kern_synch.c revision 1.78 1 1.78 sommerfe /* $NetBSD: kern_synch.c,v 1.78 2000/06/10 18:44:44 sommerfeld Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.69 thorpej * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.63 thorpej * NASA Ames Research Center.
10 1.63 thorpej *
11 1.63 thorpej * Redistribution and use in source and binary forms, with or without
12 1.63 thorpej * modification, are permitted provided that the following conditions
13 1.63 thorpej * are met:
14 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.63 thorpej * notice, this list of conditions and the following disclaimer.
16 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.63 thorpej * documentation and/or other materials provided with the distribution.
19 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.63 thorpej * must display the following acknowledgement:
21 1.63 thorpej * This product includes software developed by the NetBSD
22 1.63 thorpej * Foundation, Inc. and its contributors.
23 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.63 thorpej * contributors may be used to endorse or promote products derived
25 1.63 thorpej * from this software without specific prior written permission.
26 1.63 thorpej *
27 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.63 thorpej */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.26 cgd * 3. All advertising materials mentioning features or use of this software
58 1.26 cgd * must display the following acknowledgement:
59 1.26 cgd * This product includes software developed by the University of
60 1.26 cgd * California, Berkeley and its contributors.
61 1.26 cgd * 4. Neither the name of the University nor the names of its contributors
62 1.26 cgd * may be used to endorse or promote products derived from this software
63 1.26 cgd * without specific prior written permission.
64 1.26 cgd *
65 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 1.26 cgd * SUCH DAMAGE.
76 1.26 cgd *
77 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 1.26 cgd */
79 1.48 mrg
80 1.52 jonathan #include "opt_ddb.h"
81 1.51 thorpej #include "opt_ktrace.h"
82 1.26 cgd
83 1.26 cgd #include <sys/param.h>
84 1.26 cgd #include <sys/systm.h>
85 1.68 thorpej #include <sys/callout.h>
86 1.26 cgd #include <sys/proc.h>
87 1.26 cgd #include <sys/kernel.h>
88 1.26 cgd #include <sys/buf.h>
89 1.26 cgd #include <sys/signalvar.h>
90 1.26 cgd #include <sys/resourcevar.h>
91 1.34 christos #include <vm/vm.h>
92 1.55 ross #include <sys/sched.h>
93 1.47 mrg
94 1.47 mrg #include <uvm/uvm_extern.h>
95 1.47 mrg
96 1.26 cgd #ifdef KTRACE
97 1.26 cgd #include <sys/ktrace.h>
98 1.26 cgd #endif
99 1.26 cgd
100 1.26 cgd #include <machine/cpu.h>
101 1.34 christos
102 1.26 cgd int lbolt; /* once a second sleep address */
103 1.26 cgd
104 1.73 thorpej /*
105 1.73 thorpej * The global scheduler state.
106 1.73 thorpej */
107 1.73 thorpej struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
108 1.73 thorpej __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
109 1.73 thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
110 1.73 thorpej
111 1.77 thorpej void roundrobin(void *);
112 1.77 thorpej void schedcpu(void *);
113 1.77 thorpej void updatepri(struct proc *);
114 1.77 thorpej void endtsleep(void *);
115 1.34 christos
116 1.77 thorpej __inline void awaken(struct proc *);
117 1.63 thorpej
118 1.68 thorpej struct callout roundrobin_ch = CALLOUT_INITIALIZER;
119 1.68 thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
120 1.68 thorpej
121 1.26 cgd /*
122 1.26 cgd * Force switch among equal priority processes every 100ms.
123 1.26 cgd */
124 1.26 cgd /* ARGSUSED */
125 1.26 cgd void
126 1.77 thorpej roundrobin(void *arg)
127 1.26 cgd {
128 1.73 thorpej struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
129 1.69 thorpej int s;
130 1.26 cgd
131 1.69 thorpej if (curproc != NULL) {
132 1.69 thorpej s = splstatclock();
133 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
134 1.69 thorpej /*
135 1.69 thorpej * The process has already been through a roundrobin
136 1.69 thorpej * without switching and may be hogging the CPU.
137 1.69 thorpej * Indicate that the process should yield.
