kern_synch.c revision 1.73 1 1.73 thorpej /* $NetBSD: kern_synch.c,v 1.73 2000/05/26 21:20:31 thorpej Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.69 thorpej * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.63 thorpej * NASA Ames Research Center.
10 1.63 thorpej *
11 1.63 thorpej * Redistribution and use in source and binary forms, with or without
12 1.63 thorpej * modification, are permitted provided that the following conditions
13 1.63 thorpej * are met:
14 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.63 thorpej * notice, this list of conditions and the following disclaimer.
16 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.63 thorpej * documentation and/or other materials provided with the distribution.
19 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.63 thorpej * must display the following acknowledgement:
21 1.63 thorpej * This product includes software developed by the NetBSD
22 1.63 thorpej * Foundation, Inc. and its contributors.
23 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.63 thorpej * contributors may be used to endorse or promote products derived
25 1.63 thorpej * from this software without specific prior written permission.
26 1.63 thorpej *
27 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.63 thorpej */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.26 cgd * 3. All advertising materials mentioning features or use of this software
58 1.26 cgd * must display the following acknowledgement:
59 1.26 cgd * This product includes software developed by the University of
60 1.26 cgd * California, Berkeley and its contributors.
61 1.26 cgd * 4. Neither the name of the University nor the names of its contributors
62 1.26 cgd * may be used to endorse or promote products derived from this software
63 1.26 cgd * without specific prior written permission.
64 1.26 cgd *
65 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 1.26 cgd * SUCH DAMAGE.
76 1.26 cgd *
77 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 1.26 cgd */
79 1.48 mrg
80 1.52 jonathan #include "opt_ddb.h"
81 1.51 thorpej #include "opt_ktrace.h"
82 1.26 cgd
83 1.26 cgd #include <sys/param.h>
84 1.26 cgd #include <sys/systm.h>
85 1.68 thorpej #include <sys/callout.h>
86 1.26 cgd #include <sys/proc.h>
87 1.26 cgd #include <sys/kernel.h>
88 1.26 cgd #include <sys/buf.h>
89 1.26 cgd #include <sys/signalvar.h>
90 1.26 cgd #include <sys/resourcevar.h>
91 1.34 christos #include <vm/vm.h>
92 1.55 ross #include <sys/sched.h>
93 1.47 mrg
94 1.47 mrg #include <uvm/uvm_extern.h>
95 1.47 mrg
96 1.26 cgd #ifdef KTRACE
97 1.26 cgd #include <sys/ktrace.h>
98 1.26 cgd #endif
99 1.26 cgd
100 1.26 cgd #include <machine/cpu.h>
101 1.34 christos
102 1.26 cgd int lbolt; /* once a second sleep address */
103 1.26 cgd
104 1.73 thorpej /*
105 1.73 thorpej * The global scheduler state.
106 1.73 thorpej */
107 1.73 thorpej struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
108 1.73 thorpej __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
109 1.73 thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
110 1.73 thorpej
111 1.34 christos void roundrobin __P((void *));
112 1.34 christos void schedcpu __P((void *));
113 1.34 christos void updatepri __P((struct proc *));
114 1.34 christos void endtsleep __P((void *));
115 1.34 christos
116 1.63 thorpej __inline void awaken __P((struct proc *));
117 1.63 thorpej
118 1.68 thorpej struct callout roundrobin_ch = CALLOUT_INITIALIZER;
119 1.68 thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
120 1.68 thorpej
121 1.26 cgd /*
122 1.26 cgd * Force switch among equal priority processes every 100ms.
123 1.26 cgd */
124 1.26 cgd /* ARGSUSED */
125 1.26 cgd void
126 1.26 cgd roundrobin(arg)
127 1.26 cgd void *arg;
128 1.26 cgd {
129 1.73 thorpej struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
130 1.69 thorpej int s;
131 1.26 cgd
132 1.69 thorpej if (curproc != NULL) {
133 1.69 thorpej s = splstatclock();
134 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
135 1.69 thorpej /*
136 1.69 thorpej * The process has already been through a roundrobin
137 1.69 thorpej * without switching and may be hogging the CPU.
138 1.69 thorpej * Indicate that the process should yield.
