kern_synch.c revision 1.81 1 1.81 thorpej /* $NetBSD: kern_synch.c,v 1.81 2000/08/07 21:55:23 thorpej Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.69 thorpej * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.63 thorpej * NASA Ames Research Center.
10 1.63 thorpej *
11 1.63 thorpej * Redistribution and use in source and binary forms, with or without
12 1.63 thorpej * modification, are permitted provided that the following conditions
13 1.63 thorpej * are met:
14 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.63 thorpej * notice, this list of conditions and the following disclaimer.
16 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.63 thorpej * documentation and/or other materials provided with the distribution.
19 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.63 thorpej * must display the following acknowledgement:
21 1.63 thorpej * This product includes software developed by the NetBSD
22 1.63 thorpej * Foundation, Inc. and its contributors.
23 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.63 thorpej * contributors may be used to endorse or promote products derived
25 1.63 thorpej * from this software without specific prior written permission.
26 1.63 thorpej *
27 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.63 thorpej */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.26 cgd * 3. All advertising materials mentioning features or use of this software
58 1.26 cgd * must display the following acknowledgement:
59 1.26 cgd * This product includes software developed by the University of
60 1.26 cgd * California, Berkeley and its contributors.
61 1.26 cgd * 4. Neither the name of the University nor the names of its contributors
62 1.26 cgd * may be used to endorse or promote products derived from this software
63 1.26 cgd * without specific prior written permission.
64 1.26 cgd *
65 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 1.26 cgd * SUCH DAMAGE.
76 1.26 cgd *
77 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 1.26 cgd */
79 1.48 mrg
80 1.52 jonathan #include "opt_ddb.h"
81 1.51 thorpej #include "opt_ktrace.h"
82 1.26 cgd
83 1.26 cgd #include <sys/param.h>
84 1.26 cgd #include <sys/systm.h>
85 1.68 thorpej #include <sys/callout.h>
86 1.26 cgd #include <sys/proc.h>
87 1.26 cgd #include <sys/kernel.h>
88 1.26 cgd #include <sys/buf.h>
89 1.26 cgd #include <sys/signalvar.h>
90 1.26 cgd #include <sys/resourcevar.h>
91 1.55 ross #include <sys/sched.h>
92 1.47 mrg
93 1.47 mrg #include <uvm/uvm_extern.h>
94 1.47 mrg
95 1.26 cgd #ifdef KTRACE
96 1.26 cgd #include <sys/ktrace.h>
97 1.26 cgd #endif
98 1.26 cgd
99 1.26 cgd #include <machine/cpu.h>
100 1.34 christos
101 1.26 cgd int lbolt; /* once a second sleep address */
102 1.26 cgd
103 1.73 thorpej /*
104 1.73 thorpej * The global scheduler state.
105 1.73 thorpej */
106 1.73 thorpej struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
107 1.73 thorpej __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
108 1.73 thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
109 1.73 thorpej
110 1.77 thorpej void roundrobin(void *);
111 1.77 thorpej void schedcpu(void *);
112 1.77 thorpej void updatepri(struct proc *);
113 1.77 thorpej void endtsleep(void *);
114 1.34 christos
115 1.77 thorpej __inline void awaken(struct proc *);
116 1.63 thorpej
117 1.68 thorpej struct callout roundrobin_ch = CALLOUT_INITIALIZER;
118 1.68 thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
119 1.68 thorpej
120 1.26 cgd /*
121 1.26 cgd * Force switch among equal priority processes every 100ms.
122 1.26 cgd */
123 1.26 cgd /* ARGSUSED */
124 1.26 cgd void
125 1.77 thorpej roundrobin(void *arg)
126 1.26 cgd {
127 1.73 thorpej struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
128 1.69 thorpej int s;
129 1.26 cgd
130 1.69 thorpej if (curproc != NULL) {
131 1.69 thorpej s = splstatclock();
132 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
133 1.69 thorpej /*
134 1.69 thorpej * The process has already been through a roundrobin
135 1.69 thorpej * without switching and may be hogging the CPU.
136 1.69 thorpej * Indicate that the process should yield.
