Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.78.2.2
      1  1.78.2.2   thorpej /*	$NetBSD: kern_synch.c,v 1.78.2.2 2000/08/11 23:10:15 thorpej Exp $	*/
      2      1.63   thorpej 
      3      1.63   thorpej /*-
      4      1.69   thorpej  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5      1.63   thorpej  * All rights reserved.
      6      1.63   thorpej  *
      7      1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8      1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9      1.63   thorpej  * NASA Ames Research Center.
     10      1.63   thorpej  *
     11      1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     12      1.63   thorpej  * modification, are permitted provided that the following conditions
     13      1.63   thorpej  * are met:
     14      1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     15      1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     16      1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17      1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18      1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     19      1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     20      1.63   thorpej  *    must display the following acknowledgement:
     21      1.63   thorpej  *	This product includes software developed by the NetBSD
     22      1.63   thorpej  *	Foundation, Inc. and its contributors.
     23      1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24      1.63   thorpej  *    contributors may be used to endorse or promote products derived
     25      1.63   thorpej  *    from this software without specific prior written permission.
     26      1.63   thorpej  *
     27      1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28      1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29      1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30      1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31      1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32      1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33      1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34      1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35      1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36      1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37      1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38      1.63   thorpej  */
     39      1.26       cgd 
     40      1.26       cgd /*-
     41      1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42      1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     43      1.26       cgd  * (c) UNIX System Laboratories, Inc.
     44      1.26       cgd  * All or some portions of this file are derived from material licensed
     45      1.26       cgd  * to the University of California by American Telephone and Telegraph
     46      1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47      1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     48      1.26       cgd  *
     49      1.26       cgd  * Redistribution and use in source and binary forms, with or without
     50      1.26       cgd  * modification, are permitted provided that the following conditions
     51      1.26       cgd  * are met:
     52      1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     53      1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     54      1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     55      1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     56      1.26       cgd  *    documentation and/or other materials provided with the distribution.
     57      1.26       cgd  * 3. All advertising materials mentioning features or use of this software
     58      1.26       cgd  *    must display the following acknowledgement:
     59      1.26       cgd  *	This product includes software developed by the University of
     60      1.26       cgd  *	California, Berkeley and its contributors.
     61      1.26       cgd  * 4. Neither the name of the University nor the names of its contributors
     62      1.26       cgd  *    may be used to endorse or promote products derived from this software
     63      1.26       cgd  *    without specific prior written permission.
     64      1.26       cgd  *
     65      1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66      1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67      1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68      1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69      1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70      1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71      1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72      1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73      1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74      1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75      1.26       cgd  * SUCH DAMAGE.
     76      1.26       cgd  *
     77      1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78      1.26       cgd  */
     79      1.48       mrg 
     80      1.52  jonathan #include "opt_ddb.h"
     81      1.51   thorpej #include "opt_ktrace.h"
     82  1.78.2.2   thorpej #include "opt_lockdebug.h"
     83      1.26       cgd 
     84      1.26       cgd #include <sys/param.h>
     85      1.26       cgd #include <sys/systm.h>
     86      1.68   thorpej #include <sys/callout.h>
     87      1.26       cgd #include <sys/proc.h>
     88      1.26       cgd #include <sys/kernel.h>
     89      1.26       cgd #include <sys/buf.h>
     90      1.26       cgd #include <sys/signalvar.h>
     91      1.26       cgd #include <sys/resourcevar.h>
     92      1.34  christos #include <vm/vm.h>
     93      1.55      ross #include <sys/sched.h>
     94      1.47       mrg 
     95      1.47       mrg #include <uvm/uvm_extern.h>
     96      1.47       mrg 
     97      1.26       cgd #ifdef KTRACE
     98      1.26       cgd #include <sys/ktrace.h>
     99      1.26       cgd #endif
    100      1.26       cgd 
    101      1.26       cgd #include <machine/cpu.h>
    102      1.34  christos 
    103      1.26       cgd int	lbolt;			/* once a second sleep address */
    104      1.26       cgd 
    105      1.73   thorpej /*
    106      1.73   thorpej  * The global scheduler state.
    107      1.73   thorpej  */
    108      1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    109      1.73   thorpej __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    110      1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    111      1.73   thorpej 
    112      1.77   thorpej void roundrobin(void *);
    113      1.77   thorpej void schedcpu(void *);
    114      1.77   thorpej void updatepri(struct proc *);
    115      1.77   thorpej void endtsleep(void *);
    116      1.34  christos 
    117      1.77   thorpej __inline void awaken(struct proc *);
    118      1.63   thorpej 
    119      1.68   thorpej struct callout roundrobin_ch = CALLOUT_INITIALIZER;
    120      1.68   thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    121      1.68   thorpej 
    122      1.26       cgd /*
    123      1.26       cgd  * Force switch among equal priority processes every 100ms.
    124      1.26       cgd  */
    125      1.26       cgd /* ARGSUSED */
    126      1.26       cgd void
    127      1.77   thorpej roundrobin(void *arg)
    128      1.26       cgd {
    129      1.73   thorpej 	struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
    130      1.69   thorpej 	int s;
    131      1.26       cgd 
    132      1.69   thorpej 	if (curproc != NULL) {
    133      1.69   thorpej 		s = splstatclock();
    134      1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    135      1.69   thorpej 			/*
    136      1.69   thorpej 			 * The process has already been through a roundrobin
    137      1.69   thorpej 			 * without switching and may be hogging the CPU.
    138      1.69   thorpej 			 * Indicate that the process should yield.