139 1.69 thorpej */
140 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
141 1.69 thorpej } else
142 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
143 1.69 thorpej splx(s);
144 1.69 thorpej }
145 1.26 cgd need_resched();
146 1.68 thorpej callout_reset(&roundrobin_ch, hz / 10, roundrobin, NULL);
147 1.26 cgd }
148 1.26 cgd
149 1.26 cgd /*
150 1.26 cgd * Constants for digital decay and forget:
151 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
152 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
153 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
154 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
155 1.26 cgd *
156 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
157 1.26 cgd *
158 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
159 1.26 cgd * That is, the system wants to compute a value of decay such
160 1.26 cgd * that the following for loop:
161 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
162 1.26 cgd * p_estcpu *= decay;
163 1.26 cgd * will compute
164 1.26 cgd * p_estcpu *= 0.1;
165 1.26 cgd * for all values of loadavg:
166 1.26 cgd *
167 1.26 cgd * Mathematically this loop can be expressed by saying:
168 1.26 cgd * decay ** (5 * loadavg) ~= .1
169 1.26 cgd *
170 1.26 cgd * The system computes decay as:
171 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
172 1.26 cgd *
173 1.26 cgd * We wish to prove that the system's computation of decay
174 1.26 cgd * will always fulfill the equation:
175 1.26 cgd * decay ** (5 * loadavg) ~= .1
176 1.26 cgd *
177 1.26 cgd * If we compute b as:
178 1.26 cgd * b = 2 * loadavg
179 1.26 cgd * then
180 1.26 cgd * decay = b / (b + 1)
181 1.26 cgd *
182 1.26 cgd * We now need to prove two things:
183 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
184 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
185 1.26 cgd *
186 1.26 cgd * Facts:
187 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
188 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
189 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
190 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
191 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
192 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
193 1.26 cgd * ln(.1) =~ -2.30
194 1.26 cgd *
195 1.26 cgd * Proof of (1):
196 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
197 1.26 cgd * solving for factor,
198 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
199 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
200 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
201 1.26 cgd *
202 1.26 cgd * Proof of (2):
203 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
204 1.26 cgd * solving for power,
205 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
206 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
207 1.26 cgd *
208 1.26 cgd * Actual power values for the implemented algorithm are as follows:
209 1.26 cgd * loadav: 1 2 3 4
210 1.26 cgd * power: 5.68 10.32 14.94 19.55
211 1.26 cgd */
212 1.26 cgd
213 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
214 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
215 1.26 cgd #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
216 1.26 cgd
217 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
218 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
219 1.26 cgd
220 1.26 cgd /*
221 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
222 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
223 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
224 1.26 cgd *
225 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
226 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
227 1.26 cgd *
228 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
229 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
230 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
231 1.26 cgd */
232 1.26 cgd #define CCPU_SHIFT 11
233 1.26 cgd
234 1.26 cgd /*
235 1.26 cgd * Recompute process priorities, every hz ticks.
236 1.26 cgd */
237 1.26 cgd /* ARGSUSED */
238 1.26 cgd void
239 1.26 cgd schedcpu(arg)
240 1.26 cgd void *arg;
241 1.26 cgd {
242 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
243 1.71 augustss struct proc *p;
244 1.71 augustss int s;
245 1.71 augustss unsigned int newcpu;
246 1.66 ross int clkhz;
247 1.26 cgd
248 1.62 thorpej proclist_lock_read();
249 1.27 mycroft for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
250 1.26 cgd /*
251 1.26 cgd * Increment time in/out of memory and sleep time
252 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
253 1.26 cgd * (remember them?) overflow takes 45 days.
254 1.26 cgd */
255 1.26 cgd p->p_swtime++;
256 1.26 cgd if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
257 1.26 cgd p->p_slptime++;
258 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
259 1.26 cgd /*
260 1.26 cgd * If the process has slept the entire second,
261 1.26 cgd * stop recalculating its priority until it wakes up.
262 1.26 cgd */
263 1.26 cgd if (p->p_slptime > 1)
264 1.26 cgd continue;
265 1.26 cgd s = splstatclock(); /* prevent state changes */
266 1.26 cgd /*
267 1.26 cgd * p_pctcpu is only for ps.
268 1.26 cgd */
269 1.66 ross clkhz = stathz != 0 ? stathz : hz;
270 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
271 1.66 ross p->p_pctcpu += (clkhz == 100)?
272 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
273 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
274 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
275 1.26 cgd #else
276 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
277 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
278 1.26 cgd #endif
279 1.26 cgd p->p_cpticks = 0;
280 1.55 ross newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
281 1.55 ross p->p_estcpu = newcpu;
282 1.26 cgd resetpriority(p);
283 1.26 cgd if (p->p_priority >= PUSER) {
284 1.72 thorpej if (p->p_stat == SRUN &&
285 1.26 cgd (p->p_flag & P_INMEM) &&
286 1.26 cgd (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
287 1.43 cgd remrunqueue(p);
288 1.26 cgd p->p_priority = p->p_usrpri;
289 1.26 cgd setrunqueue(p);
290 1.26 cgd } else
291 1.26 cgd p->p_priority = p->p_usrpri;
292 1.26 cgd }
293 1.26 cgd splx(s);
294 1.26 cgd }
295 1.61 thorpej proclist_unlock_read();
296 1.47 mrg uvm_meter();
297 1.67 fvdl wakeup((caddr_t)&lbolt);
298 1.68 thorpej callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
299 1.26 cgd }
300 1.26 cgd
301 1.26 cgd /*
302 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
303 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
304 1.26 cgd * least six times the loadfactor will decay p_estcpu to zero.