137 1.69 thorpej */
138 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
139 1.69 thorpej } else
140 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
141 1.69 thorpej splx(s);
142 1.69 thorpej }
143 1.26 cgd need_resched();
144 1.68 thorpej callout_reset(&roundrobin_ch, hz / 10, roundrobin, NULL);
145 1.26 cgd }
146 1.26 cgd
147 1.26 cgd /*
148 1.26 cgd * Constants for digital decay and forget:
149 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
150 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
151 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
152 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
153 1.26 cgd *
154 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
155 1.26 cgd *
156 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
157 1.26 cgd * That is, the system wants to compute a value of decay such
158 1.26 cgd * that the following for loop:
159 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
160 1.26 cgd * p_estcpu *= decay;
161 1.26 cgd * will compute
162 1.26 cgd * p_estcpu *= 0.1;
163 1.26 cgd * for all values of loadavg:
164 1.26 cgd *
165 1.26 cgd * Mathematically this loop can be expressed by saying:
166 1.26 cgd * decay ** (5 * loadavg) ~= .1
167 1.26 cgd *
168 1.26 cgd * The system computes decay as:
169 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
170 1.26 cgd *
171 1.26 cgd * We wish to prove that the system's computation of decay
172 1.26 cgd * will always fulfill the equation:
173 1.26 cgd * decay ** (5 * loadavg) ~= .1
174 1.26 cgd *
175 1.26 cgd * If we compute b as:
176 1.26 cgd * b = 2 * loadavg
177 1.26 cgd * then
178 1.26 cgd * decay = b / (b + 1)
179 1.26 cgd *
180 1.26 cgd * We now need to prove two things:
181 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
182 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
183 1.26 cgd *
184 1.26 cgd * Facts:
185 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
186 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
187 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
188 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
189 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
190 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
191 1.26 cgd * ln(.1) =~ -2.30
192 1.26 cgd *
193 1.26 cgd * Proof of (1):
194 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
195 1.26 cgd * solving for factor,
196 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
197 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
198 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
199 1.26 cgd *
200 1.26 cgd * Proof of (2):
201 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
202 1.26 cgd * solving for power,
203 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
204 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
205 1.26 cgd *
206 1.26 cgd * Actual power values for the implemented algorithm are as follows:
207 1.26 cgd * loadav: 1 2 3 4
208 1.26 cgd * power: 5.68 10.32 14.94 19.55
209 1.26 cgd */
210 1.26 cgd
211 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
212 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
213 1.26 cgd #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
214 1.26 cgd
215 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
216 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
217 1.26 cgd
218 1.26 cgd /*
219 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
220 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
221 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
222 1.26 cgd *
223 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
224 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
225 1.26 cgd *
226 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
227 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
228 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
229 1.26 cgd */
230 1.26 cgd #define CCPU_SHIFT 11
231 1.26 cgd
232 1.26 cgd /*
233 1.26 cgd * Recompute process priorities, every hz ticks.
234 1.26 cgd */
235 1.26 cgd /* ARGSUSED */
236 1.26 cgd void
237 1.77 thorpej schedcpu(void *arg)
238 1.26 cgd {
239 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
240 1.71 augustss struct proc *p;
241 1.71 augustss int s;
242 1.71 augustss unsigned int newcpu;
243 1.66 ross int clkhz;
244 1.26 cgd
245 1.62 thorpej proclist_lock_read();
246 1.27 mycroft for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
247 1.26 cgd /*
248 1.26 cgd * Increment time in/out of memory and sleep time
249 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
250 1.26 cgd * (remember them?) overflow takes 45 days.
251 1.26 cgd */
252 1.26 cgd p->p_swtime++;
253 1.26 cgd if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
254 1.26 cgd p->p_slptime++;
255 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
256 1.26 cgd /*
257 1.26 cgd * If the process has slept the entire second,
258 1.26 cgd * stop recalculating its priority until it wakes up.
259 1.26 cgd */
260 1.26 cgd if (p->p_slptime > 1)
261 1.26 cgd continue;
262 1.26 cgd s = splstatclock(); /* prevent state changes */
263 1.26 cgd /*
264 1.26 cgd * p_pctcpu is only for ps.
265 1.26 cgd */
266 1.66 ross clkhz = stathz != 0 ? stathz : hz;
267 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
268 1.66 ross p->p_pctcpu += (clkhz == 100)?
269 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
270 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
271 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
272 1.26 cgd #else
273 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
274 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
275 1.26 cgd #endif
276 1.26 cgd p->p_cpticks = 0;
277 1.55 ross newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
278 1.55 ross p->p_estcpu = newcpu;
279 1.26 cgd resetpriority(p);
280 1.26 cgd if (p->p_priority >= PUSER) {
281 1.72 thorpej if (p->p_stat == SRUN &&
282 1.26 cgd (p->p_flag & P_INMEM) &&
283 1.26 cgd (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
284 1.43 cgd remrunqueue(p);
285 1.26 cgd p->p_priority = p->p_usrpri;
286 1.26 cgd setrunqueue(p);
287 1.26 cgd } else
288 1.26 cgd p->p_priority = p->p_usrpri;
289 1.26 cgd }
290 1.26 cgd splx(s);
291 1.26 cgd }
292 1.61 thorpej proclist_unlock_read();
293 1.47 mrg uvm_meter();
294 1.67 fvdl wakeup((caddr_t)&lbolt);
295 1.68 thorpej callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
296 1.26 cgd }
297 1.26 cgd
298 1.26 cgd /*
299 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
300 1.26 cgd * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
301 1.26 cgd * least six times the loadfactor will decay p_estcpu to zero.