138 1.69 thorpej */
139 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
140 1.69 thorpej } else
141 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
142 1.69 thorpej splx(s);
143 1.69 thorpej }
144 1.26 cgd need_resched();
145 1.68 thorpej callout_reset(&roundrobin_ch, hz / 10, roundrobin, NULL);
146 1.26 cgd }
147 1.26 cgd
148 1.26 cgd /*
149 1.26 cgd * Constants for digital decay and forget:
150 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
151 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
152 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
153 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
154 1.26 cgd *
155 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
156 1.26 cgd *
157 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
158 1.26 cgd * That is, the system wants to compute a value of decay such
159 1.26 cgd * that the following for loop:
160 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
161 1.26 cgd * p_estcpu *= decay;
162 1.26 cgd * will compute
163 1.26 cgd * p_estcpu *= 0.1;
164 1.26 cgd * for all values of loadavg:
165 1.26 cgd *
166 1.26 cgd * Mathematically this loop can be expressed by saying:
167 1.26 cgd * decay ** (5 * loadavg) ~= .1
168 1.26 cgd *
169 1.26 cgd * The system computes decay as:
170 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
171 1.26 cgd *
172 1.26 cgd * We wish to prove that the system's computation of decay
173 1.26 cgd * will always fulfill the equation:
174 1.26 cgd * decay ** (5 * loadavg) ~= .1
175 1.26 cgd *
176 1.26 cgd * If we compute b as:
177 1.26 cgd * b = 2 * loadavg
178 1.26 cgd * then
179 1.26 cgd * decay = b / (b + 1)
180 1.26 cgd *
181 1.26 cgd * We now need to prove two things:
182 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
183 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
184 1.26 cgd *
185 1.26 cgd * Facts:
186 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
187 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
188 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
189 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
190 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
191 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
192 1.26 cgd * ln(.1) =~ -2.30
193 1.26 cgd *
194 1.26 cgd * Proof of (1):
195 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
196 1.26 cgd * solving for factor,
197 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
198 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
199 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
200 1.26 cgd *
201 1.26 cgd * Proof of (2):
202 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
203 1.26 cgd * solving for power,
204 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
205 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
206 1.26 cgd *
207 1.26 cgd * Actual power values for the implemented algorithm are as follows:
208 1.26 cgd * loadav: 1 2 3 4
209 1.26 cgd * power: 5.68 10.32 14.94 19.55
210 1.26 cgd */
211 1.26 cgd
212 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
213 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
214 1.26 cgd #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
215 1.26 cgd
216 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
217 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
218 1.26 cgd
219 1.26 cgd /*
220 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
221 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
222 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
223 1.26 cgd *
224 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
225 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
226 1.26 cgd *
227 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
228 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
229 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
230 1.26 cgd */
231 1.26 cgd #define CCPU_SHIFT 11
232 1.26 cgd
233 1.26 cgd /*
234 1.26 cgd * Recompute process priorities, every hz ticks.
235 1.26 cgd */
236 1.26 cgd /* ARGSUSED */
237 1.26 cgd void
238 1.77 thorpej schedcpu(void *arg)
239 1.26 cgd {
240 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
241 1.71 augustss struct proc *p;
242 1.71 augustss int s;
243 1.71 augustss unsigned int newcpu;
244 1.66 ross int clkhz;
245 1.26 cgd
246 1.62 thorpej proclist_lock_read();
247 1.27 mycroft for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
248 1.26 cgd /*
249 1.26 cgd * Increment time in/out of memory and sleep time
250 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
251 1.26 cgd * (remember them?) overflow takes 45 days.
252 1.26 cgd */
253 1.26 cgd p->p_swtime++;
254 1.26 cgd if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
255 1.26 cgd p->p_slptime++;
256 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
257 1.26 cgd /*
258 1.26 cgd * If the process has slept the entire second,
259 1.26 cgd * stop recalculating its priority until it wakes up.
260 1.26 cgd */
261 1.26 cgd if (p->p_slptime > 1)
262 1.26 cgd continue;
263 1.26 cgd s = splstatclock(); /* prevent state changes */
264 1.26 cgd /*
265 1.26 cgd * p_pctcpu is only for ps.
266 1.26 cgd */
267 1.66 ross clkhz = stathz != 0 ? stathz : hz;
268 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
269 1.66 ross p->p_pctcpu += (clkhz == 100)?
270 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
271 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
272 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
273 1.26 cgd #else
274 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
275 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
276 1.26 cgd #endif
277 1.26 cgd p->p_cpticks = 0;
278 1.55 ross newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
279 1.55 ross p->p_estcpu = newcpu;
280 1.26 cgd resetpriority(p);
281 1.26 cgd if (p->p_priority >= PUSER) {
282 1.72 thorpej if (p->p_stat == SRUN &&
283 1.26 cgd (p->p_flag & P_INMEM) &&
284 1.26 cgd (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
285 1.43 cgd remrunqueue(p);
286 1.26 cgd p->p_priority = p->p_usrpri;
287 1.26 cgd setrunqueue(p);
288 1.26 cgd } else
289 1.26 cgd p->p_priority = p->p_usrpri;
290 1.26 cgd }
291 1.26 cgd splx(s);
292 1.26 cgd }
293 1.61 thorpej proclist_unlock_read();
294 1.47 mrg uvm_meter();
295 1.67 fvdl wakeup((caddr_t)&lbolt);
296 1.68 thorpej callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
297 1.26 cgd }
298 1.26 cgd
299 1.26 cgd /*
300 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
301 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
302 1.26 cgd * least six times the loadfactor will decay p_estcpu to zero.
