Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.77
      1  1.77   thorpej /*	$NetBSD: kern_synch.c,v 1.77 2000/06/08 05:50:37 thorpej Exp $	*/
      2  1.63   thorpej 
      3  1.63   thorpej /*-
      4  1.69   thorpej  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  1.63   thorpej  * All rights reserved.
      6  1.63   thorpej  *
      7  1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.63   thorpej  * NASA Ames Research Center.
     10  1.63   thorpej  *
     11  1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     12  1.63   thorpej  * modification, are permitted provided that the following conditions
     13  1.63   thorpej  * are met:
     14  1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     15  1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     16  1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18  1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     19  1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     20  1.63   thorpej  *    must display the following acknowledgement:
     21  1.63   thorpej  *	This product includes software developed by the NetBSD
     22  1.63   thorpej  *	Foundation, Inc. and its contributors.
     23  1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.63   thorpej  *    contributors may be used to endorse or promote products derived
     25  1.63   thorpej  *    from this software without specific prior written permission.
     26  1.63   thorpej  *
     27  1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38  1.63   thorpej  */
     39  1.26       cgd 
     40  1.26       cgd /*-
     41  1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     43  1.26       cgd  * (c) UNIX System Laboratories, Inc.
     44  1.26       cgd  * All or some portions of this file are derived from material licensed
     45  1.26       cgd  * to the University of California by American Telephone and Telegraph
     46  1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     48  1.26       cgd  *
     49  1.26       cgd  * Redistribution and use in source and binary forms, with or without
     50  1.26       cgd  * modification, are permitted provided that the following conditions
     51  1.26       cgd  * are met:
     52  1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     53  1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     54  1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     55  1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     56  1.26       cgd  *    documentation and/or other materials provided with the distribution.
     57  1.26       cgd  * 3. All advertising materials mentioning features or use of this software
     58  1.26       cgd  *    must display the following acknowledgement:
     59  1.26       cgd  *	This product includes software developed by the University of
     60  1.26       cgd  *	California, Berkeley and its contributors.
     61  1.26       cgd  * 4. Neither the name of the University nor the names of its contributors
     62  1.26       cgd  *    may be used to endorse or promote products derived from this software
     63  1.26       cgd  *    without specific prior written permission.
     64  1.26       cgd  *
     65  1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  1.26       cgd  * SUCH DAMAGE.
     76  1.26       cgd  *
     77  1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78  1.26       cgd  */
     79  1.48       mrg 
     80  1.52  jonathan #include "opt_ddb.h"
     81  1.51   thorpej #include "opt_ktrace.h"
     82  1.26       cgd 
     83  1.26       cgd #include <sys/param.h>
     84  1.26       cgd #include <sys/systm.h>
     85  1.68   thorpej #include <sys/callout.h>
     86  1.26       cgd #include <sys/proc.h>
     87  1.26       cgd #include <sys/kernel.h>
     88  1.26       cgd #include <sys/buf.h>
     89  1.26       cgd #include <sys/signalvar.h>
     90  1.26       cgd #include <sys/resourcevar.h>
     91  1.34  christos #include <vm/vm.h>
     92  1.55      ross #include <sys/sched.h>
     93  1.47       mrg 
     94  1.47       mrg #include <uvm/uvm_extern.h>
     95  1.47       mrg 
     96  1.26       cgd #ifdef KTRACE
     97  1.26       cgd #include <sys/ktrace.h>
     98  1.26       cgd #endif
     99  1.26       cgd 
    100  1.26       cgd #include <machine/cpu.h>
    101  1.34  christos 
    102  1.26       cgd int	lbolt;			/* once a second sleep address */
    103  1.26       cgd 
    104  1.73   thorpej /*
    105  1.73   thorpej  * The global scheduler state.
    106  1.73   thorpej  */
    107  1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    108  1.73   thorpej __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    109  1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    110  1.73   thorpej 
    111  1.77   thorpej void roundrobin(void *);
    112  1.77   thorpej void schedcpu(void *);
    113  1.77   thorpej void updatepri(struct proc *);
    114  1.77   thorpej void endtsleep(void *);
    115  1.34  christos 
    116  1.77   thorpej __inline void awaken(struct proc *);
    117  1.63   thorpej 
    118  1.68   thorpej struct callout roundrobin_ch = CALLOUT_INITIALIZER;
    119  1.68   thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    120  1.68   thorpej 
    121  1.26       cgd /*
    122  1.26       cgd  * Force switch among equal priority processes every 100ms.
    123  1.26       cgd  */
    124  1.26       cgd /* ARGSUSED */
    125  1.26       cgd void
    126  1.77   thorpej roundrobin(void *arg)
    127  1.26       cgd {
    128  1.73   thorpej 	struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
    129  1.69   thorpej 	int s;
    130  1.26       cgd 
    131  1.69   thorpej 	if (curproc != NULL) {
    132  1.69   thorpej 		s = splstatclock();
    133  1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    134  1.69   thorpej 			/*
    135  1.69   thorpej 			 * The process has already been through a roundrobin
    136  1.69   thorpej 			 * without switching and may be hogging the CPU.
    137  1.69   thorpej 			 * Indicate that the process should yield.