    139      1.69   thorpej 			 */
    140      1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    141      1.69   thorpej 		} else
    142      1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    143      1.69   thorpej 		splx(s);
    144      1.69   thorpej 	}
    145      1.26       cgd 	need_resched();
    146      1.68   thorpej 	callout_reset(&roundrobin_ch, hz / 10, roundrobin, NULL);
    147      1.26       cgd }
    148      1.26       cgd 
    149      1.26       cgd /*
    150      1.26       cgd  * Constants for digital decay and forget:
    151      1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    152      1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    153      1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    154      1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    155      1.26       cgd  *
    156      1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    157      1.26       cgd  *
    158      1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    159      1.26       cgd  * That is, the system wants to compute a value of decay such
    160      1.26       cgd  * that the following for loop:
    161      1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    162      1.26       cgd  * 		p_estcpu *= decay;
    163      1.26       cgd  * will compute
    164      1.26       cgd  * 	p_estcpu *= 0.1;
    165      1.26       cgd  * for all values of loadavg:
    166      1.26       cgd  *
    167      1.26       cgd  * Mathematically this loop can be expressed by saying:
    168      1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    169      1.26       cgd  *
    170      1.26       cgd  * The system computes decay as:
    171      1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    172      1.26       cgd  *
    173      1.26       cgd  * We wish to prove that the system's computation of decay
    174      1.26       cgd  * will always fulfill the equation:
    175      1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    176      1.26       cgd  *
    177      1.26       cgd  * If we compute b as:
    178      1.26       cgd  * 	b = 2 * loadavg
    179      1.26       cgd  * then
    180      1.26       cgd  * 	decay = b / (b + 1)
    181      1.26       cgd  *
    182      1.26       cgd  * We now need to prove two things:
    183      1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    184      1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    185      1.26       cgd  *
    186      1.26       cgd  * Facts:
    187      1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    188      1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    189      1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    190      1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    191      1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    192      1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    193      1.26       cgd  *         ln(.1) =~ -2.30
    194      1.26       cgd  *
    195      1.26       cgd  * Proof of (1):
    196      1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    197      1.26       cgd  *	solving for factor,
    198      1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    199      1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    200      1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    201      1.26       cgd  *
    202      1.26       cgd  * Proof of (2):
    203      1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    204      1.26       cgd  *	solving for power,
    205      1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    206      1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    207      1.26       cgd  *
    208      1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    209      1.26       cgd  *      loadav: 1       2       3       4
    210      1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    211      1.26       cgd  */
    212      1.26       cgd 
    213      1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    214      1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    215      1.26       cgd #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    216      1.26       cgd 
    217      1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    218      1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    219      1.26       cgd 
    220      1.26       cgd /*
    221      1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    222      1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    223      1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    224      1.26       cgd  *
    225      1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    226      1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    227      1.26       cgd  *
    228      1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    229      1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    230      1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    231      1.26       cgd  */
    232      1.26       cgd #define	CCPU_SHIFT	11
    233      1.26       cgd 
    234      1.26       cgd /*
    235      1.26       cgd  * Recompute process priorities, every hz ticks.
    236      1.26       cgd  */
    237      1.26       cgd /* ARGSUSED */
    238      1.26       cgd void
    239      1.77   thorpej schedcpu(void *arg)
    240      1.26       cgd {
    241      1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    242      1.71  augustss 	struct proc *p;
    243      1.71  augustss 	int s;
    244      1.71  augustss 	unsigned int newcpu;
    245      1.66      ross 	int clkhz;
    246      1.26       cgd 
    247      1.62   thorpej 	proclist_lock_read();
    248      1.27   mycroft 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    249      1.26       cgd 		/*
    250      1.26       cgd 		 * Increment time in/out of memory and sleep time
    251      1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    252      1.26       cgd 		 * (remember them?) overflow takes 45 days.
    253      1.26       cgd 		 */
    254      1.26       cgd 		p->p_swtime++;
    255      1.26       cgd 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    256      1.26       cgd 			p->p_slptime++;
    257      1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    258      1.26       cgd 		/*
    259      1.26       cgd 		 * If the process has slept the entire second,
    260      1.26       cgd 		 * stop recalculating its priority until it wakes up.
    261      1.26       cgd 		 */
    262      1.26       cgd 		if (p->p_slptime > 1)
    263      1.26       cgd 			continue;
    264      1.26       cgd 		s = splstatclock();	/* prevent state changes */
    265      1.26       cgd 		/*
    266      1.26       cgd 		 * p_pctcpu is only for ps.
    267      1.26       cgd 		 */
    268      1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    269      1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    270      1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    271      1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    272      1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    273      1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    274      1.26       cgd #else
    275      1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    276      1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    277      1.26       cgd #endif
    278      1.26       cgd 		p->p_cpticks = 0;
    279      1.55      ross 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    280      1.55      ross 		p->p_estcpu = newcpu;
    281      1.26       cgd 		resetpriority(p);
    282      1.26       cgd 		if (p->p_priority >= PUSER) {
    283      1.72   thorpej 			if (p->p_stat == SRUN &&
    284      1.26       cgd 			    (p->p_flag & P_INMEM) &&
    285      1.26       cgd 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    286      1.43       cgd 				remrunqueue(p);
    287      1.26       cgd 				p->p_priority = p->p_usrpri;
    288      1.26       cgd 				setrunqueue(p);
    289      1.26       cgd 			} else
    290      1.26       cgd 				p->p_priority = p->p_usrpri;
    291      1.26       cgd 		}
    292      1.26       cgd 		splx(s);
    293      1.26       cgd 	}
    294      1.61   thorpej 	proclist_unlock_read();
    295      1.47       mrg 	uvm_meter();
    296      1.67      fvdl 	wakeup((caddr_t)&lbolt);
    297      1.68   thorpej 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    298      1.26       cgd }
    299      1.26       cgd 
    300      1.26       cgd /*
    301      1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    302      1.26       cgd  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    303      1.26       cgd  * least six times the loadfactor will decay p_estcpu to zero.
