Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.92
      1  1.92    bouyer /*	$NetBSD: kern_synch.c,v 1.92 2000/09/01 17:14:04 bouyer Exp $	*/
      2  1.63   thorpej 
      3  1.63   thorpej /*-
      4  1.69   thorpej  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  1.63   thorpej  * All rights reserved.
      6  1.63   thorpej  *
      7  1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.63   thorpej  * NASA Ames Research Center.
     10  1.63   thorpej  *
     11  1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     12  1.63   thorpej  * modification, are permitted provided that the following conditions
     13  1.63   thorpej  * are met:
     14  1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     15  1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     16  1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18  1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     19  1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     20  1.63   thorpej  *    must display the following acknowledgement:
     21  1.63   thorpej  *	This product includes software developed by the NetBSD
     22  1.63   thorpej  *	Foundation, Inc. and its contributors.
     23  1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.63   thorpej  *    contributors may be used to endorse or promote products derived
     25  1.63   thorpej  *    from this software without specific prior written permission.
     26  1.63   thorpej  *
     27  1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38  1.63   thorpej  */
     39  1.26       cgd 
     40  1.26       cgd /*-
     41  1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     43  1.26       cgd  * (c) UNIX System Laboratories, Inc.
     44  1.26       cgd  * All or some portions of this file are derived from material licensed
     45  1.26       cgd  * to the University of California by American Telephone and Telegraph
     46  1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     48  1.26       cgd  *
     49  1.26       cgd  * Redistribution and use in source and binary forms, with or without
     50  1.26       cgd  * modification, are permitted provided that the following conditions
     51  1.26       cgd  * are met:
     52  1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     53  1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     54  1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     55  1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     56  1.26       cgd  *    documentation and/or other materials provided with the distribution.
     57  1.26       cgd  * 3. All advertising materials mentioning features or use of this software
     58  1.26       cgd  *    must display the following acknowledgement:
     59  1.26       cgd  *	This product includes software developed by the University of
     60  1.26       cgd  *	California, Berkeley and its contributors.
     61  1.26       cgd  * 4. Neither the name of the University nor the names of its contributors
     62  1.26       cgd  *    may be used to endorse or promote products derived from this software
     63  1.26       cgd  *    without specific prior written permission.
     64  1.26       cgd  *
     65  1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  1.26       cgd  * SUCH DAMAGE.
     76  1.26       cgd  *
     77  1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78  1.26       cgd  */
     79  1.48       mrg 
     80  1.52  jonathan #include "opt_ddb.h"
     81  1.51   thorpej #include "opt_ktrace.h"
     82  1.82   thorpej #include "opt_lockdebug.h"
     83  1.83   thorpej #include "opt_multiprocessor.h"
     84  1.26       cgd 
     85  1.26       cgd #include <sys/param.h>
     86  1.26       cgd #include <sys/systm.h>
     87  1.68   thorpej #include <sys/callout.h>
     88  1.26       cgd #include <sys/proc.h>
     89  1.26       cgd #include <sys/kernel.h>
     90  1.26       cgd #include <sys/buf.h>
     91  1.26       cgd #include <sys/signalvar.h>
     92  1.26       cgd #include <sys/resourcevar.h>
     93  1.55      ross #include <sys/sched.h>
     94  1.47       mrg 
     95  1.47       mrg #include <uvm/uvm_extern.h>
     96  1.47       mrg 
     97  1.26       cgd #ifdef KTRACE
     98  1.26       cgd #include <sys/ktrace.h>
     99  1.26       cgd #endif
    100  1.26       cgd 
    101  1.26       cgd #include <machine/cpu.h>
    102  1.34  christos 
    103  1.26       cgd int	lbolt;			/* once a second sleep address */
    104  1.88  sommerfe int	rrticks;		/* number of hardclock ticks per roundrobin() */
    105  1.26       cgd 
    106  1.73   thorpej /*
    107  1.73   thorpej  * The global scheduler state.