    138  1.69   thorpej 			 */
    139  1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    140  1.69   thorpej 		} else
    141  1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    142  1.69   thorpej 		splx(s);
    143  1.69   thorpej 	}
    144  1.26       cgd 	need_resched();
    145  1.68   thorpej 	callout_reset(&roundrobin_ch, hz / 10, roundrobin, NULL);
    146  1.26       cgd }
    147  1.26       cgd 
    148  1.26       cgd /*
    149  1.26       cgd  * Constants for digital decay and forget:
    150  1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    151  1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    152  1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    153  1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    154  1.26       cgd  *
    155  1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    156  1.26       cgd  *
    157  1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    158  1.26       cgd  * That is, the system wants to compute a value of decay such
    159  1.26       cgd  * that the following for loop:
    160  1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    161  1.26       cgd  * 		p_estcpu *= decay;
    162  1.26       cgd  * will compute
    163  1.26       cgd  * 	p_estcpu *= 0.1;
    164  1.26       cgd  * for all values of loadavg:
    165  1.26       cgd  *
    166  1.26       cgd  * Mathematically this loop can be expressed by saying:
    167  1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    168  1.26       cgd  *
    169  1.26       cgd  * The system computes decay as:
    170  1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    171  1.26       cgd  *
    172  1.26       cgd  * We wish to prove that the system's computation of decay
    173  1.26       cgd  * will always fulfill the equation:
    174  1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    175  1.26       cgd  *
    176  1.26       cgd  * If we compute b as:
    177  1.26       cgd  * 	b = 2 * loadavg
    178  1.26       cgd  * then
    179  1.26       cgd  * 	decay = b / (b + 1)
    180  1.26       cgd  *
    181  1.26       cgd  * We now need to prove two things:
    182  1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    183  1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    184  1.26       cgd  *
    185  1.26       cgd  * Facts:
    186  1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    187  1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    188  1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    189  1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    190  1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    191  1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    192  1.26       cgd  *         ln(.1) =~ -2.30
    193  1.26       cgd  *
    194  1.26       cgd  * Proof of (1):
    195  1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    196  1.26       cgd  *	solving for factor,
    197  1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    198  1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    199  1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    200  1.26       cgd  *
    201  1.26       cgd  * Proof of (2):
    202  1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    203  1.26       cgd  *	solving for power,
    204  1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    205  1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    206  1.26       cgd  *
    207  1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    208  1.26       cgd  *      loadav: 1       2       3       4
    209  1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    210  1.26       cgd  */
    211  1.26       cgd 
    212  1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    213  1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    214  1.26       cgd #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    215  1.26       cgd 
    216  1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    217  1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    218  1.26       cgd 
    219  1.26       cgd /*
    220  1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    221  1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    222  1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    223  1.26       cgd  *
    224  1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    225  1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    226  1.26       cgd  *
    227  1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    228  1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    229  1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    230  1.26       cgd  */
    231  1.26       cgd #define	CCPU_SHIFT	11
    232  1.26       cgd 
    233  1.26       cgd /*
    234  1.26       cgd  * Recompute process priorities, every hz ticks.
    235  1.26       cgd  */
    236  1.26       cgd /* ARGSUSED */
    237  1.26       cgd void
    238  1.77   thorpej schedcpu(void *arg)
    239  1.26       cgd {
    240  1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    241  1.71  augustss 	struct proc *p;
    242  1.71  augustss 	int s;
    243  1.71  augustss 	unsigned int newcpu;
    244  1.66      ross 	int clkhz;
    245  1.26       cgd 
    246  1.62   thorpej 	proclist_lock_read();
    247  1.27   mycroft 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    248  1.26       cgd 		/*
    249  1.26       cgd 		 * Increment time in/out of memory and sleep time
    250  1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    251  1.26       cgd 		 * (remember them?) overflow takes 45 days.
    252  1.26       cgd 		 */
    253  1.26       cgd 		p->p_swtime++;
    254  1.26       cgd 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    255  1.26       cgd 			p->p_slptime++;
    256  1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    257  1.26       cgd 		/*
    258  1.26       cgd 		 * If the process has slept the entire second,
    259  1.26       cgd 		 * stop recalculating its priority until it wakes up.
    260  1.26       cgd 		 */
    261  1.26       cgd 		if (p->p_slptime > 1)
    262  1.26       cgd 			continue;
    263  1.26       cgd 		s = splstatclock();	/* prevent state changes */
    264  1.26       cgd 		/*
    265  1.26       cgd 		 * p_pctcpu is only for ps.
    266  1.26       cgd 		 */
    267  1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    268  1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    269  1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    270  1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    271  1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    272  1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    273  1.26       cgd #else
    274  1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    275  1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    276  1.26       cgd #endif
    277  1.26       cgd 		p->p_cpticks = 0;
    278  1.55      ross 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    279  1.55      ross 		p->p_estcpu = newcpu;
    280  1.26       cgd 		resetpriority(p);
    281  1.26       cgd 		if (p->p_priority >= PUSER) {
    282  1.72   thorpej 			if (p->p_stat == SRUN &&
    283  1.26       cgd 			    (p->p_flag & P_INMEM) &&
    284  1.26       cgd 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    285  1.43       cgd 				remrunqueue(p);
    286  1.26       cgd 				p->p_priority = p->p_usrpri;
    287  1.26       cgd 				setrunqueue(p);
    288  1.26       cgd 			} else
    289  1.26       cgd 				p->p_priority = p->p_usrpri;
    290  1.26       cgd 		}
    291  1.26       cgd 		splx(s);
    292  1.26       cgd 	}
    293  1.61   thorpej 	proclist_unlock_read();
    294  1.47       mrg 	uvm_meter();
    295  1.67      fvdl 	wakeup((caddr_t)&lbolt);
    296  1.68   thorpej 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    297  1.26       cgd }
    298  1.26       cgd 
    299  1.26       cgd /*
    300  1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    301  1.26       cgd  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    302  1.26       cgd  * least six times the loadfactor will decay p_estcpu to zero.