    304      1.26       cgd  */
    305      1.26       cgd void
    306      1.77   thorpej updatepri(struct proc *p)
    307      1.26       cgd {
    308      1.71  augustss 	unsigned int newcpu = p->p_estcpu;
    309      1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    310      1.26       cgd 
    311      1.26       cgd 	if (p->p_slptime > 5 * loadfac)
    312      1.26       cgd 		p->p_estcpu = 0;
    313      1.26       cgd 	else {
    314      1.26       cgd 		p->p_slptime--;	/* the first time was done in schedcpu */
    315      1.26       cgd 		while (newcpu && --p->p_slptime)
    316      1.26       cgd 			newcpu = (int) decay_cpu(loadfac, newcpu);
    317      1.55      ross 		p->p_estcpu = newcpu;
    318      1.26       cgd 	}
    319      1.26       cgd 	resetpriority(p);
    320      1.26       cgd }
    321      1.26       cgd 
    322      1.26       cgd /*
    323      1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    324      1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    325      1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    326      1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    327      1.26       cgd  * This priority will typically be 0, or the lowest priority
    328      1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    329      1.26       cgd  * higher to block network software interrupts after panics.
    330      1.26       cgd  */
    331      1.26       cgd int safepri;
    332      1.26       cgd 
    333      1.26       cgd /*
    334      1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    335      1.26       cgd  * performed on the specified identifier.  The process will then be made
    336      1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    337      1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    338      1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    339      1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    340      1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    341      1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    342      1.26       cgd  * call should be interrupted by the signal (return EINTR).
    343      1.77   thorpej  *
    344      1.77   thorpej  * The interlock is held until the scheduler_slock is held.  The
    345      1.77   thorpej  * interlock will be locked before returning back to the caller
    346      1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    347      1.77   thorpej  * interlock will always be unlocked upon return.
    348      1.26       cgd  */
    349      1.26       cgd int
    350      1.77   thorpej ltsleep(void *ident, int priority, const char *wmesg, int timo,
    351      1.77   thorpej     __volatile struct simplelock *interlock)
    352      1.26       cgd {
    353      1.71  augustss 	struct proc *p = curproc;
    354      1.71  augustss 	struct slpque *qp;
    355      1.77   thorpej 	int sig, s;
    356      1.77   thorpej 	int catch = priority & PCATCH;
    357      1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    358      1.77   thorpej #if 0 /* XXXSMP */
    359      1.78  sommerfe 	int dobiglock;
    360      1.77   thorpej #endif
    361      1.26       cgd 
    362      1.77   thorpej 	/*
    363      1.77   thorpej 	 * XXXSMP
    364      1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    365      1.77   thorpej 	 * thing to do here really is.
    366      1.78  sommerfe 	 * Note that not sleeping if ltsleep is called with curproc == NULL
    367      1.78  sommerfe 	 * in the shutdown case is disgusting but partly necessary given
    368      1.78  sommerfe 	 * how shutdown (barely) works.
    369      1.77   thorpej 	 */
    370      1.78  sommerfe 	if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
    371      1.26       cgd 		/*
    372      1.26       cgd 		 * After a panic, or during autoconfiguration,
    373      1.26       cgd 		 * just give interrupts a chance, then just return;
    374      1.26       cgd 		 * don't run any other procs or panic below,
    375      1.26       cgd 		 * in case this is the idle process and already asleep.
    376      1.26       cgd 		 */
    377      1.42       cgd 		s = splhigh();
    378      1.26       cgd 		splx(safepri);
    379      1.26       cgd 		splx(s);
    380      1.77   thorpej 		if (interlock != NULL && relock == 0)
    381      1.77   thorpej 			simple_unlock(interlock);
    382      1.26       cgd 		return (0);
    383      1.26       cgd 	}
    384      1.78  sommerfe 
    385      1.78  sommerfe #if 0 /* XXXSMP */
    386      1.78  sommerfe 	dobiglock = (p->p_flags & P_BIGLOCK) != 0;
    387      1.78  sommerfe #endif
    388      1.42       cgd 
    389      1.42       cgd #ifdef KTRACE
    390      1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    391      1.74  sommerfe 		ktrcsw(p, 1, 0);
    392      1.42       cgd #endif
    393      1.77   thorpej 
    394      1.77   thorpej 	s = splhigh();			/* XXXSMP: SCHED_LOCK(s) */
    395      1.42       cgd 
    396      1.26       cgd #ifdef DIAGNOSTIC
    397      1.64   thorpej 	if (ident == NULL)
    398      1.77   thorpej 		panic("ltsleep: ident == NULL");
    399      1.72   thorpej 	if (p->p_stat != SONPROC)
    400      1.77   thorpej 		panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
    401      1.64   thorpej 	if (p->p_back != NULL)
    402      1.77   thorpej 		panic("ltsleep: p_back != NULL");
    403      1.26       cgd #endif
    404      1.77   thorpej 
    405      1.26       cgd 	p->p_wchan = ident;
    406      1.26       cgd 	p->p_wmesg = wmesg;
    407      1.26       cgd 	p->p_slptime = 0;
    408      1.26       cgd 	p->p_priority = priority & PRIMASK;
    409      1.77   thorpej 
    410      1.73   thorpej 	qp = SLPQUE(ident);
    411      1.26       cgd 	if (qp->sq_head == 0)
    412      1.26       cgd 		qp->sq_head = p;
    413      1.26       cgd 	else
    414      1.26       cgd 		*qp->sq_tailp = p;
    415      1.26       cgd 	*(qp->sq_tailp = &p->p_forw) = 0;
    416      1.77   thorpej 
    417      1.26       cgd 	if (timo)
    418      1.68   thorpej 		callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
    419      1.77   thorpej 
    420      1.77   thorpej 	/*
    421      1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    422      1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    423      1.77   thorpej 	 * we do the switch.