302 1.26 cgd */
303 1.26 cgd void
304 1.77 thorpej updatepri(struct proc *p)
305 1.26 cgd {
306 1.71 augustss unsigned int newcpu = p->p_estcpu;
307 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
308 1.26 cgd
309 1.26 cgd if (p->p_slptime > 5 * loadfac)
310 1.26 cgd p->p_estcpu = 0;
311 1.26 cgd else {
312 1.26 cgd p->p_slptime--; /* the first time was done in schedcpu */
313 1.26 cgd while (newcpu && --p->p_slptime)
314 1.26 cgd newcpu = (int) decay_cpu(loadfac, newcpu);
315 1.55 ross p->p_estcpu = newcpu;
316 1.26 cgd }
317 1.26 cgd resetpriority(p);
318 1.26 cgd }
319 1.26 cgd
320 1.26 cgd /*
321 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
322 1.26 cgd * lower the priority briefly to allow interrupts, then return.
323 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
324 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
325 1.26 cgd * This priority will typically be 0, or the lowest priority
326 1.26 cgd * that is safe for use on the interrupt stack; it can be made
327 1.26 cgd * higher to block network software interrupts after panics.
328 1.26 cgd */
329 1.26 cgd int safepri;
330 1.26 cgd
331 1.26 cgd /*
332 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
333 1.26 cgd * performed on the specified identifier. The process will then be made
334 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
335 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
336 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
337 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
338 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
339 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
340 1.26 cgd * call should be interrupted by the signal (return EINTR).
341 1.77 thorpej *
342 1.77 thorpej * The interlock is held until the scheduler_slock is held. The
343 1.77 thorpej * interlock will be locked before returning back to the caller
344 1.77 thorpej * unless the PNORELOCK flag is specified, in which case the
345 1.77 thorpej * interlock will always be unlocked upon return.
346 1.26 cgd */
347 1.26 cgd int
348 1.77 thorpej ltsleep(void *ident, int priority, const char *wmesg, int timo,
349 1.77 thorpej __volatile struct simplelock *interlock)
350 1.26 cgd {
351 1.71 augustss struct proc *p = curproc;
352 1.71 augustss struct slpque *qp;
353 1.77 thorpej int sig, s;
354 1.77 thorpej int catch = priority & PCATCH;
355 1.77 thorpej int relock = (priority & PNORELOCK) == 0;
356 1.77 thorpej #if 0 /* XXXSMP */
357 1.78 sommerfe int dobiglock;
358 1.77 thorpej #endif
359 1.26 cgd
360 1.77 thorpej /*
361 1.77 thorpej * XXXSMP
362 1.77 thorpej * This is probably bogus. Figure out what the right
363 1.77 thorpej * thing to do here really is.
364 1.78 sommerfe * Note that not sleeping if ltsleep is called with curproc == NULL
365 1.78 sommerfe * in the shutdown case is disgusting but partly necessary given
366 1.78 sommerfe * how shutdown (barely) works.
367 1.77 thorpej */
368 1.78 sommerfe if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
369 1.26 cgd /*
370 1.26 cgd * After a panic, or during autoconfiguration,
371 1.26 cgd * just give interrupts a chance, then just return;
372 1.26 cgd * don't run any other procs or panic below,
373 1.26 cgd * in case this is the idle process and already asleep.
374 1.26 cgd */
375 1.42 cgd s = splhigh();
376 1.26 cgd splx(safepri);
377 1.26 cgd splx(s);
378 1.77 thorpej if (interlock != NULL && relock == 0)
379 1.77 thorpej simple_unlock(interlock);
380 1.26 cgd return (0);
381 1.26 cgd }
382 1.78 sommerfe
383 1.78 sommerfe #if 0 /* XXXSMP */
384 1.78 sommerfe dobiglock = (p->p_flags & P_BIGLOCK) != 0;
385 1.78 sommerfe #endif
386 1.42 cgd
387 1.42 cgd #ifdef KTRACE
388 1.42 cgd if (KTRPOINT(p, KTR_CSW))
389 1.74 sommerfe ktrcsw(p, 1, 0);
390 1.42 cgd #endif
391 1.77 thorpej
392 1.77 thorpej s = splhigh(); /* XXXSMP: SCHED_LOCK(s) */
393 1.42 cgd
394 1.26 cgd #ifdef DIAGNOSTIC
395 1.64 thorpej if (ident == NULL)
396 1.77 thorpej panic("ltsleep: ident == NULL");
397 1.72 thorpej if (p->p_stat != SONPROC)
398 1.77 thorpej panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
399 1.64 thorpej if (p->p_back != NULL)
400 1.77 thorpej panic("ltsleep: p_back != NULL");
401 1.26 cgd #endif
402 1.77 thorpej
403 1.26 cgd p->p_wchan = ident;
404 1.26 cgd p->p_wmesg = wmesg;
405 1.26 cgd p->p_slptime = 0;
406 1.26 cgd p->p_priority = priority & PRIMASK;
407 1.77 thorpej
408 1.73 thorpej qp = SLPQUE(ident);
409 1.26 cgd if (qp->sq_head == 0)
410 1.26 cgd qp->sq_head = p;
411 1.26 cgd else
412 1.26 cgd *qp->sq_tailp = p;
413 1.26 cgd *(qp->sq_tailp = &p->p_forw) = 0;
414 1.77 thorpej
415 1.26 cgd if (timo)
416 1.68 thorpej callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
417 1.77 thorpej
418 1.77 thorpej /*
419 1.77 thorpej * We can now release the interlock; the scheduler_slock
420 1.77 thorpej * is held, so a thread can't get in to do wakeup() before
421 1.77 thorpej * we do the switch.