305 1.26 cgd */
306 1.26 cgd void
307 1.26 cgd updatepri(p)
308 1.71 augustss struct proc *p;
309 1.26 cgd {
310 1.71 augustss unsigned int newcpu = p->p_estcpu;
311 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
312 1.26 cgd
313 1.26 cgd if (p->p_slptime > 5 * loadfac)
314 1.26 cgd p->p_estcpu = 0;
315 1.26 cgd else {
316 1.26 cgd p->p_slptime--; /* the first time was done in schedcpu */
317 1.26 cgd while (newcpu && --p->p_slptime)
318 1.26 cgd newcpu = (int) decay_cpu(loadfac, newcpu);
319 1.55 ross p->p_estcpu = newcpu;
320 1.26 cgd }
321 1.26 cgd resetpriority(p);
322 1.26 cgd }
323 1.26 cgd
324 1.26 cgd /*
325 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
326 1.26 cgd * lower the priority briefly to allow interrupts, then return.
327 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
328 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
329 1.26 cgd * This priority will typically be 0, or the lowest priority
330 1.26 cgd * that is safe for use on the interrupt stack; it can be made
331 1.26 cgd * higher to block network software interrupts after panics.
332 1.26 cgd */
333 1.26 cgd int safepri;
334 1.26 cgd
335 1.26 cgd /*
336 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
337 1.26 cgd * performed on the specified identifier. The process will then be made
338 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
339 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
340 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
341 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
342 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
343 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
344 1.26 cgd * call should be interrupted by the signal (return EINTR).
345 1.26 cgd */
346 1.26 cgd int
347 1.26 cgd tsleep(ident, priority, wmesg, timo)
348 1.26 cgd void *ident;
349 1.26 cgd int priority, timo;
350 1.45 mycroft const char *wmesg;
351 1.26 cgd {
352 1.71 augustss struct proc *p = curproc;
353 1.71 augustss struct slpque *qp;
354 1.71 augustss int s;
355 1.26 cgd int sig, catch = priority & PCATCH;
356 1.26 cgd
357 1.26 cgd if (cold || panicstr) {
358 1.26 cgd /*
359 1.26 cgd * After a panic, or during autoconfiguration,
360 1.26 cgd * just give interrupts a chance, then just return;
361 1.26 cgd * don't run any other procs or panic below,
362 1.26 cgd * in case this is the idle process and already asleep.
363 1.26 cgd */
364 1.42 cgd s = splhigh();
365 1.26 cgd splx(safepri);
366 1.26 cgd splx(s);
367 1.26 cgd return (0);
368 1.26 cgd }
369 1.42 cgd
370 1.42 cgd #ifdef KTRACE
371 1.42 cgd if (KTRPOINT(p, KTR_CSW))
372 1.42 cgd ktrcsw(p->p_tracep, 1, 0);
373 1.42 cgd #endif
374 1.42 cgd s = splhigh();
375 1.42 cgd
376 1.26 cgd #ifdef DIAGNOSTIC
377 1.64 thorpej if (ident == NULL)
378 1.64 thorpej panic("tsleep: ident == NULL");
379 1.72 thorpej if (p->p_stat != SONPROC)
380 1.72 thorpej panic("tsleep: p_stat %d != SONPROC", p->p_stat);
381 1.64 thorpej if (p->p_back != NULL)
382 1.64 thorpej panic("tsleep: p_back != NULL");
383 1.26 cgd #endif
384 1.26 cgd p->p_wchan = ident;
385 1.26 cgd p->p_wmesg = wmesg;
386 1.26 cgd p->p_slptime = 0;
387 1.26 cgd p->p_priority = priority & PRIMASK;
388 1.73 thorpej qp = SLPQUE(ident);
389 1.26 cgd if (qp->sq_head == 0)
390 1.26 cgd qp->sq_head = p;
391 1.26 cgd else
392 1.26 cgd *qp->sq_tailp = p;
393 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
394 1.26 cgd if (timo)
395 1.68 thorpej callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
396 1.26 cgd /*
397 1.26 cgd * We put ourselves on the sleep queue and start our timeout
398 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
399 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