    424      1.77   thorpej 	 *
    425      1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    426      1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    427      1.77   thorpej 	 * data structure for the sleep queues at some point.
    428      1.77   thorpej 	 */
    429      1.77   thorpej 	if (interlock != NULL)
    430      1.77   thorpej 		simple_unlock(interlock);
    431      1.77   thorpej 
    432      1.26       cgd 	/*
    433      1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    434      1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    435      1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    436      1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    437      1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    438      1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    439      1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    440      1.26       cgd 	 */
    441      1.26       cgd 	if (catch) {
    442      1.26       cgd 		p->p_flag |= P_SINTR;
    443      1.34  christos 		if ((sig = CURSIG(p)) != 0) {
    444      1.77   thorpej 			if (p->p_wchan != NULL)
    445      1.26       cgd 				unsleep(p);
    446      1.72   thorpej 			p->p_stat = SONPROC;
    447      1.77   thorpej #if 0 /* XXXSMP */
    448      1.77   thorpej 			/*
    449      1.77   thorpej 			 * We're going to skip the unlock, so
    450      1.77   thorpej 			 * we don't need to relock after resume.
    451      1.77   thorpej 			 */
    452      1.77   thorpej 			dobiglock = 0;
    453      1.77   thorpej #endif
    454      1.26       cgd 			goto resume;
    455      1.26       cgd 		}
    456      1.77   thorpej 		if (p->p_wchan == NULL) {
    457      1.26       cgd 			catch = 0;
    458      1.77   thorpej #if 0 /* XXXSMP */
    459      1.77   thorpej 			/* See above. */
    460      1.77   thorpej 			dobiglock = 0;
    461      1.77   thorpej #endif
    462      1.26       cgd 			goto resume;
    463      1.26       cgd 		}
    464      1.26       cgd 	} else
    465      1.26       cgd 		sig = 0;
    466      1.26       cgd 	p->p_stat = SSLEEP;
    467      1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    468      1.77   thorpej 
    469      1.77   thorpej #if 0 /* XXXSMP */
    470      1.77   thorpej 	if (dobiglock) {
    471      1.77   thorpej 		/*
    472      1.77   thorpej 		 * Release the kernel_lock, as we are about to
    473      1.77   thorpej 		 * yield the CPU.  The scheduler_slock is still
    474      1.77   thorpej 		 * held until cpu_switch() selects a new process
    475      1.77   thorpej 		 * and removes it from the run queue.
    476      1.77   thorpej 		 */
    477      1.77   thorpej 		kernel_lock_release();
    478      1.77   thorpej 	}
    479      1.77   thorpej #endif
    480      1.77   thorpej 
    481      1.77   thorpej 	/* scheduler_slock held */
    482      1.74  sommerfe 	mi_switch(p);
    483      1.77   thorpej 	/* scheduler_slock held */
    484      1.26       cgd #ifdef	DDB
    485      1.26       cgd 	/* handy breakpoint location after process "wakes" */
    486      1.26       cgd 	asm(".globl bpendtsleep ; bpendtsleep:");
    487      1.26       cgd #endif
    488      1.77   thorpej 
    489      1.77   thorpej  resume:
    490      1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    491      1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    492      1.76   thorpej 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
    493      1.77   thorpej 	splx(s);			/* XXXSMP: SCHED_UNLOCK(s) */
    494      1.77   thorpej #if 0 /* XXXSMP */
    495      1.77   thorpej 	if (dobiglock) {
    496      1.77   thorpej 		/*
    497      1.77   thorpej 		 * Reacquire the kernel_lock now.  We do this after
    498      1.77   thorpej 		 * we've released scheduler_slock to avoid deadlock.