    108  1.73   thorpej  */
    109  1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    110  1.73   thorpej __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    111  1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    112  1.73   thorpej 
    113  1.83   thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    114  1.84   thorpej #if defined(MULTIPROCESSOR)
    115  1.84   thorpej struct lock kernel_lock;
    116  1.84   thorpej #endif
    117  1.83   thorpej 
    118  1.77   thorpej void schedcpu(void *);
    119  1.77   thorpej void updatepri(struct proc *);
    120  1.77   thorpej void endtsleep(void *);
    121  1.34  christos 
    122  1.77   thorpej __inline void awaken(struct proc *);
    123  1.63   thorpej 
    124  1.68   thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    125  1.68   thorpej 
    126  1.91    bouyer int sched_suspended = 0;
    127  1.91    bouyer 
    128  1.26       cgd /*
    129  1.26       cgd  * Force switch among equal priority processes every 100ms.
    130  1.88  sommerfe  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    131  1.26       cgd  */
    132  1.26       cgd /* ARGSUSED */
    133  1.26       cgd void
    134  1.89  sommerfe roundrobin(struct cpu_info *ci)
    135  1.26       cgd {
    136  1.89  sommerfe 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    137  1.26       cgd 
    138  1.88  sommerfe 	spc->spc_rrticks = rrticks;
    139  1.88  sommerfe 
    140  1.69   thorpej 	if (curproc != NULL) {
    141  1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    142  1.69   thorpej 			/*
    143  1.69   thorpej 			 * The process has already been through a roundrobin
    144  1.69   thorpej 			 * without switching and may be hogging the CPU.
    145  1.69   thorpej 			 * Indicate that the process should yield.
    146  1.69   thorpej 			 */
    147  1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    148  1.69   thorpej 		} else
    149  1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    150  1.69   thorpej 	}
    151  1.87   thorpej 	need_resched(curcpu());
    152  1.26       cgd }
    153  1.26       cgd 
    154  1.26       cgd /*
    155  1.26       cgd  * Constants for digital decay and forget:
    156  1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    157  1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    158  1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    159  1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    160  1.26       cgd  *
    161  1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    162  1.26       cgd  *
    163  1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    164  1.26       cgd  * That is, the system wants to compute a value of decay such
    165  1.26       cgd  * that the following for loop:
    166  1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    167  1.26       cgd  * 		p_estcpu *= decay;
    168  1.26       cgd  * will compute
    169  1.26       cgd  * 	p_estcpu *= 0.1;
    170  1.26       cgd  * for all values of loadavg:
    171  1.26       cgd  *
    172  1.26       cgd  * Mathematically this loop can be expressed by saying:
    173  1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    174  1.26       cgd  *
    175  1.26       cgd  * The system computes decay as:
    176  1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    177  1.26       cgd  *
    178  1.26       cgd  * We wish to prove that the system's computation of decay
    179  1.26       cgd  * will always fulfill the equation:
    180  1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    181  1.26       cgd  *
    182  1.26       cgd  * If we compute b as:
    183  1.26       cgd  * 	b = 2 * loadavg
    184  1.26       cgd  * then
    185  1.26       cgd  * 	decay = b / (b + 1)
    186  1.26       cgd  *
    187  1.26       cgd  * We now need to prove two things:
    188  1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    189  1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    190  1.26       cgd  *
    191  1.26       cgd  * Facts:
    192  1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    193  1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    194  1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    195  1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    196  1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    197  1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    198  1.26       cgd  *         ln(.1) =~ -2.30
    199  1.26       cgd  *
    200  1.26       cgd  * Proof of (1):
    201  1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    202  1.26       cgd  *	solving for factor,
    203  1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    204  1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    205  1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    206  1.26       cgd  *
    207  1.26       cgd  * Proof of (2):
    208  1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    209  1.26       cgd  *	solving for power,
    210  1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    211  1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    212  1.26       cgd  *
    213  1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    214  1.26       cgd  *      loadav: 1       2       3       4
    215  1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    216  1.26       cgd  */
    217  1.26       cgd 
    218  1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    219  1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    220  1.26       cgd #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    221  1.26       cgd 
    222  1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    223  1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    224  1.26       cgd 
    225  1.26       cgd /*
    226  1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    227  1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    228  1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    229  1.26       cgd  *
    230  1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    231  1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    232  1.26       cgd  *
    233  1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    234  1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    235  1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    236  1.26       cgd  */
    237  1.26       cgd #define	CCPU_SHIFT	11
    238  1.26       cgd 
    239  1.26       cgd /*
    240  1.26       cgd  * Recompute process priorities, every hz ticks.