303 1.26 cgd */
304 1.26 cgd void
305 1.77 thorpej updatepri(struct proc *p)
306 1.26 cgd {
307 1.71 augustss unsigned int newcpu = p->p_estcpu;
308 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
309 1.26 cgd
310 1.26 cgd if (p->p_slptime > 5 * loadfac)
311 1.26 cgd p->p_estcpu = 0;
312 1.26 cgd else {
313 1.26 cgd p->p_slptime--; /* the first time was done in schedcpu */
314 1.26 cgd while (newcpu && --p->p_slptime)
315 1.26 cgd newcpu = (int) decay_cpu(loadfac, newcpu);
316 1.55 ross p->p_estcpu = newcpu;
317 1.26 cgd }
318 1.26 cgd resetpriority(p);
319 1.26 cgd }
320 1.26 cgd
321 1.26 cgd /*
322 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
323 1.26 cgd * lower the priority briefly to allow interrupts, then return.
324 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
325 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
326 1.26 cgd * This priority will typically be 0, or the lowest priority
327 1.26 cgd * that is safe for use on the interrupt stack; it can be made
328 1.26 cgd * higher to block network software interrupts after panics.
329 1.26 cgd */
330 1.26 cgd int safepri;
331 1.26 cgd
332 1.26 cgd /*
333 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
334 1.26 cgd * performed on the specified identifier. The process will then be made
335 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
336 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
337 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
338 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
339 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
340 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
341 1.26 cgd * call should be interrupted by the signal (return EINTR).
342 1.77 thorpej *
343 1.77 thorpej * The interlock is held until the scheduler_slock is held. The
344 1.77 thorpej * interlock will be locked before returning back to the caller
345 1.77 thorpej * unless the PNORELOCK flag is specified, in which case the
346 1.77 thorpej * interlock will always be unlocked upon return.
347 1.26 cgd */
348 1.26 cgd int
349 1.77 thorpej ltsleep(void *ident, int priority, const char *wmesg, int timo,
350 1.77 thorpej __volatile struct simplelock *interlock)
351 1.26 cgd {
352 1.71 augustss struct proc *p = curproc;
353 1.71 augustss struct slpque *qp;
354 1.77 thorpej int sig, s;
355 1.77 thorpej int catch = priority & PCATCH;
356 1.77 thorpej int relock = (priority & PNORELOCK) == 0;
357 1.77 thorpej #if 0 /* XXXSMP */
358 1.78 sommerfe int dobiglock;
359 1.77 thorpej #endif
360 1.26 cgd
361 1.77 thorpej /*
362 1.77 thorpej * XXXSMP
363 1.77 thorpej * This is probably bogus. Figure out what the right
364 1.77 thorpej * thing to do here really is.
365 1.78 sommerfe * Note that not sleeping if ltsleep is called with curproc == NULL
366 1.78 sommerfe * in the shutdown case is disgusting but partly necessary given
367 1.78 sommerfe * how shutdown (barely) works.
368 1.77 thorpej */
369 1.78 sommerfe if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
370 1.26 cgd /*
371 1.26 cgd * After a panic, or during autoconfiguration,
372 1.26 cgd * just give interrupts a chance, then just return;
373 1.26 cgd * don't run any other procs or panic below,
374 1.26 cgd * in case this is the idle process and already asleep.
375 1.26 cgd */
376 1.42 cgd s = splhigh();
377 1.26 cgd splx(safepri);
378 1.26 cgd splx(s);
379 1.77 thorpej if (interlock != NULL && relock == 0)
380 1.77 thorpej simple_unlock(interlock);
381 1.26 cgd return (0);
382 1.26 cgd }
383 1.78 sommerfe
384 1.78 sommerfe #if 0 /* XXXSMP */
385 1.78 sommerfe dobiglock = (p->p_flags & P_BIGLOCK) != 0;
386 1.78 sommerfe #endif
387 1.42 cgd
388 1.42 cgd #ifdef KTRACE
389 1.42 cgd if (KTRPOINT(p, KTR_CSW))
390 1.74 sommerfe ktrcsw(p, 1, 0);
391 1.42 cgd #endif
392 1.77 thorpej
393 1.77 thorpej s = splhigh(); /* XXXSMP: SCHED_LOCK(s) */
394 1.42 cgd
395 1.26 cgd #ifdef DIAGNOSTIC
396 1.64 thorpej if (ident == NULL)
397 1.77 thorpej panic("ltsleep: ident == NULL");
398 1.72 thorpej if (p->p_stat != SONPROC)
399 1.77 thorpej panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
400 1.64 thorpej if (p->p_back != NULL)
401 1.77 thorpej panic("ltsleep: p_back != NULL");
402 1.26 cgd #endif
403 1.77 thorpej
404 1.26 cgd p->p_wchan = ident;
405 1.26 cgd p->p_wmesg = wmesg;
406 1.26 cgd p->p_slptime = 0;
407 1.26 cgd p->p_priority = priority & PRIMASK;
408 1.77 thorpej
409 1.73 thorpej qp = SLPQUE(ident);
410 1.26 cgd if (qp->sq_head == 0)
411 1.26 cgd qp->sq_head = p;
412 1.26 cgd else
413 1.26 cgd *qp->sq_tailp = p;
414 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
415 1.77 thorpej
416 1.26 cgd if (timo)
417 1.68 thorpej callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
418 1.77 thorpej
419 1.77 thorpej /*
420 1.77 thorpej * We can now release the interlock; the scheduler_slock
421 1.77 thorpej * is held, so a thread can't get in to do wakeup() before
422 1.77 thorpej * we do the switch.