    303  1.26       cgd  */
    304  1.26       cgd void
    305  1.77   thorpej updatepri(struct proc *p)
    306  1.26       cgd {
    307  1.71  augustss 	unsigned int newcpu = p->p_estcpu;
    308  1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    309  1.26       cgd 
    310  1.26       cgd 	if (p->p_slptime > 5 * loadfac)
    311  1.26       cgd 		p->p_estcpu = 0;
    312  1.26       cgd 	else {
    313  1.26       cgd 		p->p_slptime--;	/* the first time was done in schedcpu */
    314  1.26       cgd 		while (newcpu && --p->p_slptime)
    315  1.26       cgd 			newcpu = (int) decay_cpu(loadfac, newcpu);
    316  1.55      ross 		p->p_estcpu = newcpu;
    317  1.26       cgd 	}
    318  1.26       cgd 	resetpriority(p);
    319  1.26       cgd }
    320  1.26       cgd 
    321  1.26       cgd /*
    322  1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    323  1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    324  1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    325  1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    326  1.26       cgd  * This priority will typically be 0, or the lowest priority
    327  1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    328  1.26       cgd  * higher to block network software interrupts after panics.
    329  1.26       cgd  */
    330  1.26       cgd int safepri;
    331  1.26       cgd 
    332  1.26       cgd /*
    333  1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    334  1.26       cgd  * performed on the specified identifier.  The process will then be made
    335  1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    336  1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    337  1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    338  1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    339  1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    340  1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    341  1.26       cgd  * call should be interrupted by the signal (return EINTR).
    342  1.77   thorpej  *
    343  1.77   thorpej  * The interlock is held until the scheduler_slock is held.  The
    344  1.77   thorpej  * interlock will be locked before returning back to the caller
    345  1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    346  1.77   thorpej  * interlock will always be unlocked upon return.
    347  1.26       cgd  */
    348  1.26       cgd int
    349  1.77   thorpej ltsleep(void *ident, int priority, const char *wmesg, int timo,
    350  1.77   thorpej     __volatile struct simplelock *interlock)
    351  1.26       cgd {
    352  1.71  augustss 	struct proc *p = curproc;
    353  1.71  augustss 	struct slpque *qp;
    354  1.77   thorpej 	int sig, s;
    355  1.77   thorpej 	int catch = priority & PCATCH;
    356  1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    357  1.77   thorpej #if 0 /* XXXSMP */
    358  1.77   thorpej 	int dobiglock = (p->p_flags & P_BIGLOCK) != 0;
    359  1.77   thorpej #endif
    360  1.26       cgd 
    361  1.77   thorpej 	/*
    362  1.77   thorpej 	 * XXXSMP
    363  1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    364  1.77   thorpej 	 * thing to do here really is.
    365  1.77   thorpej 	 */
    366  1.26       cgd 	if (cold || panicstr) {
    367  1.26       cgd 		/*
    368  1.26       cgd 		 * After a panic, or during autoconfiguration,
    369  1.26       cgd 		 * just give interrupts a chance, then just return;
    370  1.26       cgd 		 * don't run any other procs or panic below,
    371  1.26       cgd 		 * in case this is the idle process and already asleep.
    372  1.26       cgd 		 */
    373  1.42       cgd 		s = splhigh();
    374  1.26       cgd 		splx(safepri);
    375  1.26       cgd 		splx(s);
    376  1.77   thorpej 		if (interlock != NULL && relock == 0)
    377  1.77   thorpej 			simple_unlock(interlock);
    378  1.26       cgd 		return (0);
    379  1.26       cgd 	}
    380  1.42       cgd 
    381  1.42       cgd #ifdef KTRACE
    382  1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    383  1.74  sommerfe 		ktrcsw(p, 1, 0);
    384  1.42       cgd #endif
    385  1.77   thorpej 
    386  1.77   thorpej 	s = splhigh();			/* XXXSMP: SCHED_LOCK(s) */
    387  1.42       cgd 
    388  1.26       cgd #ifdef DIAGNOSTIC
    389  1.64   thorpej 	if (ident == NULL)
    390  1.77   thorpej 		panic("ltsleep: ident == NULL");
    391  1.72   thorpej 	if (p->p_stat != SONPROC)
    392  1.77   thorpej 		panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
    393  1.64   thorpej 	if (p->p_back != NULL)
    394  1.77   thorpej 		panic("ltsleep: p_back != NULL");
    395  1.26       cgd #endif
    396  1.77   thorpej 
    397  1.26       cgd 	p->p_wchan = ident;
    398  1.26       cgd 	p->p_wmesg = wmesg;
    399  1.26       cgd 	p->p_slptime = 0;
    400  1.26       cgd 	p->p_priority = priority & PRIMASK;
    401  1.77   thorpej 
    402  1.73   thorpej 	qp = SLPQUE(ident);
    403  1.26       cgd 	if (qp->sq_head == 0)
    404  1.26       cgd 		qp->sq_head = p;
    405  1.26       cgd 	else
    406  1.26       cgd 		*qp->sq_tailp = p;
    407  1.26       cgd 	*(qp->sq_tailp = &p->p_forw) = 0;
    408  1.77   thorpej 
    409  1.26       cgd 	if (timo)
    410  1.68   thorpej 		callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
    411  1.77   thorpej 
    412  1.77   thorpej 	/*
    413  1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    414  1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    415  1.77   thorpej 	 * we do the switch.