400 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
401 1.26 cgd * without resuming us, thus we must be ready for sleep
402 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
403 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
404 1.26 cgd */
405 1.26 cgd if (catch) {
406 1.26 cgd p->p_flag |= P_SINTR;
407 1.34 christos if ((sig = CURSIG(p)) != 0) {
408 1.26 cgd if (p->p_wchan)
409 1.26 cgd unsleep(p);
410 1.72 thorpej p->p_stat = SONPROC;
411 1.26 cgd goto resume;
412 1.26 cgd }
413 1.26 cgd if (p->p_wchan == 0) {
414 1.26 cgd catch = 0;
415 1.26 cgd goto resume;
416 1.26 cgd }
417 1.26 cgd } else
418 1.26 cgd sig = 0;
419 1.26 cgd p->p_stat = SSLEEP;
420 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
421 1.26 cgd mi_switch();
422 1.26 cgd #ifdef DDB
423 1.26 cgd /* handy breakpoint location after process "wakes" */
424 1.26 cgd asm(".globl bpendtsleep ; bpendtsleep:");
425 1.26 cgd #endif
426 1.26 cgd resume:
427 1.73 thorpej curcpu()->ci_schedstate.spc_curpriority = p->p_usrpri;
428 1.26 cgd splx(s);
429 1.26 cgd p->p_flag &= ~P_SINTR;
430 1.26 cgd if (p->p_flag & P_TIMEOUT) {
431 1.26 cgd p->p_flag &= ~P_TIMEOUT;
432 1.26 cgd if (sig == 0) {
433 1.26 cgd #ifdef KTRACE
434 1.26 cgd if (KTRPOINT(p, KTR_CSW))
435 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
436 1.26 cgd #endif
437 1.26 cgd return (EWOULDBLOCK);
438 1.26 cgd }
439 1.26 cgd } else if (timo)
440 1.68 thorpej callout_stop(&p->p_tsleep_ch);
441 1.34 christos if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
442 1.26 cgd #ifdef KTRACE
443 1.26 cgd if (KTRPOINT(p, KTR_CSW))
444 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
445 1.26 cgd #endif
446 1.53 mycroft if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
447 1.26 cgd return (EINTR);
448 1.26 cgd return (ERESTART);
449 1.26 cgd }
450 1.26 cgd #ifdef KTRACE
451 1.26 cgd if (KTRPOINT(p, KTR_CSW))
452 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
453 1.26 cgd #endif
454 1.26 cgd return (0);
455 1.26 cgd }
456 1.26 cgd
457 1.26 cgd /*
458 1.26 cgd * Implement timeout for tsleep.
459 1.26 cgd * If process hasn't been awakened (wchan non-zero),
460 1.26 cgd * set timeout flag and undo the sleep. If proc
461 1.26 cgd * is stopped, just unsleep so it will remain stopped.
462 1.26 cgd */
463 1.26 cgd void
464 1.26 cgd endtsleep(arg)
465 1.26 cgd void *arg;
466 1.26 cgd {
467 1.71 augustss struct proc *p;
468 1.26 cgd int s;
469 1.26 cgd
470 1.26 cgd p = (struct proc *)arg;
471 1.26 cgd s = splhigh();
472 1.26 cgd if (p->p_wchan) {
473 1.26 cgd if (p->p_stat == SSLEEP)
474 1.26 cgd setrunnable(p);
475 1.26 cgd else
476 1.26 cgd unsleep(p);
477 1.26 cgd p->p_flag |= P_TIMEOUT;
478 1.26 cgd }
479 1.26 cgd splx(s);
480 1.26 cgd }
481 1.26 cgd
482 1.26 cgd /*
483 1.26 cgd * Short-term, non-interruptable sleep.
484 1.26 cgd */
485 1.26 cgd void
486 1.26 cgd sleep(ident, priority)
487 1.26 cgd void *ident;
488 1.26 cgd int priority;
489 1.26 cgd {
490 1.71 augustss struct proc *p = curproc;
491 1.71 augustss struct slpque *qp;
492 1.71 augustss int s;
493 1.26 cgd
494 1.26 cgd #ifdef DIAGNOSTIC
495 1.26 cgd if (priority > PZERO) {
496 1.41 christos printf("sleep called with priority %d > PZERO, wchan: %p\n",
497 1.26 cgd priority, ident);
498 1.26 cgd panic("old sleep");
499 1.26 cgd }
500 1.26 cgd #endif
501 1.26 cgd s = splhigh();
502 1.26 cgd if (cold || panicstr) {
503 1.26 cgd /*
504 1.26 cgd * After a panic, or during autoconfiguration,
505 1.26 cgd * just give interrupts a chance, then just return;
506 1.26 cgd * don't run any other procs or panic below,
507 1.26 cgd * in case this is the idle process and already asleep.