423 1.77 thorpej *
424 1.77 thorpej * XXX We leave the code block here, after inserting ourselves
425 1.77 thorpej * on the sleep queue, because we might want a more clever
426 1.77 thorpej * data structure for the sleep queues at some point.
427 1.77 thorpej */
428 1.77 thorpej if (interlock != NULL)
429 1.77 thorpej simple_unlock(interlock);
430 1.77 thorpej
431 1.26 cgd /*
432 1.26 cgd * We put ourselves on the sleep queue and start our timeout
433 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
434 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
435 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
436 1.26 cgd * without resuming us, thus we must be ready for sleep
437 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
438 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
439 1.26 cgd */
440 1.26 cgd if (catch) {
441 1.26 cgd p->p_flag |= P_SINTR;
442 1.34 christos if ((sig = CURSIG(p)) != 0) {
443 1.77 thorpej if (p->p_wchan != NULL)
444 1.26 cgd unsleep(p);
445 1.72 thorpej p->p_stat = SONPROC;
446 1.77 thorpej #if 0 /* XXXSMP */
447 1.77 thorpej /*
448 1.77 thorpej * We're going to skip the unlock, so
449 1.77 thorpej * we don't need to relock after resume.
450 1.77 thorpej */
451 1.77 thorpej dobiglock = 0;
452 1.77 thorpej #endif
453 1.26 cgd goto resume;
454 1.26 cgd }
455 1.77 thorpej if (p->p_wchan == NULL) {
456 1.26 cgd catch = 0;
457 1.77 thorpej #if 0 /* XXXSMP */
458 1.77 thorpej /* See above. */
459 1.77 thorpej dobiglock = 0;
460 1.77 thorpej #endif
461 1.26 cgd goto resume;
462 1.26 cgd }
463 1.26 cgd } else
464 1.26 cgd sig = 0;
465 1.26 cgd p->p_stat = SSLEEP;
466 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
467 1.77 thorpej
468 1.77 thorpej #if 0 /* XXXSMP */
469 1.77 thorpej if (dobiglock) {
470 1.77 thorpej /*
471 1.77 thorpej * Release the kernel_lock, as we are about to
472 1.77 thorpej * yield the CPU. The scheduler_slock is still
473 1.77 thorpej * held until cpu_switch() selects a new process
474 1.77 thorpej * and removes it from the run queue.
475 1.77 thorpej */
476 1.77 thorpej kernel_lock_release();
477 1.77 thorpej }
478 1.77 thorpej #endif
479 1.77 thorpej
480 1.77 thorpej /* scheduler_slock held */
481 1.74 sommerfe mi_switch(p);
482 1.77 thorpej /* scheduler_slock held */
483 1.26 cgd #ifdef DDB
484 1.26 cgd /* handy breakpoint location after process "wakes" */
485 1.26 cgd asm(".globl bpendtsleep ; bpendtsleep:");
486 1.26 cgd #endif
487 1.77 thorpej
488 1.77 thorpej resume:
489 1.76 thorpej KDASSERT(p->p_cpu != NULL);
490 1.76 thorpej KDASSERT(p->p_cpu == curcpu());
491 1.76 thorpej p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
492 1.77 thorpej splx(s); /* XXXSMP: SCHED_UNLOCK(s) */
493 1.77 thorpej #if 0 /* XXXSMP */
494 1.77 thorpej if (dobiglock) {
495 1.77 thorpej /*
496 1.77 thorpej * Reacquire the kernel_lock now. We do this after
497 1.77 thorpej * we've released scheduler_slock to avoid deadlock.
498 1.77 thorpej */
499 1.77 thorpej kernel_lock_acquire(LK_EXCLUSIVE);
500 1.77 thorpej }
501 1.77 thorpej #endif
502 1.26 cgd p->p_flag &= ~P_SINTR;
503 1.26 cgd if (p->p_flag & P_TIMEOUT) {
504 1.26 cgd p->p_flag &= ~P_TIMEOUT;
505 1.26 cgd if (sig == 0) {
506 1.26 cgd #ifdef KTRACE
507 1.26 cgd if (KTRPOINT(p, KTR_CSW))
508 1.74 sommerfe ktrcsw(p, 0, 0);
509 1.26 cgd #endif
510 1.77 thorpej if (relock && interlock != NULL)
511 1.77 thorpej simple_lock(interlock);
512 1.26 cgd return (EWOULDBLOCK);
513 1.26 cgd }
514 1.26 cgd } else if (timo)
515 1.68 thorpej callout_stop(&p->p_tsleep_ch);
516 1.34 christos if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
517 1.26 cgd #ifdef KTRACE
518 1.26 cgd if (KTRPOINT(p, KTR_CSW))
519 1.74 sommerfe ktrcsw(p, 0, 0);
520 1.26 cgd #endif
521 1.77 thorpej if (relock && interlock != NULL)
522 1.77 thorpej simple_lock(interlock);
523 1.53 mycroft if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
524 1.26 cgd return (EINTR);
525 1.26 cgd return (ERESTART);
526 1.26 cgd }
527 1.26 cgd #ifdef KTRACE
528 1.26 cgd if (KTRPOINT(p, KTR_CSW))
529 1.74 sommerfe ktrcsw(p, 0, 0);
530 1.26 cgd #endif
531 1.77 thorpej if (relock && interlock != NULL)
532 1.77 thorpej simple_lock(interlock);
533 1.26 cgd return (0);
534 1.26 cgd }
535 1.26 cgd
536 1.26 cgd /*
537 1.26 cgd * Implement timeout for tsleep.