    416  1.77   thorpej 	 *
    417  1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    418  1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    419  1.77   thorpej 	 * data structure for the sleep queues at some point.
    420  1.77   thorpej 	 */
    421  1.77   thorpej 	if (interlock != NULL)
    422  1.77   thorpej 		simple_unlock(interlock);
    423  1.77   thorpej 
    424  1.26       cgd 	/*
    425  1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    426  1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    427  1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    428  1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    429  1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    430  1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    431  1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    432  1.26       cgd 	 */
    433  1.26       cgd 	if (catch) {
    434  1.26       cgd 		p->p_flag |= P_SINTR;
    435  1.34  christos 		if ((sig = CURSIG(p)) != 0) {
    436  1.77   thorpej 			if (p->p_wchan != NULL)
    437  1.26       cgd 				unsleep(p);
    438  1.72   thorpej 			p->p_stat = SONPROC;
    439  1.77   thorpej #if 0 /* XXXSMP */
    440  1.77   thorpej 			/*
    441  1.77   thorpej 			 * We're going to skip the unlock, so
    442  1.77   thorpej 			 * we don't need to relock after resume.
    443  1.77   thorpej 			 */
    444  1.77   thorpej 			dobiglock = 0;
    445  1.77   thorpej #endif
    446  1.26       cgd 			goto resume;
    447  1.26       cgd 		}
    448  1.77   thorpej 		if (p->p_wchan == NULL) {
    449  1.26       cgd 			catch = 0;
    450  1.77   thorpej #if 0 /* XXXSMP */
    451  1.77   thorpej 			/* See above. */
    452  1.77   thorpej 			dobiglock = 0;
    453  1.77   thorpej #endif
    454  1.26       cgd 			goto resume;
    455  1.26       cgd 		}
    456  1.26       cgd 	} else
    457  1.26       cgd 		sig = 0;
    458  1.26       cgd 	p->p_stat = SSLEEP;
    459  1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    460  1.77   thorpej 
    461  1.77   thorpej #if 0 /* XXXSMP */
    462  1.77   thorpej 	if (dobiglock) {
    463  1.77   thorpej 		/*
    464  1.77   thorpej 		 * Release the kernel_lock, as we are about to
    465  1.77   thorpej 		 * yield the CPU.  The scheduler_slock is still
    466  1.77   thorpej 		 * held until cpu_switch() selects a new process
    467  1.77   thorpej 		 * and removes it from the run queue.
    468  1.77   thorpej 		 */
    469  1.77   thorpej 		kernel_lock_release();
    470  1.77   thorpej 	}
    471  1.77   thorpej #endif
    472  1.77   thorpej 
    473  1.77   thorpej 	/* scheduler_slock held */
    474  1.74  sommerfe 	mi_switch(p);
    475  1.77   thorpej 	/* scheduler_slock held */
    476  1.26       cgd #ifdef	DDB
    477  1.26       cgd 	/* handy breakpoint location after process "wakes" */
    478  1.26       cgd 	asm(".globl bpendtsleep ; bpendtsleep:");
    479  1.26       cgd #endif
    480  1.77   thorpej 
    481  1.77   thorpej  resume:
    482  1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    483  1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    484  1.76   thorpej 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
    485  1.77   thorpej 	splx(s);			/* XXXSMP: SCHED_UNLOCK(s) */
    486  1.77   thorpej #if 0 /* XXXSMP */
    487  1.77   thorpej 	if (dobiglock) {
    488  1.77   thorpej 		/*
    489  1.77   thorpej 		 * Reacquire the kernel_lock now.  We do this after
    490  1.77   thorpej 		 * we've released scheduler_slock to avoid deadlock.
    491  1.77   thorpej 		 */
    492  1.77   thorpej 		kernel_lock_acquire(LK_EXCLUSIVE);
    493  1.77   thorpej 	}
    494  1.77   thorpej #endif
    495  1.26       cgd 	p->p_flag &= ~P_SINTR;
    496  1.26       cgd 	if (p->p_flag & P_TIMEOUT) {
    497  1.26       cgd 		p->p_flag &= ~P_TIMEOUT;
    498  1.26       cgd 		if (sig == 0) {
    499  1.26       cgd #ifdef KTRACE
    500  1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    501  1.74  sommerfe 				ktrcsw(p, 0, 0);
    502  1.26       cgd #endif
    503  1.77   thorpej 			if (relock && interlock != NULL)
    504  1.77   thorpej 				simple_lock(interlock);
    505  1.26       cgd 			return (EWOULDBLOCK);
    506  1.26       cgd 		}
    507  1.26       cgd 	} else if (timo)
    508  1.68   thorpej 		callout_stop(&p->p_tsleep_ch);
    509  1.34  christos 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    510  1.26       cgd #ifdef KTRACE
    511  1.26       cgd 		if (KTRPOINT(p, KTR_CSW))
    512  1.74  sommerfe 			ktrcsw(p, 0, 0);
    513  1.26       cgd #endif
    514  1.77   thorpej 		if (relock && interlock != NULL)
    515  1.77   thorpej 			simple_lock(interlock);
    516  1.53   mycroft 		if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
    517  1.26       cgd 			return (EINTR);
    518  1.26       cgd 		return (ERESTART);
    519  1.26       cgd 	}
    520  1.26       cgd #ifdef KTRACE
    521  1.26       cgd 	if (KTRPOINT(p, KTR_CSW))
    522  1.74  sommerfe 		ktrcsw(p, 0, 0);
    523  1.26       cgd #endif
    524  1.77   thorpej 	if (relock && interlock != NULL)
    525  1.77   thorpej 		simple_lock(interlock);
    526  1.26       cgd 	return (0);
    527  1.26       cgd }
    528  1.26       cgd 
    529  1.26       cgd /*
    530  1.26       cgd  * Implement timeout for tsleep.