    241  1.26       cgd  */
    242  1.26       cgd /* ARGSUSED */
    243  1.26       cgd void
    244  1.77   thorpej schedcpu(void *arg)
    245  1.26       cgd {
    246  1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    247  1.71  augustss 	struct proc *p;
    248  1.83   thorpej 	int s, s1;
    249  1.71  augustss 	unsigned int newcpu;
    250  1.66      ross 	int clkhz;
    251  1.26       cgd 
    252  1.62   thorpej 	proclist_lock_read();
    253  1.27   mycroft 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    254  1.26       cgd 		/*
    255  1.26       cgd 		 * Increment time in/out of memory and sleep time
    256  1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    257  1.26       cgd 		 * (remember them?) overflow takes 45 days.
    258  1.26       cgd 		 */
    259  1.26       cgd 		p->p_swtime++;
    260  1.26       cgd 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    261  1.26       cgd 			p->p_slptime++;
    262  1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    263  1.26       cgd 		/*
    264  1.26       cgd 		 * If the process has slept the entire second,
    265  1.26       cgd 		 * stop recalculating its priority until it wakes up.
    266  1.26       cgd 		 */
    267  1.26       cgd 		if (p->p_slptime > 1)
    268  1.26       cgd 			continue;
    269  1.26       cgd 		s = splstatclock();	/* prevent state changes */
    270  1.26       cgd 		/*
    271  1.26       cgd 		 * p_pctcpu is only for ps.
    272  1.26       cgd 		 */
    273  1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    274  1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    275  1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    276  1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    277  1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    278  1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    279  1.26       cgd #else
    280  1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    281  1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    282  1.26       cgd #endif
    283  1.26       cgd 		p->p_cpticks = 0;
    284  1.55      ross 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    285  1.55      ross 		p->p_estcpu = newcpu;
    286  1.83   thorpej 		SCHED_LOCK(s1);
    287  1.26       cgd 		resetpriority(p);
    288  1.26       cgd 		if (p->p_priority >= PUSER) {
    289  1.72   thorpej 			if (p->p_stat == SRUN &&
    290  1.26       cgd 			    (p->p_flag & P_INMEM) &&
    291  1.26       cgd 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    292  1.43       cgd 				remrunqueue(p);
    293  1.26       cgd 				p->p_priority = p->p_usrpri;
    294  1.26       cgd 				setrunqueue(p);
    295  1.26       cgd 			} else
    296  1.26       cgd 				p->p_priority = p->p_usrpri;
    297  1.26       cgd 		}
    298  1.83   thorpej 		SCHED_UNLOCK(s1);
    299  1.26       cgd 		splx(s);
    300  1.26       cgd 	}
    301  1.61   thorpej 	proclist_unlock_read();
    302  1.47       mrg 	uvm_meter();
    303  1.67      fvdl 	wakeup((caddr_t)&lbolt);
    304  1.68   thorpej 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    305  1.26       cgd }
    306  1.26       cgd 
    307  1.26       cgd /*
    308  1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    309  1.26       cgd  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    310  1.26       cgd  * least six times the loadfactor will decay p_estcpu to zero.
