej } else {
657 1.63 thorpej if (best_stopp == NULL ||
658 1.63 thorpej p->p_priority < best_stopp->p_priority) {
659 1.63 thorpej best_stopp = p;
660 1.63 thorpej best_stopq = q;
661 1.63 thorpej }
662 1.63 thorpej }
663 1.63 thorpej }
664 1.63 thorpej }
665 1.63 thorpej
666 1.63 thorpej /*
667 1.63 thorpej * Consider any SSLEEP process higher than the highest priority SSTOP
668 1.63 thorpej * process.
669 1.63 thorpej */
670 1.63 thorpej if (best_sleepp != NULL) {
671 1.63 thorpej p = best_sleepp;
672 1.63 thorpej q = best_sleepq;
673 1.63 thorpej } else {
674 1.63 thorpej p = best_stopp;
675 1.63 thorpej q = best_stopq;
676 1.63 thorpej }
677 1.63 thorpej
678 1.63 thorpej if (p != NULL) {
679 1.63 thorpej p->p_wchan = 0;
680 1.63 thorpej *q = p->p_forw;
681 1.63 thorpej if (qp->sq_tailp == &p->p_forw)
682 1.63 thorpej qp->sq_tailp = q;
683 1.63 thorpej if (p->p_stat == SSLEEP)
684 1.63 thorpej awaken(p);
685 1.26 cgd }
686 1.26 cgd splx(s);
687 1.26 cgd }
688 1.26 cgd
689 1.26 cgd /*
690 1.26 cgd * The machine independent parts of mi_switch().
691 1.26 cgd * Must be called at splstatclock() or higher.
692 1.26 cgd */
693 1.26 cgd void
694 1.26 cgd mi_switch()
695 1.26 cgd {
696 1.26 cgd register struct proc *p = curproc; /* XXX */
697 1.26 cgd register struct rlimit *rlim;
698 1.26 cgd register long s, u;
699 1.26 cgd struct timeval tv;
700 1.26 cgd
701 1.50 fvdl #ifdef DEBUG
702 1.54 chs if (p->p_simple_locks) {
703 1.54 chs printf("p->p_simple_locks %d\n", p->p_simple_locks);
704 1.54 chs #ifdef LOCKDEBUG
705 1.54 chs simple_lock_dump();
706 1.54 chs #endif
707 1.50 fvdl panic("sleep: holding simple lock");
708 1.54 chs }
709 1.50 fvdl #endif
710 1.26 cgd /*
711 1.26 cgd * Compute the amount of time during which the current
712 1.26 cgd * process was running, and add that to its total so far.
713 1.26 cgd */
714 1.26 cgd microtime(&tv);
715 1.26 cgd u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
716 1.26 cgd s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
717 1.26 cgd if (u < 0) {
718 1.26 cgd u += 1000000;
719 1.26 cgd s--;
720 1.26 cgd } else if (u >= 1000000) {
721 1.26 cgd u -= 1000000;
722 1.26 cgd s++;
723 1.26 cgd }
724 1.26 cgd p->p_rtime.tv_usec = u;
725 1.26 cgd p->p_rtime.tv_sec = s;
726 1.26 cgd
727 1.26 cgd /*
728 1.26 cgd * Check if the process exceeds its cpu resource allocation.
729 1.26 cgd * If over max, kill it. In any case, if it has run for more
730 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
731 1.26 cgd */
732 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
733 1.26 cgd if (s >= rlim->rlim_cur) {
734 1.26 cgd if (s >= rlim->rlim_max)
735 1.26 cgd psignal(p, SIGKILL);
736 1.26 cgd else {
737 1.26 cgd psignal(p, SIGXCPU);
738 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
739 1.26 cgd rlim->rlim_cur += 5;
740 1.26 cgd }
741 1.26 cgd }
742 1.38 explorer if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
743 1.39 ws p->p_nice = autoniceval + NZERO;
744 1.26 cgd resetpriority(p);
745 1.26 cgd }
746 1.26 cgd
747 1.26 cgd /*
748 1.26 cgd * Pick a new current process and record its start time.
749 1.26 cgd */
750 1.47 mrg uvmexp.swtch++;
751 1.26 cgd cpu_switch(p);
752 1.26 cgd microtime(&runtime);
753 1.26 cgd }
754 1.26 cgd
755 1.26 cgd /*
756 1.26 cgd * Initialize the (doubly-linked) run queues
757 1.26 cgd * to be empty.