422 1.77 thorpej *
423 1.77 thorpej * XXX We leave the code block here, after inserting ourselves
424 1.77 thorpej * on the sleep queue, because we might want a more clever
425 1.77 thorpej * data structure for the sleep queues at some point.
426 1.77 thorpej */
427 1.77 thorpej if (interlock != NULL)
428 1.77 thorpej simple_unlock(interlock);
429 1.77 thorpej
430 1.26 cgd /*
431 1.26 cgd * We put ourselves on the sleep queue and start our timeout
432 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
433 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
434 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
435 1.26 cgd * without resuming us, thus we must be ready for sleep
436 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
437 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
438 1.26 cgd */
439 1.26 cgd if (catch) {
440 1.26 cgd p->p_flag |= P_SINTR;
441 1.34 christos if ((sig = CURSIG(p)) != 0) {
442 1.77 thorpej if (p->p_wchan != NULL)
443 1.26 cgd unsleep(p);
444 1.72 thorpej p->p_stat = SONPROC;
445 1.77 thorpej #if 0 /* XXXSMP */
446 1.77 thorpej /*
447 1.77 thorpej * We're going to skip the unlock, so
448 1.77 thorpej * we don't need to relock after resume.
449 1.77 thorpej */
450 1.77 thorpej dobiglock = 0;
451 1.77 thorpej #endif
452 1.26 cgd goto resume;
453 1.26 cgd }
454 1.77 thorpej if (p->p_wchan == NULL) {
455 1.26 cgd catch = 0;
456 1.77 thorpej #if 0 /* XXXSMP */
457 1.77 thorpej /* See above. */
458 1.77 thorpej dobiglock = 0;
459 1.77 thorpej #endif
460 1.26 cgd goto resume;
461 1.26 cgd }
462 1.26 cgd } else
463 1.26 cgd sig = 0;
464 1.26 cgd p->p_stat = SSLEEP;
465 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
466 1.77 thorpej
467 1.77 thorpej #if 0 /* XXXSMP */
468 1.77 thorpej if (dobiglock) {
469 1.77 thorpej /*
470 1.77 thorpej * Release the kernel_lock, as we are about to
471 1.77 thorpej * yield the CPU. The scheduler_slock is still
472 1.77 thorpej * held until cpu_switch() selects a new process
473 1.77 thorpej * and removes it from the run queue.
474 1.77 thorpej */
475 1.77 thorpej kernel_lock_release();
476 1.77 thorpej }
477 1.77 thorpej #endif
478 1.77 thorpej
479 1.77 thorpej /* scheduler_slock held */
480 1.74 sommerfe mi_switch(p);
481 1.77 thorpej /* scheduler_slock held */
482 1.26 cgd #ifdef DDB
483 1.26 cgd /* handy breakpoint location after process "wakes" */
484 1.26 cgd asm(".globl bpendtsleep ; bpendtsleep:");
485 1.26 cgd #endif
486 1.77 thorpej
487 1.77 thorpej resume:
488 1.76 thorpej KDASSERT(p->p_cpu != NULL);
489 1.76 thorpej KDASSERT(p->p_cpu == curcpu());
490 1.76 thorpej p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
491 1.77 thorpej splx(s); /* XXXSMP: SCHED_UNLOCK(s) */
492 1.77 thorpej #if 0 /* XXXSMP */
493 1.77 thorpej if (dobiglock) {
494 1.77 thorpej /*
495 1.77 thorpej * Reacquire the kernel_lock now. We do this after
496 1.77 thorpej * we've released scheduler_slock to avoid deadlock.
497 1.77 thorpej */
498 1.77 thorpej kernel_lock_acquire(LK_EXCLUSIVE);
499 1.77 thorpej }
500 1.77 thorpej #endif
501 1.26 cgd p->p_flag &= ~P_SINTR;
502 1.26 cgd if (p->p_flag & P_TIMEOUT) {
503 1.26 cgd p->p_flag &= ~P_TIMEOUT;
504 1.26 cgd if (sig == 0) {
505 1.26 cgd #ifdef KTRACE
506 1.26 cgd if (KTRPOINT(p, KTR_CSW))
507 1.74 sommerfe ktrcsw(p, 0, 0);
508 1.26 cgd #endif
509 1.77 thorpej if (relock && interlock != NULL)
510 1.77 thorpej simple_lock(interlock);
511 1.26 cgd return (EWOULDBLOCK);
512 1.26 cgd }
513 1.26 cgd } else if (timo)
514 1.68 thorpej callout_stop(&p->p_tsleep_ch);
515 1.34 christos if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
516 1.26 cgd #ifdef KTRACE
517 1.26 cgd if (KTRPOINT(p, KTR_CSW))
518 1.74 sommerfe ktrcsw(p, 0, 0);
519 1.26 cgd #endif
520 1.77 thorpej if (relock && interlock != NULL)
521 1.77 thorpej simple_lock(interlock);
522 1.53 mycroft if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
523 1.26 cgd return (EINTR);
524 1.26 cgd return (ERESTART);
525 1.26 cgd }
526 1.26 cgd #ifdef KTRACE
527 1.26 cgd if (KTRPOINT(p, KTR_CSW))
528 1.74 sommerfe ktrcsw(p, 0, 0);
529 1.26 cgd #endif
530 1.77 thorpej if (relock && interlock != NULL)
531 1.77 thorpej simple_lock(interlock);
532 1.26 cgd return (0);
533 1.26 cgd }
534 1.26 cgd
535 1.26 cgd /*
536 1.26 cgd * Implement timeout for tsleep.