    531  1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    532  1.26       cgd  * set timeout flag and undo the sleep.  If proc
    533  1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    534  1.26       cgd  */
    535  1.26       cgd void
    536  1.77   thorpej endtsleep(void *arg)
    537  1.26       cgd {
    538  1.71  augustss 	struct proc *p;
    539  1.26       cgd 	int s;
    540  1.26       cgd 
    541  1.26       cgd 	p = (struct proc *)arg;
    542  1.26       cgd 	s = splhigh();
    543  1.26       cgd 	if (p->p_wchan) {
    544  1.26       cgd 		if (p->p_stat == SSLEEP)
    545  1.26       cgd 			setrunnable(p);
    546  1.26       cgd 		else
    547  1.26       cgd 			unsleep(p);
    548  1.26       cgd 		p->p_flag |= P_TIMEOUT;
    549  1.26       cgd 	}
    550  1.26       cgd 	splx(s);
    551  1.26       cgd }
    552  1.26       cgd 
    553  1.26       cgd /*
    554  1.26       cgd  * Remove a process from its wait queue
    555  1.26       cgd  */
    556  1.26       cgd void
    557  1.77   thorpej unsleep(struct proc *p)
    558  1.26       cgd {
    559  1.71  augustss 	struct slpque *qp;
    560  1.71  augustss 	struct proc **hp;
    561  1.26       cgd 	int s;
    562  1.26       cgd 
    563  1.26       cgd 	s = splhigh();
    564  1.26       cgd 	if (p->p_wchan) {
    565  1.73   thorpej 		hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
    566  1.26       cgd 		while (*hp != p)
    567  1.26       cgd 			hp = &(*hp)->p_forw;
    568  1.26       cgd 		*hp = p->p_forw;
    569  1.26       cgd 		if (qp->sq_tailp == &p->p_forw)
    570  1.26       cgd 			qp->sq_tailp = hp;
    571  1.26       cgd 		p->p_wchan = 0;
    572  1.26       cgd 	}
    573  1.26       cgd 	splx(s);
    574  1.26       cgd }
    575  1.26       cgd 
    576  1.26       cgd /*
    577  1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    578  1.63   thorpej  */
    579  1.63   thorpej __inline void
    580  1.77   thorpej awaken(struct proc *p)
    581  1.63   thorpej {
    582  1.63   thorpej 
    583  1.63   thorpej 	if (p->p_slptime > 1)
    584  1.63   thorpej 		updatepri(p);
    585  1.63   thorpej 	p->p_slptime = 0;
    586  1.63   thorpej 	p->p_stat = SRUN;
    587  1.77   thorpej 
    588  1.63   thorpej 	/*
    589  1.63   thorpej 	 * Since curpriority is a user priority, p->p_priority
    590  1.63   thorpej 	 * is always better than curpriority.
    591  1.63   thorpej 	 */
    592  1.63   thorpej 	if (p->p_flag & P_INMEM) {
    593  1.63   thorpej 		setrunqueue(p);
    594  1.63   thorpej 		need_resched();
    595  1.63   thorpej 	} else
    596  1.77   thorpej 		wakeup(&proc0);
    597  1.63   thorpej }
    598  1.63   thorpej 
    599  1.63   thorpej /*
    600  1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    601  1.26       cgd  */
    602  1.26       cgd void
    603  1.77   thorpej wakeup(void *ident)
    604  1.26       cgd {
    605  1.71  augustss 	struct slpque *qp;
    606  1.71  augustss 	struct proc *p, **q;
    607  1.26       cgd 	int s;
    608  1.26       cgd 
    609  1.77   thorpej 	s = splhigh();			/* XXXSMP: SCHED_LOCK(s) */
    610  1.77   thorpej 
    611  1.73   thorpej 	qp = SLPQUE(ident);
    612  1.77   thorpej  restart:
    613  1.34  christos 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    614  1.26       cgd #ifdef DIAGNOSTIC
    615  1.34  christos 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    616  1.26       cgd 			panic("wakeup");
    617  1.26       cgd #endif
    618  1.26       cgd 		if (p->p_wchan == ident) {
    619  1.26       cgd 			p->p_wchan = 0;
    620  1.26       cgd 			*q = p->p_forw;
    621  1.26       cgd 			if (qp->sq_tailp == &p->p_forw)
    622  1.26       cgd 				qp->sq_tailp = q;
    623  1.26       cgd 			if (p->p_stat == SSLEEP) {
    624  1.63   thorpej 				awaken(p);
    625  1.26       cgd 				goto restart;
    626  1.26       cgd 			}
    627  1.26       cgd 		} else
    628  1.26       cgd 			q = &p->p_forw;
    629  1.63   thorpej 	}
    630  1.77   thorpej 	splx(s);			/* XXXSMP: SCHED_UNLOCK(s) */
    631  1.63   thorpej }
    632  1.63   thorpej 
    633  1.63   thorpej /*
    634  1.63   thorpej  * Make the highest priority process first in line on the specified
    635  1.63   thorpej  * identifier runnable.