    499      1.77   thorpej 		 */
    500      1.77   thorpej 		kernel_lock_acquire(LK_EXCLUSIVE);
    501      1.77   thorpej 	}
    502      1.77   thorpej #endif
    503      1.26       cgd 	p->p_flag &= ~P_SINTR;
    504      1.26       cgd 	if (p->p_flag & P_TIMEOUT) {
    505      1.26       cgd 		p->p_flag &= ~P_TIMEOUT;
    506      1.26       cgd 		if (sig == 0) {
    507      1.26       cgd #ifdef KTRACE
    508      1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    509      1.74  sommerfe 				ktrcsw(p, 0, 0);
    510      1.26       cgd #endif
    511      1.77   thorpej 			if (relock && interlock != NULL)
    512      1.77   thorpej 				simple_lock(interlock);
    513      1.26       cgd 			return (EWOULDBLOCK);
    514      1.26       cgd 		}
    515      1.26       cgd 	} else if (timo)
    516      1.68   thorpej 		callout_stop(&p->p_tsleep_ch);
    517      1.34  christos 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    518      1.26       cgd #ifdef KTRACE
    519      1.26       cgd 		if (KTRPOINT(p, KTR_CSW))
    520      1.74  sommerfe 			ktrcsw(p, 0, 0);
    521      1.26       cgd #endif
    522      1.77   thorpej 		if (relock && interlock != NULL)
    523      1.77   thorpej 			simple_lock(interlock);
    524      1.53   mycroft 		if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
    525      1.26       cgd 			return (EINTR);
    526      1.26       cgd 		return (ERESTART);
    527      1.26       cgd 	}
    528      1.26       cgd #ifdef KTRACE
    529      1.26       cgd 	if (KTRPOINT(p, KTR_CSW))
    530      1.74  sommerfe 		ktrcsw(p, 0, 0);
    531      1.26       cgd #endif
    532      1.77   thorpej 	if (relock && interlock != NULL)
    533      1.77   thorpej 		simple_lock(interlock);
    534      1.26       cgd 	return (0);
    535      1.26       cgd }
    536      1.26       cgd 
    537      1.26       cgd /*
    538      1.26       cgd  * Implement timeout for tsleep.
    539      1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    540      1.26       cgd  * set timeout flag and undo the sleep.  If proc
    541      1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    542      1.26       cgd  */
    543      1.26       cgd void
    544      1.77   thorpej endtsleep(void *arg)
    545      1.26       cgd {
    546      1.71  augustss 	struct proc *p;
    547      1.26       cgd 	int s;
    548      1.26       cgd 
    549      1.26       cgd 	p = (struct proc *)arg;
    550      1.26       cgd 	s = splhigh();
    551      1.26       cgd 	if (p->p_wchan) {
    552      1.26       cgd 		if (p->p_stat == SSLEEP)
    553      1.26       cgd 			setrunnable(p);
    554      1.26       cgd 		else
    555      1.26       cgd 			unsleep(p);
    556      1.26       cgd 		p->p_flag |= P_TIMEOUT;
    557      1.26       cgd 	}
    558      1.26       cgd 	splx(s);
    559      1.26       cgd }
    560      1.26       cgd 
    561      1.26       cgd /*
    562      1.26       cgd  * Remove a process from its wait queue
    563      1.26       cgd  */
    564      1.26       cgd void
    565      1.77   thorpej unsleep(struct proc *p)
    566      1.26       cgd {
    567      1.71  augustss 	struct slpque *qp;
    568      1.71  augustss 	struct proc **hp;
    569      1.26       cgd 	int s;
    570      1.26       cgd 
    571      1.26       cgd 	s = splhigh();
    572      1.26       cgd 	if (p->p_wchan) {
    573      1.73   thorpej 		hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
    574      1.26       cgd 		while (*hp != p)
    575      1.26       cgd 			hp = &(*hp)->p_forw;
    576      1.26       cgd 		*hp = p->p_forw;
    577      1.26       cgd 		if (qp->sq_tailp == &p->p_forw)
    578      1.26       cgd 			qp->sq_tailp = hp;
    579      1.26       cgd 		p->p_wchan = 0;
    580      1.26       cgd 	}
    581      1.26       cgd 	splx(s);
    582      1.26       cgd }
    583      1.26       cgd 
    584      1.26       cgd /*
    585      1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    586      1.63   thorpej  */
    587      1.63   thorpej __inline void
    588      1.77   thorpej awaken(struct proc *p)
    589      1.63   thorpej {
    590      1.63   thorpej 
    591      1.63   thorpej 	if (p->p_slptime > 1)
    592      1.63   thorpej 		updatepri(p);
    593      1.63   thorpej 	p->p_slptime = 0;
    594      1.63   thorpej 	p->p_stat = SRUN;
    595      1.77   thorpej 
    596      1.63   thorpej 	/*
    597      1.63   thorpej 	 * Since curpriority is a user priority, p->p_priority
    598      1.63   thorpej 	 * is always better than curpriority.
    599      1.63   thorpej 	 */
    600      1.63   thorpej 	if (p->p_flag & P_INMEM) {
    601      1.63   thorpej 		setrunqueue(p);
    602      1.63   thorpej 		need_resched();
    603      1.63   thorpej 	} else
    604      1.77   thorpej 		wakeup(&proc0);
    605      1.63   thorpej }
    606      1.63   thorpej 
    607      1.63   thorpej /*
    608      1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    609      1.26       cgd  */
    610      1.26       cgd void
    611      1.77   thorpej wakeup(void *ident)
    612      1.26       cgd {
    613      1.71  augustss 	struct slpque *qp;
    614      1.71  augustss 	struct proc *p, **q;
    615      1.26       cgd 	int s;
    616      1.26       cgd 
    617      1.77   thorpej 	s = splhigh();			/* XXXSMP: SCHED_LOCK(s) */
    618      1.77   thorpej 
    619      1.73   thorpej 	qp = SLPQUE(ident);
    620      1.77   thorpej  restart:
    621      1.34  christos 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    622      1.26       cgd #ifdef DIAGNOSTIC
    623      1.34  christos 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    624      1.26       cgd 			panic("wakeup");
    625      1.26       cgd #endif
    626      1.26       cgd 		if (p->p_wchan == ident) {
    627      1.26       cgd 			p->p_wchan = 0;
    628      1.26       cgd 			*q = p->p_forw;
    629      1.26       cgd 			if (qp->sq_tailp == &p->p_forw)
    630      1.26       cgd 				qp->sq_tailp = q;
    631      1.26       cgd 			if (p->p_stat == SSLEEP) {
    632      1.63   thorpej 				awaken(p);
    633      1.26       cgd 				goto restart;
    634      1.26       cgd 			}
    635      1.26       cgd 		} else
    636      1.26       cgd 			q = &p->p_forw;
    637      1.63   thorpej 	}
    638      1.77   thorpej 	splx(s);			/* XXXSMP: SCHED_UNLOCK(s) */
    639      1.63   thorpej }
    640      1.63   thorpej 
    641      1.63   thorpej /*
    642      1.63   thorpej  * Make the highest priority process first in line on the specified
    643      1.63   thorpej  * identifier runnable.