537 1.26 cgd * If process hasn't been awakened (wchan non-zero),
538 1.26 cgd * set timeout flag and undo the sleep. If proc
539 1.26 cgd * is stopped, just unsleep so it will remain stopped.
540 1.26 cgd */
541 1.26 cgd void
542 1.77 thorpej endtsleep(void *arg)
543 1.26 cgd {
544 1.71 augustss struct proc *p;
545 1.26 cgd int s;
546 1.26 cgd
547 1.26 cgd p = (struct proc *)arg;
548 1.26 cgd s = splhigh();
549 1.26 cgd if (p->p_wchan) {
550 1.26 cgd if (p->p_stat == SSLEEP)
551 1.26 cgd setrunnable(p);
552 1.26 cgd else
553 1.26 cgd unsleep(p);
554 1.26 cgd p->p_flag |= P_TIMEOUT;
555 1.26 cgd }
556 1.26 cgd splx(s);
557 1.26 cgd }
558 1.26 cgd
559 1.26 cgd /*
560 1.26 cgd * Remove a process from its wait queue
561 1.26 cgd */
562 1.26 cgd void
563 1.77 thorpej unsleep(struct proc *p)
564 1.26 cgd {
565 1.71 augustss struct slpque *qp;
566 1.71 augustss struct proc **hp;
567 1.26 cgd int s;
568 1.26 cgd
569 1.26 cgd s = splhigh();
570 1.26 cgd if (p->p_wchan) {
571 1.73 thorpej hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
572 1.26 cgd while (*hp != p)
573 1.26 cgd hp = &(*hp)->p_forw;
574 1.26 cgd *hp = p->p_forw;
575 1.26 cgd if (qp->sq_tailp == &p->p_forw)
576 1.26 cgd qp->sq_tailp = hp;
577 1.26 cgd p->p_wchan = 0;
578 1.26 cgd }
579 1.26 cgd splx(s);
580 1.26 cgd }
581 1.26 cgd
582 1.26 cgd /*
583 1.63 thorpej * Optimized-for-wakeup() version of setrunnable().
584 1.63 thorpej */
585 1.63 thorpej __inline void
586 1.77 thorpej awaken(struct proc *p)
587 1.63 thorpej {
588 1.63 thorpej
589 1.63 thorpej if (p->p_slptime > 1)
590 1.63 thorpej updatepri(p);
591 1.63 thorpej p->p_slptime = 0;
592 1.63 thorpej p->p_stat = SRUN;
593 1.77 thorpej
594 1.63 thorpej /*
595 1.63 thorpej * Since curpriority is a user priority, p->p_priority
596 1.63 thorpej * is always better than curpriority.
597 1.63 thorpej */
598 1.63 thorpej if (p->p_flag & P_INMEM) {
599 1.63 thorpej setrunqueue(p);
600 1.63 thorpej need_resched();
601 1.63 thorpej } else
602 1.77 thorpej wakeup(&proc0);
603 1.63 thorpej }
604 1.63 thorpej
605 1.63 thorpej /*
606 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
607 1.26 cgd */
608 1.26 cgd void
609 1.77 thorpej wakeup(void *ident)
610 1.26 cgd {
611 1.71 augustss struct slpque *qp;
612 1.71 augustss struct proc *p, **q;
613 1.26 cgd int s;
614 1.26 cgd
615 1.77 thorpej s = splhigh(); /* XXXSMP: SCHED_LOCK(s) */
616 1.77 thorpej
617 1.73 thorpej qp = SLPQUE(ident);
618 1.77 thorpej restart:
619 1.34 christos for (q = &qp->sq_head; (p = *q) != NULL; ) {
620 1.26 cgd #ifdef DIAGNOSTIC
621 1.34 christos if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
622 1.26 cgd panic("wakeup");
623 1.26 cgd #endif
624 1.26 cgd if (p->p_wchan == ident) {
625 1.26 cgd p->p_wchan = 0;
626 1.26 cgd *q = p->p_forw;
627 1.26 cgd if (qp->sq_tailp == &p->p_forw)
628 1.26 cgd qp->sq_tailp = q;
629 1.26 cgd if (p->p_stat == SSLEEP) {
630 1.63 thorpej awaken(p);
631 1.26 cgd goto restart;
632 1.26 cgd }
633 1.26 cgd } else
634 1.26 cgd q = &p->p_forw;
635 1.63 thorpej }
636 1.77 thorpej splx(s); /* XXXSMP: SCHED_UNLOCK(s) */
637 1.63 thorpej }
638 1.63 thorpej
639 1.63 thorpej /*
640 1.63 thorpej * Make the highest priority process first in line on the specified
641 1.63 thorpej * identifier runnable.