    636  1.63   thorpej  */
    637  1.63   thorpej void
    638  1.77   thorpej wakeup_one(void *ident)
    639  1.63   thorpej {
    640  1.63   thorpej 	struct slpque *qp;
    641  1.63   thorpej 	struct proc *p, **q;
    642  1.63   thorpej 	struct proc *best_sleepp, **best_sleepq;
    643  1.63   thorpej 	struct proc *best_stopp, **best_stopq;
    644  1.63   thorpej 	int s;
    645  1.63   thorpej 
    646  1.63   thorpej 	best_sleepp = best_stopp = NULL;
    647  1.63   thorpej 	best_sleepq = best_stopq = NULL;
    648  1.63   thorpej 
    649  1.77   thorpej 	s = splhigh();		/* XXXSMP: SCHED_LOCK(s) */
    650  1.77   thorpej 
    651  1.73   thorpej 	qp = SLPQUE(ident);
    652  1.77   thorpej 
    653  1.63   thorpej 	for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
    654  1.63   thorpej #ifdef DIAGNOSTIC
    655  1.63   thorpej 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    656  1.63   thorpej 			panic("wakeup_one");
    657  1.63   thorpej #endif
    658  1.63   thorpej 		if (p->p_wchan == ident) {
    659  1.63   thorpej 			if (p->p_stat == SSLEEP) {
    660  1.63   thorpej 				if (best_sleepp == NULL ||
    661  1.63   thorpej 				    p->p_priority < best_sleepp->p_priority) {
    662  1.63   thorpej 					best_sleepp = p;
    663  1.63   thorpej 					best_sleepq = q;
    664  1.63   thorpej 				}
    665  1.63   thorpej 			} else {
    666  1.63   thorpej 				if (best_stopp == NULL ||
    667  1.63   thorpej 				    p->p_priority < best_stopp->p_priority) {
    668  1.63   thorpej 					best_stopp = p;
    669  1.63   thorpej 					best_stopq = q;
    670  1.63   thorpej 				}
    671  1.63   thorpej 			}
    672  1.63   thorpej 		}
    673  1.63   thorpej 	}
    674  1.63   thorpej 
    675  1.63   thorpej 	/*
    676  1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    677  1.63   thorpej 	 * process.
    678  1.63   thorpej 	 */
    679  1.63   thorpej 	if (best_sleepp != NULL) {
    680  1.63   thorpej 		p = best_sleepp;
    681  1.63   thorpej 		q = best_sleepq;
    682  1.63   thorpej 	} else {
    683  1.63   thorpej 		p = best_stopp;
    684  1.63   thorpej 		q = best_stopq;
    685  1.63   thorpej 	}
    686  1.63   thorpej 
    687  1.63   thorpej 	if (p != NULL) {
    688  1.77   thorpej 		p->p_wchan = NULL;
    689  1.63   thorpej 		*q = p->p_forw;
    690  1.63   thorpej 		if (qp->sq_tailp == &p->p_forw)
    691  1.63   thorpej 			qp->sq_tailp = q;
    692  1.63   thorpej 		if (p->p_stat == SSLEEP)
    693  1.63   thorpej 			awaken(p);
    694  1.26       cgd 	}
    695  1.77   thorpej 	splx(s);		/* XXXSMP: SCHED_UNLOCK(s) */
    696  1.26       cgd }
    697  1.26       cgd 
    698  1.26       cgd /*
    699  1.69   thorpej  * General yield call.  Puts the current process back on its run queue and
    700  1.69   thorpej  * performs a voluntary context switch.
    701  1.69   thorpej  */
    702  1.69   thorpej void
    703  1.77   thorpej yield(void)
    704  1.69   thorpej {
    705  1.69   thorpej 	struct proc *p = curproc;
    706  1.69   thorpej 	int s;
    707  1.69   thorpej 
    708  1.72   thorpej 	s = splstatclock();
    709  1.69   thorpej 	p->p_priority = p->p_usrpri;
    710  1.72   thorpej 	p->p_stat = SRUN;
    711  1.69   thorpej 	setrunqueue(p);
    712  1.69   thorpej 	p->p_stats->p_ru.ru_nvcsw++;
    713  1.74  sommerfe 	mi_switch(p);
    714  1.69   thorpej 	splx(s);
    715  1.69   thorpej }
    716  1.69   thorpej 
    717  1.69   thorpej /*
    718  1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    719  1.69   thorpej  * and performs an involuntary context switch.  If a process is supplied,
    720  1.69   thorpej  * we switch to that process.  Otherwise, we use the normal process selection
    721  1.69   thorpej  * criteria.
    722  1.69   thorpej  */
    723  1.69   thorpej void
    724  1.77   thorpej preempt(struct proc *newp)
    725  1.69   thorpej {
    726  1.69   thorpej 	struct proc *p = curproc;
    727  1.69   thorpej 	int s;
    728  1.69   thorpej 
    729  1.69   thorpej 	/*
    730  1.69   thorpej 	 * XXX Switching to a specific process is not supported yet.