538 1.26 cgd * If process hasn't been awakened (wchan non-zero),
539 1.26 cgd * set timeout flag and undo the sleep. If proc
540 1.26 cgd * is stopped, just unsleep so it will remain stopped.
541 1.26 cgd */
542 1.26 cgd void
543 1.77 thorpej endtsleep(void *arg)
544 1.26 cgd {
545 1.71 augustss struct proc *p;
546 1.26 cgd int s;
547 1.26 cgd
548 1.26 cgd p = (struct proc *)arg;
549 1.26 cgd s = splhigh();
550 1.26 cgd if (p->p_wchan) {
551 1.26 cgd if (p->p_stat == SSLEEP)
552 1.26 cgd setrunnable(p);
553 1.26 cgd else
554 1.26 cgd unsleep(p);
555 1.26 cgd p->p_flag |= P_TIMEOUT;
556 1.26 cgd }
557 1.26 cgd splx(s);
558 1.26 cgd }
559 1.26 cgd
560 1.26 cgd /*
561 1.26 cgd * Remove a process from its wait queue
562 1.26 cgd */
563 1.26 cgd void
564 1.77 thorpej unsleep(struct proc *p)
565 1.26 cgd {
566 1.71 augustss struct slpque *qp;
567 1.71 augustss struct proc **hp;
568 1.26 cgd int s;
569 1.26 cgd
570 1.26 cgd s = splhigh();
571 1.26 cgd if (p->p_wchan) {
572 1.73 thorpej hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
573 1.26 cgd while (*hp != p)
574 1.26 cgd hp = &(*hp)->p_forw;
575 1.26 cgd *hp = p->p_forw;
576 1.26 cgd if (qp->sq_tailp == &p->p_forw)
577 1.26 cgd qp->sq_tailp = hp;
578 1.26 cgd p->p_wchan = 0;
579 1.26 cgd }
580 1.26 cgd splx(s);
581 1.26 cgd }
582 1.26 cgd
583 1.26 cgd /*
584 1.63 thorpej * Optimized-for-wakeup() version of setrunnable().
585 1.63 thorpej */
586 1.63 thorpej __inline void
587 1.77 thorpej awaken(struct proc *p)
588 1.63 thorpej {
589 1.63 thorpej
590 1.63 thorpej if (p->p_slptime > 1)
591 1.63 thorpej updatepri(p);
592 1.63 thorpej p->p_slptime = 0;
593 1.63 thorpej p->p_stat = SRUN;
594 1.77 thorpej
595 1.63 thorpej /*
596 1.63 thorpej * Since curpriority is a user priority, p->p_priority
597 1.63 thorpej * is always better than curpriority.
598 1.63 thorpej */
599 1.63 thorpej if (p->p_flag & P_INMEM) {
600 1.63 thorpej setrunqueue(p);
601 1.63 thorpej need_resched();
602 1.63 thorpej } else
603 1.77 thorpej wakeup(&proc0);
604 1.63 thorpej }
605 1.63 thorpej
606 1.63 thorpej /*
607 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
608 1.26 cgd */
609 1.26 cgd void
610 1.77 thorpej wakeup(void *ident)
611 1.26 cgd {
612 1.71 augustss struct slpque *qp;
613 1.71 augustss struct proc *p, **q;
614 1.26 cgd int s;
615 1.26 cgd
616 1.77 thorpej s = splhigh(); /* XXXSMP: SCHED_LOCK(s) */
617 1.77 thorpej
618 1.73 thorpej qp = SLPQUE(ident);
619 1.77 thorpej restart:
620 1.34 christos for (q = &qp->sq_head; (p = *q) != NULL; ) {
621 1.26 cgd #ifdef DIAGNOSTIC
622 1.34 christos if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
623 1.26 cgd panic("wakeup");
624 1.26 cgd #endif
625 1.26 cgd if (p->p_wchan == ident) {
626 1.26 cgd p->p_wchan = 0;
627 1.26 cgd *q = p->p_forw;
628 1.26 cgd if (qp->sq_tailp == &p->p_forw)
629 1.26 cgd qp->sq_tailp = q;
630 1.26 cgd if (p->p_stat == SSLEEP) {
631 1.63 thorpej awaken(p);
632 1.26 cgd goto restart;
633 1.26 cgd }
634 1.26 cgd } else
635 1.26 cgd q = &p->p_forw;
636 1.63 thorpej }
637 1.77 thorpej splx(s); /* XXXSMP: SCHED_UNLOCK(s) */
638 1.63 thorpej }
639 1.63 thorpej
640 1.63 thorpej /*
641 1.63 thorpej * Make the highest priority process first in line on the specified
642 1.63 thorpej * identifier runnable.