508 1.26 cgd */
509 1.26 cgd splx(safepri);
510 1.26 cgd splx(s);
511 1.26 cgd return;
512 1.26 cgd }
513 1.26 cgd #ifdef DIAGNOSTIC
514 1.72 thorpej if (ident == NULL || p->p_stat != SONPROC || p->p_back)
515 1.26 cgd panic("sleep");
516 1.26 cgd #endif
517 1.26 cgd p->p_wchan = ident;
518 1.26 cgd p->p_wmesg = NULL;
519 1.26 cgd p->p_slptime = 0;
520 1.26 cgd p->p_priority = priority;
521 1.73 thorpej qp = SLPQUE(ident);
522 1.26 cgd if (qp->sq_head == 0)
523 1.26 cgd qp->sq_head = p;
524 1.26 cgd else
525 1.26 cgd *qp->sq_tailp = p;
526 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
527 1.26 cgd p->p_stat = SSLEEP;
528 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
529 1.26 cgd #ifdef KTRACE
530 1.26 cgd if (KTRPOINT(p, KTR_CSW))
531 1.26 cgd ktrcsw(p->p_tracep, 1, 0);
532 1.26 cgd #endif
533 1.26 cgd mi_switch();
534 1.26 cgd #ifdef DDB
535 1.26 cgd /* handy breakpoint location after process "wakes" */
536 1.26 cgd asm(".globl bpendsleep ; bpendsleep:");
537 1.26 cgd #endif
538 1.26 cgd #ifdef KTRACE
539 1.26 cgd if (KTRPOINT(p, KTR_CSW))
540 1.26 cgd ktrcsw(p->p_tracep, 0, 0);
541 1.26 cgd #endif
542 1.73 thorpej curcpu()->ci_schedstate.spc_curpriority = p->p_usrpri;
543 1.26 cgd splx(s);
544 1.26 cgd }
545 1.26 cgd
546 1.26 cgd /*
547 1.26 cgd * Remove a process from its wait queue
548 1.26 cgd */
549 1.26 cgd void
550 1.26 cgd unsleep(p)
551 1.71 augustss struct proc *p;
552 1.26 cgd {
553 1.71 augustss struct slpque *qp;
554 1.71 augustss struct proc **hp;
555 1.26 cgd int s;
556 1.26 cgd
557 1.26 cgd s = splhigh();
558 1.26 cgd if (p->p_wchan) {
559 1.73 thorpej hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
560 1.26 cgd while (*hp != p)
561 1.26 cgd hp = &(*hp)->p_forw;
562 1.26 cgd *hp = p->p_forw;
563 1.26 cgd if (qp->sq_tailp == &p->p_forw)
564 1.26 cgd qp->sq_tailp = hp;
565 1.26 cgd p->p_wchan = 0;
566 1.26 cgd }
567 1.26 cgd splx(s);
568 1.26 cgd }
569 1.26 cgd
570 1.26 cgd /*
571 1.63 thorpej * Optimized-for-wakeup() version of setrunnable().
572 1.63 thorpej */
573 1.63 thorpej __inline void
574 1.63 thorpej awaken(p)
575 1.63 thorpej struct proc *p;
576 1.63 thorpej {
577 1.63 thorpej
578 1.63 thorpej if (p->p_slptime > 1)
579 1.63 thorpej updatepri(p);
580 1.63 thorpej p->p_slptime = 0;
581 1.63 thorpej p->p_stat = SRUN;
582 1.63 thorpej /*
583 1.63 thorpej * Since curpriority is a user priority, p->p_priority
584 1.63 thorpej * is always better than curpriority.