642 1.63 thorpej */
643 1.63 thorpej void
644 1.77 thorpej wakeup_one(void *ident)
645 1.63 thorpej {
646 1.63 thorpej struct slpque *qp;
647 1.63 thorpej struct proc *p, **q;
648 1.63 thorpej struct proc *best_sleepp, **best_sleepq;
649 1.63 thorpej struct proc *best_stopp, **best_stopq;
650 1.63 thorpej int s;
651 1.63 thorpej
652 1.63 thorpej best_sleepp = best_stopp = NULL;
653 1.63 thorpej best_sleepq = best_stopq = NULL;
654 1.63 thorpej
655 1.77 thorpej s = splhigh(); /* XXXSMP: SCHED_LOCK(s) */
656 1.77 thorpej
657 1.73 thorpej qp = SLPQUE(ident);
658 1.77 thorpej
659 1.63 thorpej for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
660 1.63 thorpej #ifdef DIAGNOSTIC
661 1.63 thorpej if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
662 1.63 thorpej panic("wakeup_one");
663 1.63 thorpej #endif
664 1.63 thorpej if (p->p_wchan == ident) {
665 1.63 thorpej if (p->p_stat == SSLEEP) {
666 1.63 thorpej if (best_sleepp == NULL ||
667 1.63 thorpej p->p_priority < best_sleepp->p_priority) {
668 1.63 thorpej best_sleepp = p;
669 1.63 thorpej best_sleepq = q;
670 1.63 thorpej }
671 1.63 thorpej } else {
672 1.63 thorpej if (best_stopp == NULL ||
673 1.63 thorpej p->p_priority < best_stopp->p_priority) {
674 1.63 thorpej best_stopp = p;
675 1.63 thorpej best_stopq = q;
676 1.63 thorpej }
677 1.63 thorpej }
678 1.63 thorpej }
679 1.63 thorpej }
680 1.63 thorpej
681 1.63 thorpej /*
682 1.63 thorpej * Consider any SSLEEP process higher than the highest priority SSTOP
683 1.63 thorpej * process.
684 1.63 thorpej */
685 1.63 thorpej if (best_sleepp != NULL) {
686 1.63 thorpej p = best_sleepp;
687 1.63 thorpej q = best_sleepq;
688 1.63 thorpej } else {
689 1.63 thorpej p = best_stopp;
690 1.63 thorpej q = best_stopq;
691 1.63 thorpej }
692 1.63 thorpej
693 1.63 thorpej if (p != NULL) {
694 1.77 thorpej p->p_wchan = NULL;
695 1.63 thorpej *q = p->p_forw;
696 1.63 thorpej if (qp->sq_tailp == &p->p_forw)
697 1.63 thorpej qp->sq_tailp = q;
698 1.63 thorpej if (p->p_stat == SSLEEP)
699 1.63 thorpej awaken(p);
700 1.26 cgd }
701 1.77 thorpej splx(s); /* XXXSMP: SCHED_UNLOCK(s) */
702 1.26 cgd }
703 1.26 cgd
704 1.26 cgd /*
705 1.69 thorpej * General yield call. Puts the current process back on its run queue and
706 1.69 thorpej * performs a voluntary context switch.
707 1.69 thorpej */
708 1.69 thorpej void
709 1.77 thorpej yield(void)
710 1.69 thorpej {
711 1.69 thorpej struct proc *p = curproc;
712 1.69 thorpej int s;
713 1.69 thorpej
714 1.72 thorpej s = splstatclock();
715 1.69 thorpej p->p_priority = p->p_usrpri;
716 1.72 thorpej p->p_stat = SRUN;
717 1.69 thorpej setrunqueue(p);
718 1.69 thorpej p->p_stats->p_ru.ru_nvcsw++;
719 1.74 sommerfe mi_switch(p);
720 1.69 thorpej splx(s);
721 1.69 thorpej }
722 1.69 thorpej
723 1.69 thorpej /*
724 1.69 thorpej * General preemption call. Puts the current process back on its run queue
725 1.69 thorpej * and performs an involuntary context switch. If a process is supplied,
726 1.69 thorpej * we switch to that process. Otherwise, we use the normal process selection
727 1.69 thorpej * criteria.
728 1.69 thorpej */
729 1.69 thorpej void
730 1.77 thorpej preempt(struct proc *newp)
731 1.69 thorpej {
732 1.69 thorpej struct proc *p = curproc;
733 1.69 thorpej int s;
734 1.69 thorpej
735 1.69 thorpej /*
736 1.69 thorpej * XXX Switching to a specific process is not supported yet.