643 1.63 thorpej */
644 1.63 thorpej void
645 1.77 thorpej wakeup_one(void *ident)
646 1.63 thorpej {
647 1.63 thorpej struct slpque *qp;
648 1.63 thorpej struct proc *p, **q;
649 1.63 thorpej struct proc *best_sleepp, **best_sleepq;
650 1.63 thorpej struct proc *best_stopp, **best_stopq;
651 1.63 thorpej int s;
652 1.63 thorpej
653 1.63 thorpej best_sleepp = best_stopp = NULL;
654 1.63 thorpej best_sleepq = best_stopq = NULL;
655 1.63 thorpej
656 1.77 thorpej s = splhigh(); /* XXXSMP: SCHED_LOCK(s) */
657 1.77 thorpej
658 1.73 thorpej qp = SLPQUE(ident);
659 1.77 thorpej
660 1.63 thorpej for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
661 1.63 thorpej #ifdef DIAGNOSTIC
662 1.63 thorpej if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
663 1.63 thorpej panic("wakeup_one");
664 1.63 thorpej #endif
665 1.63 thorpej if (p->p_wchan == ident) {
666 1.63 thorpej if (p->p_stat == SSLEEP) {
667 1.63 thorpej if (best_sleepp == NULL ||
668 1.63 thorpej p->p_priority < best_sleepp->p_priority) {
669 1.63 thorpej best_sleepp = p;
670 1.63 thorpej best_sleepq = q;
671 1.63 thorpej }
672 1.63 thorpej } else {
673 1.63 thorpej if (best_stopp == NULL ||
674 1.63 thorpej p->p_priority < best_stopp->p_priority) {
675 1.63 thorpej best_stopp = p;
676 1.63 thorpej best_stopq = q;
677 1.63 thorpej }
678 1.63 thorpej }
679 1.63 thorpej }
680 1.63 thorpej }
681 1.63 thorpej
682 1.63 thorpej /*
683 1.63 thorpej * Consider any SSLEEP process higher than the highest priority SSTOP
684 1.63 thorpej * process.
685 1.63 thorpej */
686 1.63 thorpej if (best_sleepp != NULL) {
687 1.63 thorpej p = best_sleepp;
688 1.63 thorpej q = best_sleepq;
689 1.63 thorpej } else {
690 1.63 thorpej p = best_stopp;
691 1.63 thorpej q = best_stopq;
692 1.63 thorpej }
693 1.63 thorpej
694 1.63 thorpej if (p != NULL) {
695 1.77 thorpej p->p_wchan = NULL;
696 1.63 thorpej *q = p->p_forw;
697 1.63 thorpej if (qp->sq_tailp == &p->p_forw)
698 1.63 thorpej qp->sq_tailp = q;
699 1.63 thorpej if (p->p_stat == SSLEEP)
700 1.63 thorpej awaken(p);
701 1.26 cgd }
702 1.77 thorpej splx(s); /* XXXSMP: SCHED_UNLOCK(s) */
703 1.26 cgd }
704 1.26 cgd
705 1.26 cgd /*
706 1.69 thorpej * General yield call. Puts the current process back on its run queue and
707 1.69 thorpej * performs a voluntary context switch.
708 1.69 thorpej */
709 1.69 thorpej void
710 1.77 thorpej yield(void)
711 1.69 thorpej {
712 1.69 thorpej struct proc *p = curproc;
713 1.69 thorpej int s;
714 1.69 thorpej
715 1.72 thorpej s = splstatclock();
716 1.69 thorpej p->p_priority = p->p_usrpri;
717 1.72 thorpej p->p_stat = SRUN;
718 1.69 thorpej setrunqueue(p);
719 1.69 thorpej p->p_stats->p_ru.ru_nvcsw++;
720 1.74 sommerfe mi_switch(p);
721 1.69 thorpej splx(s);
722 1.69 thorpej }
723 1.69 thorpej
724 1.69 thorpej /*
725 1.69 thorpej * General preemption call. Puts the current process back on its run queue
726 1.69 thorpej * and performs an involuntary context switch. If a process is supplied,
727 1.69 thorpej * we switch to that process. Otherwise, we use the normal process selection
728 1.69 thorpej * criteria.
729 1.69 thorpej */
730 1.69 thorpej void
731 1.77 thorpej preempt(struct proc *newp)
732 1.69 thorpej {
733 1.69 thorpej struct proc *p = curproc;
734 1.69 thorpej int s;
735 1.69 thorpej
736 1.69 thorpej /*
737 1.69 thorpej * XXX Switching to a specific process is not supported yet.