585 1.63 thorpej */
586 1.63 thorpej if (p->p_flag & P_INMEM) {
587 1.63 thorpej setrunqueue(p);
588 1.63 thorpej need_resched();
589 1.63 thorpej } else
590 1.63 thorpej wakeup((caddr_t)&proc0);
591 1.63 thorpej }
592 1.63 thorpej
593 1.63 thorpej /*
594 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
595 1.26 cgd */
596 1.26 cgd void
597 1.26 cgd wakeup(ident)
598 1.71 augustss void *ident;
599 1.26 cgd {
600 1.71 augustss struct slpque *qp;
601 1.71 augustss struct proc *p, **q;
602 1.26 cgd int s;
603 1.26 cgd
604 1.26 cgd s = splhigh();
605 1.73 thorpej qp = SLPQUE(ident);
606 1.26 cgd restart:
607 1.34 christos for (q = &qp->sq_head; (p = *q) != NULL; ) {
608 1.26 cgd #ifdef DIAGNOSTIC
609 1.34 christos if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
610 1.26 cgd panic("wakeup");
611 1.26 cgd #endif
612 1.26 cgd if (p->p_wchan == ident) {
613 1.26 cgd p->p_wchan = 0;
614 1.26 cgd *q = p->p_forw;
615 1.26 cgd if (qp->sq_tailp == &p->p_forw)
616 1.26 cgd qp->sq_tailp = q;
617 1.26 cgd if (p->p_stat == SSLEEP) {
618 1.63 thorpej awaken(p);
619 1.26 cgd goto restart;
620 1.26 cgd }
621 1.26 cgd } else
622 1.26 cgd q = &p->p_forw;
623 1.63 thorpej }
624 1.63 thorpej splx(s);
625 1.63 thorpej }
626 1.63 thorpej
627 1.63 thorpej /*
628 1.63 thorpej * Make the highest priority process first in line on the specified
629 1.63 thorpej * identifier runnable.
630 1.63 thorpej */
631 1.63 thorpej void
632 1.63 thorpej wakeup_one(ident)
633 1.63 thorpej void *ident;
634 1.63 thorpej {
635 1.63 thorpej struct slpque *qp;
636 1.63 thorpej struct proc *p, **q;
637 1.63 thorpej struct proc *best_sleepp, **best_sleepq;
638 1.63 thorpej struct proc *best_stopp, **best_stopq;
639 1.63 thorpej int s;
640 1.63 thorpej
641 1.63 thorpej best_sleepp = best_stopp = NULL;
642 1.63 thorpej best_sleepq = best_stopq = NULL;
643 1.63 thorpej
644 1.63 thorpej s = splhigh();
645 1.73 thorpej qp = SLPQUE(ident);
646 1.63 thorpej for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
647 1.63 thorpej #ifdef DIAGNOSTIC
648 1.63 thorpej if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
649 1.63 thorpej panic("wakeup_one");
650 1.63 thorpej #endif
651 1.63 thorpej if (p->p_wchan == ident) {
652 1.63 thorpej if (p->p_stat == SSLEEP) {
653 1.63 thorpej if (best_sleepp == NULL ||
654 1.63 thorpej p->p_priority < best_sleepp->p_priority) {
655 1.63 thorpej best_sleepp = p;
656 1.63 thorpej best_sleepq = q;
657 1.63 thorpej }
658 1.63 thorpej } else {
659 1.63 thorpej if (best_stopp == NULL ||
660 1.63 thorpej p->p_priority < best_stopp->p_priority) {
661 1.63 thorpej best_stopp = p;
662 1.63 thorpej best_stopq = q;
663 1.63 thorpej }
664 1.63 thorpej }
665 1.63 thorpej }
666 1.63 thorpej }
667 1.63 thorpej
668 1.63 thorpej /*
669 1.63 thorpej * Consider any SSLEEP process higher than the highest priority SSTOP
670 1.63 thorpej * process.
671 1.63 thorpej */
672 1.63 thorpej if (best_sleepp != NULL) {
673 1.63 thorpej p = best_sleepp;
674 1.63 thorpej q = best_sleepq;
675 1.63 thorpej } else {
676 1.63 thorpej p = best_stopp;
677 1.63 thorpej q = best_stopq;
678 1.63 thorpej }
679 1.63 thorpej
680 1.63 thorpej if (p != NULL) {
681 1.63 thorpej p->p_wchan = 0;
682 1.63 thorpej *q = p->p_forw;
683 1.63 thorpej if (qp->sq_tailp == &p->p_forw)
684 1.63 thorpej qp->sq_tailp = q;
685 1.63 thorpej if (p->p_stat == SSLEEP)
686 1.63 thorpej awaken(p);
687 1.26 cgd }
688 1.26 cgd splx(s);
689 1.26 cgd }
690 1.26 cgd
691 1.26 cgd /*
692 1.69 thorpej * General yield call. Puts the current process back on its run queue and
693 1.69 thorpej * performs a voluntary context switch.
694 1.69 thorpej */
695 1.69 thorpej void
696 1.69 thorpej yield()
697 1.69 thorpej {
698 1.69 thorpej struct proc *p = curproc;
699 1.69 thorpej int s;
700 1.69 thorpej
701 1.72 thorpej s = splstatclock();
702 1.69 thorpej p->p_priority = p->p_usrpri;
703 1.72 thorpej p->p_stat = SRUN;
704 1.69 thorpej setrunqueue(p);
705 1.69 thorpej p->p_stats->p_ru.ru_nvcsw++;
706 1.69 thorpej mi_switch();
707 1.69 thorpej splx(s);
708 1.69 thorpej }
709 1.69 thorpej
710 1.69 thorpej /*
711 1.69 thorpej * General preemption call. Puts the current process back on its run queue
712 1.69 thorpej * and performs an involuntary context switch. If a process is supplied,
713 1.69 thorpej * we switch to that process. Otherwise, we use the normal process selection
714 1.69 thorpej * criteria.