737 1.69 thorpej */
738 1.69 thorpej if (newp != NULL)
739 1.69 thorpej panic("preempt: cpu_preempt not yet implemented");
740 1.69 thorpej
741 1.72 thorpej s = splstatclock();
742 1.69 thorpej p->p_priority = p->p_usrpri;
743 1.72 thorpej p->p_stat = SRUN;
744 1.69 thorpej setrunqueue(p);
745 1.69 thorpej p->p_stats->p_ru.ru_nivcsw++;
746 1.74 sommerfe mi_switch(p);
747 1.69 thorpej splx(s);
748 1.69 thorpej }
749 1.69 thorpej
750 1.69 thorpej /*
751 1.72 thorpej * The machine independent parts of context switch.
752 1.26 cgd * Must be called at splstatclock() or higher.
753 1.26 cgd */
754 1.26 cgd void
755 1.77 thorpej mi_switch(struct proc *p)
756 1.26 cgd {
757 1.76 thorpej struct schedstate_percpu *spc;
758 1.71 augustss struct rlimit *rlim;
759 1.71 augustss long s, u;
760 1.26 cgd struct timeval tv;
761 1.26 cgd
762 1.76 thorpej KDASSERT(p->p_cpu != NULL);
763 1.76 thorpej KDASSERT(p->p_cpu == curcpu());
764 1.76 thorpej
765 1.76 thorpej spc = &p->p_cpu->ci_schedstate;
766 1.76 thorpej
767 1.54 chs #ifdef LOCKDEBUG
768 1.81 thorpej simple_lock_switchcheck();
769 1.50 fvdl #endif
770 1.81 thorpej
771 1.26 cgd /*
772 1.26 cgd * Compute the amount of time during which the current
773 1.26 cgd * process was running, and add that to its total so far.
774 1.26 cgd */
775 1.26 cgd microtime(&tv);
776 1.73 thorpej u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
777 1.73 thorpej s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
778 1.26 cgd if (u < 0) {
779 1.26 cgd u += 1000000;
780 1.26 cgd s--;
781 1.26 cgd } else if (u >= 1000000) {
782 1.26 cgd u -= 1000000;
783 1.26 cgd s++;
784 1.26 cgd }
785 1.26 cgd p->p_rtime.tv_usec = u;
786 1.26 cgd p->p_rtime.tv_sec = s;
787 1.26 cgd
788 1.26 cgd /*
789 1.26 cgd * Check if the process exceeds its cpu resource allocation.
790 1.26 cgd * If over max, kill it. In any case, if it has run for more
791 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
792 1.26 cgd */
793 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
794 1.26 cgd if (s >= rlim->rlim_cur) {
795 1.26 cgd if (s >= rlim->rlim_max)
796 1.26 cgd psignal(p, SIGKILL);
797 1.26 cgd else {
798 1.26 cgd psignal(p, SIGXCPU);
799 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
800 1.26 cgd rlim->rlim_cur += 5;
801 1.26 cgd }
802 1.26 cgd }
803 1.77 thorpej if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
804 1.77 thorpej p->p_nice == NZERO) {
805 1.39 ws p->p_nice = autoniceval + NZERO;
806 1.26 cgd resetpriority(p);
807 1.26 cgd }
808 1.69 thorpej
809 1.69 thorpej /*
810 1.69 thorpej * Process is about to yield the CPU; clear the appropriate
811 1.69 thorpej * scheduling flags.
812 1.69 thorpej */
813 1.73 thorpej spc->spc_flags &= ~SPCF_SWITCHCLEAR;
814 1.26 cgd
815 1.26 cgd /*
816 1.76 thorpej * Pick a new current process and switch to it. When we
817 1.76 thorpej * run again, we'll return back here.
818 1.26 cgd */
819 1.47 mrg uvmexp.swtch++;
820 1.26 cgd cpu_switch(p);
821 1.76 thorpej
822 1.76 thorpej /*
823 1.76 thorpej * We're running again; record our new start time. We might
824 1.76 thorpej * be running on a new CPU now, so don't use the cache'd
825 1.76 thorpej * schedstate_percpu pointer.
826 1.76 thorpej */
827 1.76 thorpej KDASSERT(p->p_cpu != NULL);
828 1.76 thorpej KDASSERT(p->p_cpu == curcpu());
829 1.76 thorpej microtime(&p->p_cpu->ci_schedstate.spc_runtime);
830 1.26 cgd }
831 1.26 cgd
832 1.26 cgd /*
833 1.26 cgd * Initialize the (doubly-linked) run queues
834 1.26 cgd * to be empty.