738 1.69 thorpej */
739 1.69 thorpej if (newp != NULL)
740 1.69 thorpej panic("preempt: cpu_preempt not yet implemented");
741 1.69 thorpej
742 1.72 thorpej s = splstatclock();
743 1.69 thorpej p->p_priority = p->p_usrpri;
744 1.72 thorpej p->p_stat = SRUN;
745 1.69 thorpej setrunqueue(p);
746 1.69 thorpej p->p_stats->p_ru.ru_nivcsw++;
747 1.74 sommerfe mi_switch(p);
748 1.69 thorpej splx(s);
749 1.69 thorpej }
750 1.69 thorpej
751 1.69 thorpej /*
752 1.72 thorpej * The machine independent parts of context switch.
753 1.26 cgd * Must be called at splstatclock() or higher.
754 1.26 cgd */
755 1.26 cgd void
756 1.77 thorpej mi_switch(struct proc *p)
757 1.26 cgd {
758 1.76 thorpej struct schedstate_percpu *spc;
759 1.71 augustss struct rlimit *rlim;
760 1.71 augustss long s, u;
761 1.26 cgd struct timeval tv;
762 1.26 cgd
763 1.76 thorpej KDASSERT(p->p_cpu != NULL);
764 1.76 thorpej KDASSERT(p->p_cpu == curcpu());
765 1.76 thorpej
766 1.76 thorpej spc = &p->p_cpu->ci_schedstate;
767 1.76 thorpej
768 1.50 fvdl #ifdef DEBUG
769 1.54 chs if (p->p_simple_locks) {
770 1.54 chs printf("p->p_simple_locks %d\n", p->p_simple_locks);
771 1.54 chs #ifdef LOCKDEBUG
772 1.54 chs simple_lock_dump();
773 1.54 chs #endif
774 1.50 fvdl panic("sleep: holding simple lock");
775 1.54 chs }
776 1.50 fvdl #endif
777 1.26 cgd /*
778 1.26 cgd * Compute the amount of time during which the current
779 1.26 cgd * process was running, and add that to its total so far.
780 1.26 cgd */
781 1.26 cgd microtime(&tv);
782 1.73 thorpej u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
783 1.73 thorpej s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
784 1.26 cgd if (u < 0) {
785 1.26 cgd u += 1000000;
786 1.26 cgd s--;
787 1.26 cgd } else if (u >= 1000000) {
788 1.26 cgd u -= 1000000;
789 1.26 cgd s++;
790 1.26 cgd }
791 1.26 cgd p->p_rtime.tv_usec = u;
792 1.26 cgd p->p_rtime.tv_sec = s;
793 1.26 cgd
794 1.26 cgd /*
795 1.26 cgd * Check if the process exceeds its cpu resource allocation.
796 1.26 cgd * If over max, kill it. In any case, if it has run for more
797 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
798 1.26 cgd */
799 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
800 1.26 cgd if (s >= rlim->rlim_cur) {
801 1.26 cgd if (s >= rlim->rlim_max)
802 1.26 cgd psignal(p, SIGKILL);
803 1.26 cgd else {
804 1.26 cgd psignal(p, SIGXCPU);
805 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
806 1.26 cgd rlim->rlim_cur += 5;
807 1.26 cgd }
808 1.26 cgd }
809 1.77 thorpej if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
810 1.77 thorpej p->p_nice == NZERO) {
811 1.39 ws p->p_nice = autoniceval + NZERO;
812 1.26 cgd resetpriority(p);
813 1.26 cgd }
814 1.69 thorpej
815 1.69 thorpej /*
816 1.69 thorpej * Process is about to yield the CPU; clear the appropriate
817 1.69 thorpej * scheduling flags.
818 1.69 thorpej */
819 1.73 thorpej spc->spc_flags &= ~SPCF_SWITCHCLEAR;
820 1.26 cgd
821 1.26 cgd /*
822 1.76 thorpej * Pick a new current process and switch to it. When we
823 1.76 thorpej * run again, we'll return back here.
824 1.26 cgd */
825 1.47 mrg uvmexp.swtch++;
826 1.26 cgd cpu_switch(p);
827 1.76 thorpej
828 1.76 thorpej /*
829 1.76 thorpej * We're running again; record our new start time. We might
830 1.76 thorpej * be running on a new CPU now, so don't use the cache'd
831 1.76 thorpej * schedstate_percpu pointer.
832 1.76 thorpej */
833 1.76 thorpej KDASSERT(p->p_cpu != NULL);
834 1.76 thorpej KDASSERT(p->p_cpu == curcpu());
835 1.76 thorpej microtime(&p->p_cpu->ci_schedstate.spc_runtime);
836 1.26 cgd }
837 1.26 cgd
838 1.26 cgd /*
839 1.26 cgd * Initialize the (doubly-linked) run queues
840 1.26 cgd * to be empty.