715 1.69 thorpej */
716 1.69 thorpej void
717 1.69 thorpej preempt(newp)
718 1.69 thorpej struct proc *newp;
719 1.69 thorpej {
720 1.69 thorpej struct proc *p = curproc;
721 1.69 thorpej int s;
722 1.69 thorpej
723 1.69 thorpej /*
724 1.69 thorpej * XXX Switching to a specific process is not supported yet.
725 1.69 thorpej */
726 1.69 thorpej if (newp != NULL)
727 1.69 thorpej panic("preempt: cpu_preempt not yet implemented");
728 1.69 thorpej
729 1.72 thorpej s = splstatclock();
730 1.69 thorpej p->p_priority = p->p_usrpri;
731 1.72 thorpej p->p_stat = SRUN;
732 1.69 thorpej setrunqueue(p);
733 1.69 thorpej p->p_stats->p_ru.ru_nivcsw++;
734 1.69 thorpej mi_switch();
735 1.69 thorpej splx(s);
736 1.69 thorpej }
737 1.69 thorpej
738 1.69 thorpej /*
739 1.72 thorpej * The machine independent parts of context switch.
740 1.26 cgd * Must be called at splstatclock() or higher.
741 1.26 cgd */
742 1.26 cgd void
743 1.26 cgd mi_switch()
744 1.26 cgd {
745 1.71 augustss struct proc *p = curproc; /* XXX */
746 1.73 thorpej struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
747 1.71 augustss struct rlimit *rlim;
748 1.71 augustss long s, u;
749 1.26 cgd struct timeval tv;
750 1.26 cgd
751 1.50 fvdl #ifdef DEBUG
752 1.54 chs if (p->p_simple_locks) {
753 1.54 chs printf("p->p_simple_locks %d\n", p->p_simple_locks);
754 1.54 chs #ifdef LOCKDEBUG
755 1.54 chs simple_lock_dump();
756 1.54 chs #endif
757 1.50 fvdl panic("sleep: holding simple lock");
758 1.54 chs }
759 1.50 fvdl #endif
760 1.26 cgd /*
761 1.26 cgd * Compute the amount of time during which the current
762 1.26 cgd * process was running, and add that to its total so far.
763 1.26 cgd */
764 1.26 cgd microtime(&tv);
765 1.73 thorpej u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
766 1.73 thorpej s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
767 1.26 cgd if (u < 0) {
768 1.26 cgd u += 1000000;
769 1.26 cgd s--;
770 1.26 cgd } else if (u >= 1000000) {
771 1.26 cgd u -= 1000000;
772 1.26 cgd s++;
773 1.26 cgd }
774 1.26 cgd p->p_rtime.tv_usec = u;
775 1.26 cgd p->p_rtime.tv_sec = s;
776 1.26 cgd
777 1.26 cgd /*
778 1.26 cgd * Check if the process exceeds its cpu resource allocation.
779 1.26 cgd * If over max, kill it. In any case, if it has run for more
780 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
781 1.26 cgd */
782 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
783 1.26 cgd if (s >= rlim->rlim_cur) {
784 1.26 cgd if (s >= rlim->rlim_max)
785 1.26 cgd psignal(p, SIGKILL);
786 1.26 cgd else {
787 1.26 cgd psignal(p, SIGXCPU);
788 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
789 1.26 cgd rlim->rlim_cur += 5;
790 1.26 cgd }
791 1.26 cgd }
792 1.38 explorer if (autonicetime && s > autonicetime && p->p_ucred->cr_uid && p->p_nice == NZERO) {
793 1.39 ws p->p_nice = autoniceval + NZERO;
794 1.26 cgd resetpriority(p);
795 1.26 cgd }
796 1.69 thorpej
797 1.69 thorpej /*
798 1.69 thorpej * Process is about to yield the CPU; clear the appropriate
799 1.69 thorpej * scheduling flags.
800 1.69 thorpej */
801 1.73 thorpej spc->spc_flags &= ~SPCF_SWITCHCLEAR;
802 1.26 cgd
803 1.26 cgd /*
804 1.26 cgd * Pick a new current process and record its start time.