    311  1.26       cgd  */
    312  1.26       cgd void
    313  1.77   thorpej updatepri(struct proc *p)
    314  1.26       cgd {
    315  1.83   thorpej 	unsigned int newcpu;
    316  1.83   thorpej 	fixpt_t loadfac;
    317  1.83   thorpej 
    318  1.83   thorpej 	SCHED_ASSERT_LOCKED();
    319  1.83   thorpej 
    320  1.83   thorpej 	newcpu = p->p_estcpu;
    321  1.83   thorpej 	loadfac = loadfactor(averunnable.ldavg[0]);
    322  1.26       cgd 
    323  1.26       cgd 	if (p->p_slptime > 5 * loadfac)
    324  1.26       cgd 		p->p_estcpu = 0;
    325  1.26       cgd 	else {
    326  1.26       cgd 		p->p_slptime--;	/* the first time was done in schedcpu */
    327  1.26       cgd 		while (newcpu && --p->p_slptime)
    328  1.26       cgd 			newcpu = (int) decay_cpu(loadfac, newcpu);
    329  1.55      ross 		p->p_estcpu = newcpu;
    330  1.26       cgd 	}
    331  1.26       cgd 	resetpriority(p);
    332  1.26       cgd }
    333  1.26       cgd 
    334  1.26       cgd /*
    335  1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    336  1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    337  1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    338  1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    339  1.26       cgd  * This priority will typically be 0, or the lowest priority
    340  1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    341  1.26       cgd  * higher to block network software interrupts after panics.
    342  1.26       cgd  */
    343  1.26       cgd int safepri;
    344  1.26       cgd 
    345  1.26       cgd /*
    346  1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    347  1.26       cgd  * performed on the specified identifier.  The process will then be made
    348  1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    349  1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    350  1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    351  1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    352  1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    353  1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    354  1.26       cgd  * call should be interrupted by the signal (return EINTR).
    355  1.77   thorpej  *
    356  1.77   thorpej  * The interlock is held until the scheduler_slock is held.  The
    357  1.77   thorpej  * interlock will be locked before returning back to the caller
    358  1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    359  1.77   thorpej  * interlock will always be unlocked upon return.
    360  1.26       cgd  */
    361  1.26       cgd int
    362  1.77   thorpej ltsleep(void *ident, int priority, const char *wmesg, int timo,
    363  1.77   thorpej     __volatile struct simplelock *interlock)
    364  1.26       cgd {
    365  1.71  augustss 	struct proc *p = curproc;
    366  1.71  augustss 	struct slpque *qp;
    367  1.77   thorpej 	int sig, s;
    368  1.77   thorpej 	int catch = priority & PCATCH;
    369  1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    370  1.26       cgd 
    371  1.77   thorpej 	/*
    372  1.77   thorpej 	 * XXXSMP
    373  1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    374  1.77   thorpej 	 * thing to do here really is.
    375  1.78  sommerfe 	 * Note that not sleeping if ltsleep is called with curproc == NULL
    376  1.78  sommerfe 	 * in the shutdown case is disgusting but partly necessary given
    377  1.78  sommerfe 	 * how shutdown (barely) works.
    378  1.77   thorpej 	 */
    379  1.78  sommerfe 	if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
    380  1.26       cgd 		/*
    381  1.26       cgd 		 * After a panic, or during autoconfiguration,
    382  1.26       cgd 		 * just give interrupts a chance, then just return;
    383  1.26       cgd 		 * don't run any other procs or panic below,
    384  1.26       cgd 		 * in case this is the idle process and already asleep.
    385  1.26       cgd 		 */
    386  1.42       cgd 		s = splhigh();
    387  1.26       cgd 		splx(safepri);
    388  1.26       cgd 		splx(s);
    389  1.77   thorpej 		if (interlock != NULL && relock == 0)
    390  1.77   thorpej 			simple_unlock(interlock);
    391  1.26       cgd 		return (0);
    392  1.26       cgd 	}
    393  1.78  sommerfe 
    394  1.42       cgd 
    395  1.42       cgd #ifdef KTRACE
    396  1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    397  1.74  sommerfe 		ktrcsw(p, 1, 0);
    398  1.42       cgd #endif
    399  1.77   thorpej 
    400  1.83   thorpej 	SCHED_LOCK(s);
    401  1.42       cgd 
    402  1.26       cgd #ifdef DIAGNOSTIC
    403  1.64   thorpej 	if (ident == NULL)
    404  1.77   thorpej 		panic("ltsleep: ident == NULL");
    405  1.72   thorpej 	if (p->p_stat != SONPROC)
    406  1.77   thorpej 		panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
    407  1.64   thorpej 	if (p->p_back != NULL)
    408  1.77   thorpej 		panic("ltsleep: p_back != NULL");
    409  1.26       cgd #endif
    410  1.77   thorpej 
    411  1.26       cgd 	p->p_wchan = ident;
    412  1.26       cgd 	p->p_wmesg = wmesg;
    413  1.26       cgd 	p->p_slptime = 0;
    414  1.26       cgd 	p->p_priority = priority & PRIMASK;
    415  1.77   thorpej 
    416  1.73   thorpej 	qp = SLPQUE(ident);
    417  1.26       cgd 	if (qp->sq_head == 0)
    418  1.26       cgd 		qp->sq_head = p;
    419  1.26       cgd 	else
    420  1.26       cgd 		*qp->sq_tailp = p;
    421  1.26       cgd 	*(qp->sq_tailp = &p->p_forw) = 0;
    422  1.77   thorpej 
    423  1.26       cgd 	if (timo)
    424  1.68   thorpej 		callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
    425  1.77   thorpej 
    426  1.77   thorpej 	/*
    427  1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    428  1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    429  1.77   thorpej 	 * we do the switch.