835 1.26 cgd */
836 1.26 cgd void
837 1.26 cgd rqinit()
838 1.26 cgd {
839 1.71 augustss int i;
840 1.26 cgd
841 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
842 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
843 1.73 thorpej (struct proc *)&sched_qs[i];
844 1.26 cgd }
845 1.26 cgd
846 1.26 cgd /*
847 1.26 cgd * Change process state to be runnable,
848 1.26 cgd * placing it on the run queue if it is in memory,
849 1.26 cgd * and awakening the swapper if it isn't in memory.
850 1.26 cgd */
851 1.26 cgd void
852 1.77 thorpej setrunnable(struct proc *p)
853 1.26 cgd {
854 1.71 augustss int s;
855 1.26 cgd
856 1.26 cgd s = splhigh();
857 1.26 cgd switch (p->p_stat) {
858 1.26 cgd case 0:
859 1.26 cgd case SRUN:
860 1.72 thorpej case SONPROC:
861 1.26 cgd case SZOMB:
862 1.60 thorpej case SDEAD:
863 1.26 cgd default:
864 1.26 cgd panic("setrunnable");
865 1.26 cgd case SSTOP:
866 1.33 mycroft /*
867 1.33 mycroft * If we're being traced (possibly because someone attached us
868 1.33 mycroft * while we were stopped), check for a signal from the debugger.
869 1.33 mycroft */
870 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
871 1.53 mycroft sigaddset(&p->p_siglist, p->p_xstat);
872 1.53 mycroft p->p_sigcheck = 1;
873 1.53 mycroft }
874 1.26 cgd case SSLEEP:
875 1.26 cgd unsleep(p); /* e.g. when sending signals */
876 1.26 cgd break;
877 1.26 cgd
878 1.26 cgd case SIDL:
879 1.26 cgd break;
880 1.26 cgd }
881 1.26 cgd p->p_stat = SRUN;
882 1.26 cgd if (p->p_flag & P_INMEM)
883 1.26 cgd setrunqueue(p);
884 1.26 cgd splx(s);
885 1.26 cgd if (p->p_slptime > 1)
886 1.26 cgd updatepri(p);
887 1.26 cgd p->p_slptime = 0;
888 1.26 cgd if ((p->p_flag & P_INMEM) == 0)
889 1.26 cgd wakeup((caddr_t)&proc0);
890 1.76 thorpej else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
891 1.76 thorpej /*
892 1.76 thorpej * XXXSMP
893 1.76 thorpej * This is wrong. It will work, but what really
894 1.76 thorpej * needs to happen is:
895 1.76 thorpej *
896 1.76 thorpej * - Need to check if p is higher priority
897 1.76 thorpej * than the process currently running on
898 1.76 thorpej * the CPU p last ran on (let p_cpu persist
899 1.76 thorpej * after a context switch?), and preempt
900 1.76 thorpej * that one (or, if there is no process
901 1.76 thorpej * there, simply need_resched() that CPU.
902 1.76 thorpej *
903 1.76 thorpej * - Failing that, traverse a list of
904 1.76 thorpej * available CPUs and need_resched() the
905 1.76 thorpej * CPU with the lowest priority that's
906 1.76 thorpej * lower than p's.
907 1.76 thorpej */
908 1.26 cgd need_resched();
909 1.76 thorpej }
910 1.26 cgd }
911 1.26 cgd
912 1.26 cgd /*
913 1.26 cgd * Compute the priority of a process when running in user mode.
914 1.26 cgd * Arrange to reschedule if the resulting priority is better
915 1.26 cgd * than that of the current process.
916 1.26 cgd */
917 1.26 cgd void
918 1.77 thorpej resetpriority(struct proc *p)
919 1.26 cgd {
920 1.71 augustss unsigned int newpriority;
921 1.26 cgd
922 1.55 ross newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
923 1.26 cgd newpriority = min(newpriority, MAXPRI);
924 1.26 cgd p->p_usrpri = newpriority;
925 1.76 thorpej if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
926 1.76 thorpej /*
927 1.76 thorpej * XXXSMP
928 1.76 thorpej * Same applies as in setrunnable() above.
929 1.76 thorpej */
930 1.26 cgd need_resched();
931 1.76 thorpej }
932 1.55 ross }
933 1.55 ross
934 1.55 ross /*
935 1.56 ross * We adjust the priority of the current process. The priority of a process
936 1.56 ross * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
937 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
938 1.56 ross * will compute a different value each time p_estcpu increases. This can
939 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
940 1.56 ross * queue will not change. The cpu usage estimator ramps up quite quickly
941 1.56 ross * when the process is running (linearly), and decays away exponentially, at
942 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
943 1.80 nathanw * principle is that the system will 90% forget that the process used a lot
944 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
945 1.56 ross * processes which haven't run much recently, and to round-robin among other
946 1.56 ross * processes.
947 1.55 ross */
948 1.55 ross
949 1.55 ross void
950 1.77 thorpej schedclock(struct proc *p)
951 1.55 ross {
952 1.77 thorpej
953 1.55 ross p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
954 1.55 ross resetpriority(p);
955 1.55 ross if (p->p_priority >= PUSER)
956 1.55 ross p->p_priority = p->p_usrpri;
957 1.26 cgd }
958