805 1.26 cgd */
806 1.47 mrg uvmexp.swtch++;
807 1.26 cgd cpu_switch(p);
808 1.73 thorpej microtime(&spc->spc_runtime);
809 1.26 cgd }
810 1.26 cgd
811 1.26 cgd /*
812 1.26 cgd * Initialize the (doubly-linked) run queues
813 1.26 cgd * to be empty.
814 1.26 cgd */
815 1.26 cgd void
816 1.26 cgd rqinit()
817 1.26 cgd {
818 1.71 augustss int i;
819 1.26 cgd
820 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
821 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
822 1.73 thorpej (struct proc *)&sched_qs[i];
823 1.26 cgd }
824 1.26 cgd
825 1.26 cgd /*
826 1.26 cgd * Change process state to be runnable,
827 1.26 cgd * placing it on the run queue if it is in memory,
828 1.26 cgd * and awakening the swapper if it isn't in memory.
829 1.26 cgd */
830 1.26 cgd void
831 1.26 cgd setrunnable(p)
832 1.71 augustss struct proc *p;
833 1.26 cgd {
834 1.71 augustss int s;
835 1.26 cgd
836 1.26 cgd s = splhigh();
837 1.26 cgd switch (p->p_stat) {
838 1.26 cgd case 0:
839 1.26 cgd case SRUN:
840 1.72 thorpej case SONPROC:
841 1.26 cgd case SZOMB:
842 1.60 thorpej case SDEAD:
843 1.26 cgd default:
844 1.26 cgd panic("setrunnable");
845 1.26 cgd case SSTOP:
846 1.33 mycroft /*
847 1.33 mycroft * If we're being traced (possibly because someone attached us
848 1.33 mycroft * while we were stopped), check for a signal from the debugger.
849 1.33 mycroft */
850 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
851 1.53 mycroft sigaddset(&p->p_siglist, p->p_xstat);
852 1.53 mycroft p->p_sigcheck = 1;
853 1.53 mycroft }
854 1.26 cgd case SSLEEP:
855 1.26 cgd unsleep(p); /* e.g. when sending signals */
856 1.26 cgd break;
857 1.26 cgd
858 1.26 cgd case SIDL:
859 1.26 cgd break;
860 1.26 cgd }
861 1.26 cgd p->p_stat = SRUN;
862 1.26 cgd if (p->p_flag & P_INMEM)
863 1.26 cgd setrunqueue(p);
864 1.26 cgd splx(s);
865 1.26 cgd if (p->p_slptime > 1)
866 1.26 cgd updatepri(p);
867 1.26 cgd p->p_slptime = 0;
868 1.26 cgd if ((p->p_flag & P_INMEM) == 0)
869 1.26 cgd wakeup((caddr_t)&proc0);
870 1.73 thorpej else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority)
871 1.26 cgd need_resched();
872 1.26 cgd }
873 1.26 cgd
874 1.26 cgd /*
875 1.26 cgd * Compute the priority of a process when running in user mode.
876 1.26 cgd * Arrange to reschedule if the resulting priority is better
877 1.26 cgd * than that of the current process.
878 1.26 cgd */
879 1.26 cgd void
880 1.26 cgd resetpriority(p)
881 1.71 augustss struct proc *p;
882 1.26 cgd {
883 1.71 augustss unsigned int newpriority;
884 1.26 cgd
885 1.55 ross newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
886 1.26 cgd newpriority = min(newpriority, MAXPRI);
887 1.26 cgd p->p_usrpri = newpriority;
888 1.73 thorpej if (newpriority < curcpu()->ci_schedstate.spc_curpriority)
889 1.26 cgd need_resched();
890 1.55 ross }
891 1.55 ross
892 1.55 ross /*
893 1.56 ross * We adjust the priority of the current process. The priority of a process
894 1.56 ross * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
895 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
896 1.56 ross * will compute a different value each time p_estcpu increases. This can
897 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
898 1.56 ross * queue will not change. The cpu usage estimator ramps up quite quickly
899 1.56 ross * when the process is running (linearly), and decays away exponentially, at
900 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
901 1.56 ross * principal is that the system will 90% forget that the process used a lot
902 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
903 1.56 ross * processes which haven't run much recently, and to round-robin among other
904 1.56 ross * processes.
905 1.55 ross */
906 1.55 ross
907 1.55 ross void
908 1.56 ross schedclock(p)
909 1.55 ross struct proc *p;
910 1.55 ross {
911 1.55 ross p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
912 1.55 ross resetpriority(p);
913 1.55 ross if (p->p_priority >= PUSER)
914 1.55 ross p->p_priority = p->p_usrpri;
915 1.26 cgd }
916