758 1.26 cgd */
759 1.26 cgd void
760 1.26 cgd rqinit()
761 1.26 cgd {
762 1.26 cgd register int i;
763 1.26 cgd
764 1.26 cgd for (i = 0; i < NQS; i++)
765 1.26 cgd qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
766 1.26 cgd }
767 1.26 cgd
768 1.26 cgd /*
769 1.26 cgd * Change process state to be runnable,
770 1.26 cgd * placing it on the run queue if it is in memory,
771 1.26 cgd * and awakening the swapper if it isn't in memory.
772 1.26 cgd */
773 1.26 cgd void
774 1.26 cgd setrunnable(p)
775 1.26 cgd register struct proc *p;
776 1.26 cgd {
777 1.26 cgd register int s;
778 1.26 cgd
779 1.26 cgd s = splhigh();
780 1.26 cgd switch (p->p_stat) {
781 1.26 cgd case 0:
782 1.26 cgd case SRUN:
783 1.26 cgd case SZOMB:
784 1.60 thorpej case SDEAD:
785 1.26 cgd default:
786 1.26 cgd panic("setrunnable");
787 1.26 cgd case SSTOP:
788 1.33 mycroft /*
789 1.33 mycroft * If we're being traced (possibly because someone attached us
790 1.33 mycroft * while we were stopped), check for a signal from the debugger.
791 1.33 mycroft */
792 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
793 1.53 mycroft sigaddset(&p->p_siglist, p->p_xstat);
794 1.53 mycroft p->p_sigcheck = 1;
795 1.53 mycroft }
796 1.26 cgd case SSLEEP:
797 1.26 cgd unsleep(p); /* e.g. when sending signals */
798 1.26 cgd break;
799 1.26 cgd
800 1.26 cgd case SIDL:
801 1.26 cgd break;
802 1.26 cgd }
803 1.26 cgd p->p_stat = SRUN;
804 1.26 cgd if (p->p_flag & P_INMEM)
805 1.26 cgd setrunqueue(p);
806 1.26 cgd splx(s);
807 1.26 cgd if (p->p_slptime > 1)
808 1.26 cgd updatepri(p);
809 1.26 cgd p->p_slptime = 0;
810 1.26 cgd if ((p->p_flag & P_INMEM) == 0)
811 1.26 cgd wakeup((caddr_t)&proc0);
812 1.26 cgd else if (p->p_priority < curpriority)
813 1.26 cgd need_resched();
814 1.26 cgd }
815 1.26 cgd
816 1.26 cgd /*
817 1.26 cgd * Compute the priority of a process when running in user mode.
818 1.26 cgd * Arrange to reschedule if the resulting priority is better
819 1.26 cgd * than that of the current process.
820 1.26 cgd */
821 1.26 cgd void
822 1.26 cgd resetpriority(p)
823 1.26 cgd register struct proc *p;
824 1.26 cgd {
825 1.26 cgd register unsigned int newpriority;
826 1.26 cgd
827 1.55 ross newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
828 1.26 cgd newpriority = min(newpriority, MAXPRI);
829 1.26 cgd p->p_usrpri = newpriority;
830 1.26 cgd if (newpriority < curpriority)
831 1.26 cgd need_resched();
832 1.55 ross }
833 1.55 ross
834 1.55 ross /*
835 1.56 ross * We adjust the priority of the current process. The priority of a process
836 1.56 ross * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
837 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
838 1.56 ross * will compute a different value each time p_estcpu increases. This can
839 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
840 1.56 ross * queue will not change. The cpu usage estimator ramps up quite quickly
841 1.56 ross * when the process is running (linearly), and decays away exponentially, at
842 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
843 1.56 ross * principal is that the system will 90% forget that the process used a lot
844 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
845 1.56 ross * processes which haven't run much recently, and to round-robin among other
846 1.56 ross * processes.
847 1.55 ross */
848 1.55 ross
849 1.55 ross void
850 1.56 ross schedclock(p)
851 1.55 ross struct proc *p;
852 1.55 ross {
853 1.55 ross p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
854 1.55 ross resetpriority(p);
855 1.55 ross if (p->p_priority >= PUSER)
856 1.55 ross p->p_priority = p->p_usrpri;
857 1.26 cgd }
858