    644      1.63   thorpej  */
    645      1.63   thorpej void
    646      1.77   thorpej wakeup_one(void *ident)
    647      1.63   thorpej {
    648      1.63   thorpej 	struct slpque *qp;
    649      1.63   thorpej 	struct proc *p, **q;
    650      1.63   thorpej 	struct proc *best_sleepp, **best_sleepq;
    651      1.63   thorpej 	struct proc *best_stopp, **best_stopq;
    652      1.63   thorpej 	int s;
    653      1.63   thorpej 
    654      1.63   thorpej 	best_sleepp = best_stopp = NULL;
    655      1.63   thorpej 	best_sleepq = best_stopq = NULL;
    656      1.63   thorpej 
    657      1.77   thorpej 	s = splhigh();		/* XXXSMP: SCHED_LOCK(s) */
    658      1.77   thorpej 
    659      1.73   thorpej 	qp = SLPQUE(ident);
    660      1.77   thorpej 
    661      1.63   thorpej 	for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
    662      1.63   thorpej #ifdef DIAGNOSTIC
    663      1.63   thorpej 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    664      1.63   thorpej 			panic("wakeup_one");
    665      1.63   thorpej #endif
    666      1.63   thorpej 		if (p->p_wchan == ident) {
    667      1.63   thorpej 			if (p->p_stat == SSLEEP) {
    668      1.63   thorpej 				if (best_sleepp == NULL ||
    669      1.63   thorpej 				    p->p_priority < best_sleepp->p_priority) {
    670      1.63   thorpej 					best_sleepp = p;
    671      1.63   thorpej 					best_sleepq = q;
    672      1.63   thorpej 				}
    673      1.63   thorpej 			} else {
    674      1.63   thorpej 				if (best_stopp == NULL ||
    675      1.63   thorpej 				    p->p_priority < best_stopp->p_priority) {
    676      1.63   thorpej 					best_stopp = p;
    677      1.63   thorpej 					best_stopq = q;
    678      1.63   thorpej 				}
    679      1.63   thorpej 			}
    680      1.63   thorpej 		}
    681      1.63   thorpej 	}
    682      1.63   thorpej 
    683      1.63   thorpej 	/*
    684      1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    685      1.63   thorpej 	 * process.
    686      1.63   thorpej 	 */
    687      1.63   thorpej 	if (best_sleepp != NULL) {
    688      1.63   thorpej 		p = best_sleepp;
    689      1.63   thorpej 		q = best_sleepq;
    690      1.63   thorpej 	} else {
    691      1.63   thorpej 		p = best_stopp;
    692      1.63   thorpej 		q = best_stopq;
    693      1.63   thorpej 	}
    694      1.63   thorpej 
    695      1.63   thorpej 	if (p != NULL) {
    696      1.77   thorpej 		p->p_wchan = NULL;
    697      1.63   thorpej 		*q = p->p_forw;
    698      1.63   thorpej 		if (qp->sq_tailp == &p->p_forw)
    699      1.63   thorpej 			qp->sq_tailp = q;
    700      1.63   thorpej 		if (p->p_stat == SSLEEP)
    701      1.63   thorpej 			awaken(p);
    702      1.26       cgd 	}
    703      1.77   thorpej 	splx(s);		/* XXXSMP: SCHED_UNLOCK(s) */
    704      1.26       cgd }
    705      1.26       cgd 
    706      1.26       cgd /*
    707      1.69   thorpej  * General yield call.  Puts the current process back on its run queue and
    708      1.69   thorpej  * performs a voluntary context switch.
    709      1.69   thorpej  */
    710      1.69   thorpej void
    711      1.77   thorpej yield(void)
    712      1.69   thorpej {
    713      1.69   thorpej 	struct proc *p = curproc;
    714      1.69   thorpej 	int s;
    715      1.69   thorpej 
    716      1.72   thorpej 	s = splstatclock();
    717      1.69   thorpej 	p->p_priority = p->p_usrpri;
    718      1.72   thorpej 	p->p_stat = SRUN;
    719      1.69   thorpej 	setrunqueue(p);
    720      1.69   thorpej 	p->p_stats->p_ru.ru_nvcsw++;
    721      1.74  sommerfe 	mi_switch(p);
    722      1.69   thorpej 	splx(s);
    723      1.69   thorpej }
    724      1.69   thorpej 
    725      1.69   thorpej /*
    726      1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    727      1.69   thorpej  * and performs an involuntary context switch.  If a process is supplied,
    728      1.69   thorpej  * we switch to that process.  Otherwise, we use the normal process selection
    729      1.69   thorpej  * criteria.