    731  1.69   thorpej 	 */
    732  1.69   thorpej 	if (newp != NULL)
    733  1.69   thorpej 		panic("preempt: cpu_preempt not yet implemented");
    734  1.69   thorpej 
    735  1.72   thorpej 	s = splstatclock();
    736  1.69   thorpej 	p->p_priority = p->p_usrpri;
    737  1.72   thorpej 	p->p_stat = SRUN;
    738  1.69   thorpej 	setrunqueue(p);
    739  1.69   thorpej 	p->p_stats->p_ru.ru_nivcsw++;
    740  1.74  sommerfe 	mi_switch(p);
    741  1.69   thorpej 	splx(s);
    742  1.69   thorpej }
    743  1.69   thorpej 
    744  1.69   thorpej /*
    745  1.72   thorpej  * The machine independent parts of context switch.
    746  1.26       cgd  * Must be called at splstatclock() or higher.
    747  1.26       cgd  */
    748  1.26       cgd void
    749  1.77   thorpej mi_switch(struct proc *p)
    750  1.26       cgd {
    751  1.76   thorpej 	struct schedstate_percpu *spc;
    752  1.71  augustss 	struct rlimit *rlim;
    753  1.71  augustss 	long s, u;
    754  1.26       cgd 	struct timeval tv;
    755  1.26       cgd 
    756  1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    757  1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    758  1.76   thorpej 
    759  1.76   thorpej 	spc = &p->p_cpu->ci_schedstate;
    760  1.76   thorpej 
    761  1.50      fvdl #ifdef DEBUG
    762  1.54       chs 	if (p->p_simple_locks) {
    763  1.54       chs 		printf("p->p_simple_locks %d\n", p->p_simple_locks);
    764  1.54       chs #ifdef LOCKDEBUG
    765  1.54       chs 		simple_lock_dump();
    766  1.54       chs #endif
    767  1.50      fvdl 		panic("sleep: holding simple lock");
    768  1.54       chs 	}
    769  1.50      fvdl #endif
    770  1.26       cgd 	/*
    771  1.26       cgd 	 * Compute the amount of time during which the current
    772  1.26       cgd 	 * process was running, and add that to its total so far.
    773  1.26       cgd 	 */
    774  1.26       cgd 	microtime(&tv);
    775  1.73   thorpej 	u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    776  1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    777  1.26       cgd 	if (u < 0) {
    778  1.26       cgd 		u += 1000000;
    779  1.26       cgd 		s--;
    780  1.26       cgd 	} else if (u >= 1000000) {
    781  1.26       cgd 		u -= 1000000;
    782  1.26       cgd 		s++;
    783  1.26       cgd 	}
    784  1.26       cgd 	p->p_rtime.tv_usec = u;
    785  1.26       cgd 	p->p_rtime.tv_sec = s;
    786  1.26       cgd 
    787  1.26       cgd 	/*
    788  1.26       cgd 	 * Check if the process exceeds its cpu resource allocation.
    789  1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    790  1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    791  1.26       cgd 	 */
    792  1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    793  1.26       cgd 	if (s >= rlim->rlim_cur) {
    794  1.26       cgd 		if (s >= rlim->rlim_max)
    795  1.26       cgd 			psignal(p, SIGKILL);
    796  1.26       cgd 		else {
    797  1.26       cgd 			psignal(p, SIGXCPU);
    798  1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    799  1.26       cgd 				rlim->rlim_cur += 5;
    800  1.26       cgd 		}
    801  1.26       cgd 	}
    802  1.77   thorpej 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    803  1.77   thorpej 	    p->p_nice == NZERO) {
    804  1.39        ws 		p->p_nice = autoniceval + NZERO;
    805  1.26       cgd 		resetpriority(p);
    806  1.26       cgd 	}
    807  1.69   thorpej 
    808  1.69   thorpej 	/*
    809  1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    810  1.69   thorpej 	 * scheduling flags.
    811  1.69   thorpej 	 */
    812  1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    813  1.26       cgd 
    814  1.26       cgd 	/*
    815  1.76   thorpej 	 * Pick a new current process and switch to it.  When we
    816  1.76   thorpej 	 * run again, we'll return back here.
    817  1.26       cgd 	 */
    818  1.47       mrg 	uvmexp.swtch++;
    819  1.26       cgd 	cpu_switch(p);
    820  1.76   thorpej 
    821  1.76   thorpej 	/*
    822  1.76   thorpej 	 * We're running again; record our new start time.  We might
    823  1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
    824  1.76   thorpej 	 * schedstate_percpu pointer.
    825  1.76   thorpej 	 */
    826  1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    827  1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    828  1.76   thorpej 	microtime(&p->p_cpu->ci_schedstate.spc_runtime);
    829  1.26       cgd }
    830  1.26       cgd 
    831  1.26       cgd /*
    832  1.26       cgd  * Initialize the (doubly-linked) run queues
    833  1.26       cgd  * to be empty.
    834  1.26       cgd  */
    835  1.26       cgd void
    836  1.26       cgd rqinit()
    837  1.26       cgd {
    838  1.71  augustss 	int i;
    839  1.26       cgd 
    840  1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
    841  1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    842  1.73   thorpej 		    (struct proc *)&sched_qs[i];
    843  1.26       cgd }
    844  1.26       cgd 
    845  1.26       cgd /*
    846  1.26       cgd  * Change process state to be runnable,
    847  1.26       cgd  * placing it on the run queue if it is in memory,
    848  1.26       cgd  * and awakening the swapper if it isn't in memory.