841 1.26 cgd */
842 1.26 cgd void
843 1.26 cgd rqinit()
844 1.26 cgd {
845 1.71 augustss int i;
846 1.26 cgd
847 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
848 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
849 1.73 thorpej (struct proc *)&sched_qs[i];
850 1.26 cgd }
851 1.26 cgd
852 1.26 cgd /*
853 1.26 cgd * Change process state to be runnable,
854 1.26 cgd * placing it on the run queue if it is in memory,
855 1.26 cgd * and awakening the swapper if it isn't in memory.
856 1.26 cgd */
857 1.26 cgd void
858 1.77 thorpej setrunnable(struct proc *p)
859 1.26 cgd {
860 1.71 augustss int s;
861 1.26 cgd
862 1.26 cgd s = splhigh();
863 1.26 cgd switch (p->p_stat) {
864 1.26 cgd case 0:
865 1.26 cgd case SRUN:
866 1.72 thorpej case SONPROC:
867 1.26 cgd case SZOMB:
868 1.60 thorpej case SDEAD:
869 1.26 cgd default:
870 1.26 cgd panic("setrunnable");
871 1.26 cgd case SSTOP:
872 1.33 mycroft /*
873 1.33 mycroft * If we're being traced (possibly because someone attached us
874 1.33 mycroft * while we were stopped), check for a signal from the debugger.
875 1.33 mycroft */
876 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
877 1.53 mycroft sigaddset(&p->p_siglist, p->p_xstat);
878 1.53 mycroft p->p_sigcheck = 1;
879 1.53 mycroft }
880 1.26 cgd case SSLEEP:
881 1.26 cgd unsleep(p); /* e.g. when sending signals */
882 1.26 cgd break;
883 1.26 cgd
884 1.26 cgd case SIDL:
885 1.26 cgd break;
886 1.26 cgd }
887 1.26 cgd p->p_stat = SRUN;
888 1.26 cgd if (p->p_flag & P_INMEM)
889 1.26 cgd setrunqueue(p);
890 1.26 cgd splx(s);
891 1.26 cgd if (p->p_slptime > 1)
892 1.26 cgd updatepri(p);
893 1.26 cgd p->p_slptime = 0;
894 1.26 cgd if ((p->p_flag & P_INMEM) == 0)
895 1.26 cgd wakeup((caddr_t)&proc0);
896 1.76 thorpej else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
897 1.76 thorpej /*
898 1.76 thorpej * XXXSMP
899 1.76 thorpej * This is wrong. It will work, but what really
900 1.76 thorpej * needs to happen is:
901 1.76 thorpej *
902 1.76 thorpej * - Need to check if p is higher priority
903 1.76 thorpej * than the process currently running on
904 1.76 thorpej * the CPU p last ran on (let p_cpu persist
905 1.76 thorpej * after a context switch?), and preempt
906 1.76 thorpej * that one (or, if there is no process
907 1.76 thorpej * there, simply need_resched() that CPU.
908 1.76 thorpej *
909 1.76 thorpej * - Failing that, traverse a list of
910 1.76 thorpej * available CPUs and need_resched() the
911 1.76 thorpej * CPU with the lowest priority that's
912 1.76 thorpej * lower than p's.
913 1.76 thorpej */
914 1.26 cgd need_resched();
915 1.76 thorpej }
916 1.26 cgd }
917 1.26 cgd
918 1.26 cgd /*
919 1.26 cgd * Compute the priority of a process when running in user mode.
920 1.26 cgd * Arrange to reschedule if the resulting priority is better
921 1.26 cgd * than that of the current process.
922 1.26 cgd */
923 1.26 cgd void
924 1.77 thorpej resetpriority(struct proc *p)
925 1.26 cgd {
926 1.71 augustss unsigned int newpriority;
927 1.26 cgd
928 1.55 ross newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
929 1.26 cgd newpriority = min(newpriority, MAXPRI);
930 1.26 cgd p->p_usrpri = newpriority;
931 1.76 thorpej if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
932 1.76 thorpej /*
933 1.76 thorpej * XXXSMP
934 1.76 thorpej * Same applies as in setrunnable() above.
935 1.76 thorpej */
936 1.26 cgd need_resched();
937 1.76 thorpej }
938 1.55 ross }
939 1.55 ross
940 1.55 ross /*
941 1.56 ross * We adjust the priority of the current process. The priority of a process
942 1.56 ross * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
943 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
944 1.56 ross * will compute a different value each time p_estcpu increases. This can
945 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
946 1.56 ross * queue will not change. The cpu usage estimator ramps up quite quickly
947 1.56 ross * when the process is running (linearly), and decays away exponentially, at
948 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
949 1.56 ross * principal is that the system will 90% forget that the process used a lot
950 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
951 1.56 ross * processes which haven't run much recently, and to round-robin among other
952 1.56 ross * processes.
953 1.55 ross */
954 1.55 ross
955 1.55 ross void
956 1.77 thorpej schedclock(struct proc *p)
957 1.55 ross {
958 1.77 thorpej
959 1.55 ross p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
960 1.55 ross resetpriority(p);
961 1.55 ross if (p->p_priority >= PUSER)
962 1.55 ross p->p_priority = p->p_usrpri;
963 1.26 cgd }
964