    730      1.69   thorpej  */
    731      1.69   thorpej void
    732      1.77   thorpej preempt(struct proc *newp)
    733      1.69   thorpej {
    734      1.69   thorpej 	struct proc *p = curproc;
    735      1.69   thorpej 	int s;
    736      1.69   thorpej 
    737      1.69   thorpej 	/*
    738      1.69   thorpej 	 * XXX Switching to a specific process is not supported yet.
    739      1.69   thorpej 	 */
    740      1.69   thorpej 	if (newp != NULL)
    741      1.69   thorpej 		panic("preempt: cpu_preempt not yet implemented");
    742      1.69   thorpej 
    743      1.72   thorpej 	s = splstatclock();
    744      1.69   thorpej 	p->p_priority = p->p_usrpri;
    745      1.72   thorpej 	p->p_stat = SRUN;
    746      1.69   thorpej 	setrunqueue(p);
    747      1.69   thorpej 	p->p_stats->p_ru.ru_nivcsw++;
    748      1.74  sommerfe 	mi_switch(p);
    749      1.69   thorpej 	splx(s);
    750      1.69   thorpej }
    751      1.69   thorpej 
    752      1.69   thorpej /*
    753      1.72   thorpej  * The machine independent parts of context switch.
    754      1.26       cgd  * Must be called at splstatclock() or higher.
    755      1.26       cgd  */
    756      1.26       cgd void
    757      1.77   thorpej mi_switch(struct proc *p)
    758      1.26       cgd {
    759      1.76   thorpej 	struct schedstate_percpu *spc;
    760      1.71  augustss 	struct rlimit *rlim;
    761      1.71  augustss 	long s, u;
    762      1.26       cgd 	struct timeval tv;
    763      1.26       cgd 
    764      1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    765      1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    766      1.76   thorpej 
    767      1.76   thorpej 	spc = &p->p_cpu->ci_schedstate;
    768      1.76   thorpej 
    769  1.78.2.2   thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    770  1.78.2.2   thorpej 	spinlock_switchcheck();
    771  1.78.2.2   thorpej #endif
    772      1.54       chs #ifdef LOCKDEBUG
    773  1.78.2.1   thorpej 	simple_lock_switchcheck();
    774      1.50      fvdl #endif
    775  1.78.2.1   thorpej 
    776      1.26       cgd 	/*
    777      1.26       cgd 	 * Compute the amount of time during which the current
    778      1.26       cgd 	 * process was running, and add that to its total so far.
    779      1.26       cgd 	 */
    780      1.26       cgd 	microtime(&tv);
    781      1.73   thorpej 	u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    782      1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    783      1.26       cgd 	if (u < 0) {
    784      1.26       cgd 		u += 1000000;
    785      1.26       cgd 		s--;
    786      1.26       cgd 	} else if (u >= 1000000) {
    787      1.26       cgd 		u -= 1000000;
    788      1.26       cgd 		s++;
    789      1.26       cgd 	}
    790      1.26       cgd 	p->p_rtime.tv_usec = u;
    791      1.26       cgd 	p->p_rtime.tv_sec = s;
    792      1.26       cgd 
    793      1.26       cgd 	/*
    794      1.26       cgd 	 * Check if the process exceeds its cpu resource allocation.
    795      1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    796      1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    797      1.26       cgd 	 */
    798      1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    799      1.26       cgd 	if (s >= rlim->rlim_cur) {
    800      1.26       cgd 		if (s >= rlim->rlim_max)
    801      1.26       cgd 			psignal(p, SIGKILL);
    802      1.26       cgd 		else {
    803      1.26       cgd 			psignal(p, SIGXCPU);
    804      1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    805      1.26       cgd 				rlim->rlim_cur += 5;
    806      1.26       cgd 		}
    807      1.26       cgd 	}
    808      1.77   thorpej 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    809      1.77   thorpej 	    p->p_nice == NZERO) {
    810      1.39        ws 		p->p_nice = autoniceval + NZERO;
    811      1.26       cgd 		resetpriority(p);
    812      1.26       cgd 	}
    813      1.69   thorpej 
    814      1.69   thorpej 	/*
    815      1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    816      1.69   thorpej 	 * scheduling flags.
    817      1.69   thorpej 	 */
    818      1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    819      1.26       cgd 
    820      1.26       cgd 	/*
    821      1.76   thorpej 	 * Pick a new current process and switch to it.  When we
    822      1.76   thorpej 	 * run again, we'll return back here.
    823      1.26       cgd 	 */
    824      1.47       mrg 	uvmexp.swtch++;
    825      1.26       cgd 	cpu_switch(p);
    826      1.76   thorpej 
    827      1.76   thorpej 	/*
    828      1.76   thorpej 	 * We're running again; record our new start time.  We might
    829      1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
    830      1.76   thorpej 	 * schedstate_percpu pointer.
    831      1.76   thorpej 	 */
    832      1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    833      1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    834      1.76   thorpej 	microtime(&p->p_cpu->ci_schedstate.spc_runtime);
    835      1.26       cgd }
    836      1.26       cgd 
    837      1.26       cgd /*
    838      1.26       cgd  * Initialize the (doubly-linked) run queues
    839      1.26       cgd  * to be empty.
    840      1.26       cgd  */
    841      1.26       cgd void
    842      1.26       cgd rqinit()
    843      1.26       cgd {
    844      1.71  augustss 	int i;
    845      1.26       cgd 
    846      1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
    847      1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    848      1.73   thorpej 		    (struct proc *)&sched_qs[i];
    849      1.26       cgd }
    850      1.26       cgd 
    851      1.26       cgd /*
    852      1.26       cgd  * Change process state to be runnable,
    853      1.26       cgd  * placing it on the run queue if it is in memory,
    854      1.26       cgd  * and awakening the swapper if it isn't in memory.