    849  1.26       cgd  */
    850  1.26       cgd void
    851  1.77   thorpej setrunnable(struct proc *p)
    852  1.26       cgd {
    853  1.71  augustss 	int s;
    854  1.26       cgd 
    855  1.26       cgd 	s = splhigh();
    856  1.26       cgd 	switch (p->p_stat) {
    857  1.26       cgd 	case 0:
    858  1.26       cgd 	case SRUN:
    859  1.72   thorpej 	case SONPROC:
    860  1.26       cgd 	case SZOMB:
    861  1.60   thorpej 	case SDEAD:
    862  1.26       cgd 	default:
    863  1.26       cgd 		panic("setrunnable");
    864  1.26       cgd 	case SSTOP:
    865  1.33   mycroft 		/*
    866  1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    867  1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    868  1.33   mycroft 		 */
    869  1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    870  1.53   mycroft 			sigaddset(&p->p_siglist, p->p_xstat);
    871  1.53   mycroft 			p->p_sigcheck = 1;
    872  1.53   mycroft 		}
    873  1.26       cgd 	case SSLEEP:
    874  1.26       cgd 		unsleep(p);		/* e.g. when sending signals */
    875  1.26       cgd 		break;
    876  1.26       cgd 
    877  1.26       cgd 	case SIDL:
    878  1.26       cgd 		break;
    879  1.26       cgd 	}
    880  1.26       cgd 	p->p_stat = SRUN;
    881  1.26       cgd 	if (p->p_flag & P_INMEM)
    882  1.26       cgd 		setrunqueue(p);
    883  1.26       cgd 	splx(s);
    884  1.26       cgd 	if (p->p_slptime > 1)
    885  1.26       cgd 		updatepri(p);
    886  1.26       cgd 	p->p_slptime = 0;
    887  1.26       cgd 	if ((p->p_flag & P_INMEM) == 0)
    888  1.26       cgd 		wakeup((caddr_t)&proc0);
    889  1.76   thorpej 	else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
    890  1.76   thorpej 		/*
    891  1.76   thorpej 		 * XXXSMP
    892  1.76   thorpej 		 * This is wrong.  It will work, but what really
    893  1.76   thorpej 		 * needs to happen is:
    894  1.76   thorpej 		 *
    895  1.76   thorpej 		 *	- Need to check if p is higher priority
    896  1.76   thorpej 		 *	  than the process currently running on
    897  1.76   thorpej 		 *	  the CPU p last ran on (let p_cpu persist
    898  1.76   thorpej 		 *	  after a context switch?), and preempt
    899  1.76   thorpej 		 *	  that one (or, if there is no process
    900  1.76   thorpej 		 *	  there, simply need_resched() that CPU.
    901  1.76   thorpej 		 *
    902  1.76   thorpej 		 *	- Failing that, traverse a list of
    903  1.76   thorpej 		 *	  available CPUs and need_resched() the
    904  1.76   thorpej 		 *	  CPU with the lowest priority that's
    905  1.76   thorpej 		 *	  lower than p's.
    906  1.76   thorpej 		 */
    907  1.26       cgd 		need_resched();
    908  1.76   thorpej 	}
    909  1.26       cgd }
    910  1.26       cgd 
    911  1.26       cgd /*
    912  1.26       cgd  * Compute the priority of a process when running in user mode.
    913  1.26       cgd  * Arrange to reschedule if the resulting priority is better
    914  1.26       cgd  * than that of the current process.
    915  1.26       cgd  */
    916  1.26       cgd void
    917  1.77   thorpej resetpriority(struct proc *p)
    918  1.26       cgd {
    919  1.71  augustss 	unsigned int newpriority;
    920  1.26       cgd 
    921  1.55      ross 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
    922  1.26       cgd 	newpriority = min(newpriority, MAXPRI);
    923  1.26       cgd 	p->p_usrpri = newpriority;
    924  1.76   thorpej 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
    925  1.76   thorpej 		/*
    926  1.76   thorpej 		 * XXXSMP
    927  1.76   thorpej 		 * Same applies as in setrunnable() above.
    928  1.76   thorpej 		 */
    929  1.26       cgd 		need_resched();
    930  1.76   thorpej 	}
    931  1.55      ross }
    932  1.55      ross 
    933  1.55      ross /*
    934  1.56      ross  * We adjust the priority of the current process.  The priority of a process
    935  1.56      ross  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
    936  1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
    937  1.56      ross  * will compute a different value each time p_estcpu increases. This can
    938  1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    939  1.56      ross  * queue will not change.  The cpu usage estimator ramps up quite quickly
    940  1.56      ross  * when the process is running (linearly), and decays away exponentially, at
    941  1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
    942  1.56      ross  * principal is that the system will 90% forget that the process used a lot
    943  1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    944  1.56      ross  * processes which haven't run much recently, and to round-robin among other
    945  1.56      ross  * processes.
    946  1.55      ross  */
    947  1.55      ross 
    948  1.55      ross void
    949  1.77   thorpej schedclock(struct proc *p)
    950  1.55      ross {
    951  1.77   thorpej 
    952  1.55      ross 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
    953  1.55      ross 	resetpriority(p);
    954  1.55      ross 	if (p->p_priority >= PUSER)
    955  1.55      ross 		p->p_priority = p->p_usrpri;
    956  1.26       cgd }
    957