    855      1.26       cgd  */
    856      1.26       cgd void
    857      1.77   thorpej setrunnable(struct proc *p)
    858      1.26       cgd {
    859      1.71  augustss 	int s;
    860      1.26       cgd 
    861      1.26       cgd 	s = splhigh();
    862      1.26       cgd 	switch (p->p_stat) {
    863      1.26       cgd 	case 0:
    864      1.26       cgd 	case SRUN:
    865      1.72   thorpej 	case SONPROC:
    866      1.26       cgd 	case SZOMB:
    867      1.60   thorpej 	case SDEAD:
    868      1.26       cgd 	default:
    869      1.26       cgd 		panic("setrunnable");
    870      1.26       cgd 	case SSTOP:
    871      1.33   mycroft 		/*
    872      1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    873      1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    874      1.33   mycroft 		 */
    875      1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    876      1.53   mycroft 			sigaddset(&p->p_siglist, p->p_xstat);
    877      1.53   mycroft 			p->p_sigcheck = 1;
    878      1.53   mycroft 		}
    879      1.26       cgd 	case SSLEEP:
    880      1.26       cgd 		unsleep(p);		/* e.g. when sending signals */
    881      1.26       cgd 		break;
    882      1.26       cgd 
    883      1.26       cgd 	case SIDL:
    884      1.26       cgd 		break;
    885      1.26       cgd 	}
    886      1.26       cgd 	p->p_stat = SRUN;
    887      1.26       cgd 	if (p->p_flag & P_INMEM)
    888      1.26       cgd 		setrunqueue(p);
    889      1.26       cgd 	splx(s);
    890      1.26       cgd 	if (p->p_slptime > 1)
    891      1.26       cgd 		updatepri(p);
    892      1.26       cgd 	p->p_slptime = 0;
    893      1.26       cgd 	if ((p->p_flag & P_INMEM) == 0)
    894      1.26       cgd 		wakeup((caddr_t)&proc0);
    895      1.76   thorpej 	else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
    896      1.76   thorpej 		/*
    897      1.76   thorpej 		 * XXXSMP
    898      1.76   thorpej 		 * This is wrong.  It will work, but what really
    899      1.76   thorpej 		 * needs to happen is:
    900      1.76   thorpej 		 *
    901      1.76   thorpej 		 *	- Need to check if p is higher priority
    902      1.76   thorpej 		 *	  than the process currently running on
    903      1.76   thorpej 		 *	  the CPU p last ran on (let p_cpu persist
    904      1.76   thorpej 		 *	  after a context switch?), and preempt
    905      1.76   thorpej 		 *	  that one (or, if there is no process
    906      1.76   thorpej 		 *	  there, simply need_resched() that CPU.
    907      1.76   thorpej 		 *
    908      1.76   thorpej 		 *	- Failing that, traverse a list of
    909      1.76   thorpej 		 *	  available CPUs and need_resched() the
    910      1.76   thorpej 		 *	  CPU with the lowest priority that's
    911      1.76   thorpej 		 *	  lower than p's.
    912      1.76   thorpej 		 */
    913      1.26       cgd 		need_resched();
    914      1.76   thorpej 	}
    915      1.26       cgd }
    916      1.26       cgd 
    917      1.26       cgd /*
    918      1.26       cgd  * Compute the priority of a process when running in user mode.
    919      1.26       cgd  * Arrange to reschedule if the resulting priority is better
    920      1.26       cgd  * than that of the current process.
    921      1.26       cgd  */
    922      1.26       cgd void
    923      1.77   thorpej resetpriority(struct proc *p)
    924      1.26       cgd {
    925      1.71  augustss 	unsigned int newpriority;
    926      1.26       cgd 
    927      1.55      ross 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
    928      1.26       cgd 	newpriority = min(newpriority, MAXPRI);
    929      1.26       cgd 	p->p_usrpri = newpriority;
    930      1.76   thorpej 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
    931      1.76   thorpej 		/*
    932      1.76   thorpej 		 * XXXSMP
    933      1.76   thorpej 		 * Same applies as in setrunnable() above.
    934      1.76   thorpej 		 */
    935      1.26       cgd 		need_resched();
    936      1.76   thorpej 	}
    937      1.55      ross }
    938      1.55      ross 
    939      1.55      ross /*
    940      1.56      ross  * We adjust the priority of the current process.  The priority of a process
    941      1.56      ross  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
    942      1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
    943      1.56      ross  * will compute a different value each time p_estcpu increases. This can
    944      1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    945      1.56      ross  * queue will not change.  The cpu usage estimator ramps up quite quickly
    946      1.56      ross  * when the process is running (linearly), and decays away exponentially, at
    947      1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
    948      1.56      ross  * principal is that the system will 90% forget that the process used a lot
    949      1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    950      1.56      ross  * processes which haven't run much recently, and to round-robin among other
    951      1.56      ross  * processes.
    952      1.55      ross  */
    953      1.55      ross 
    954      1.55      ross void
    955      1.77   thorpej schedclock(struct proc *p)
    956      1.55      ross {
    957      1.77   thorpej 
    958      1.55      ross 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
    959      1.55      ross 	resetpriority(p);
    960      1.55      ross 	if (p->p_priority >= PUSER)
    961      1.55      ross 		p->p_priority = p->p_usrpri;
    962      1.26       cgd }
    963