    430  1.77   thorpej 	 *
    431  1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    432  1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    433  1.77   thorpej 	 * data structure for the sleep queues at some point.
    434  1.77   thorpej 	 */
    435  1.77   thorpej 	if (interlock != NULL)
    436  1.77   thorpej 		simple_unlock(interlock);
    437  1.77   thorpej 
    438  1.26       cgd 	/*
    439  1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    440  1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    441  1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    442  1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    443  1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    444  1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    445  1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    446  1.26       cgd 	 */
    447  1.26       cgd 	if (catch) {
    448  1.26       cgd 		p->p_flag |= P_SINTR;
    449  1.34  christos 		if ((sig = CURSIG(p)) != 0) {
    450  1.77   thorpej 			if (p->p_wchan != NULL)
    451  1.26       cgd 				unsleep(p);
    452  1.72   thorpej 			p->p_stat = SONPROC;
    453  1.83   thorpej 			SCHED_UNLOCK(s);
    454  1.26       cgd 			goto resume;
    455  1.26       cgd 		}
    456  1.77   thorpej 		if (p->p_wchan == NULL) {
    457  1.26       cgd 			catch = 0;
    458  1.83   thorpej 			SCHED_UNLOCK(s);
    459  1.26       cgd 			goto resume;
    460  1.26       cgd 		}
    461  1.26       cgd 	} else
    462  1.26       cgd 		sig = 0;
    463  1.26       cgd 	p->p_stat = SSLEEP;
    464  1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    465  1.77   thorpej 
    466  1.83   thorpej 	SCHED_ASSERT_LOCKED();
    467  1.74  sommerfe 	mi_switch(p);
    468  1.83   thorpej 
    469  1.26       cgd #ifdef	DDB
    470  1.26       cgd 	/* handy breakpoint location after process "wakes" */
    471  1.26       cgd 	asm(".globl bpendtsleep ; bpendtsleep:");
    472  1.26       cgd #endif
    473  1.77   thorpej 
    474  1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    475  1.83   thorpej 	splx(s);
    476  1.83   thorpej 
    477  1.77   thorpej  resume:
    478  1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    479  1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    480  1.76   thorpej 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
    481  1.83   thorpej 
    482  1.26       cgd 	p->p_flag &= ~P_SINTR;
    483  1.26       cgd 	if (p->p_flag & P_TIMEOUT) {
    484  1.26       cgd 		p->p_flag &= ~P_TIMEOUT;
    485  1.26       cgd 		if (sig == 0) {
    486  1.26       cgd #ifdef KTRACE
    487  1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    488  1.74  sommerfe 				ktrcsw(p, 0, 0);
    489  1.26       cgd #endif
    490  1.77   thorpej 			if (relock && interlock != NULL)
    491  1.77   thorpej 				simple_lock(interlock);
    492  1.26       cgd 			return (EWOULDBLOCK);
    493  1.26       cgd 		}
    494  1.26       cgd 	} else if (timo)
    495  1.68   thorpej 		callout_stop(&p->p_tsleep_ch);
    496  1.34  christos 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    497  1.26       cgd #ifdef KTRACE
    498  1.26       cgd 		if (KTRPOINT(p, KTR_CSW))
    499  1.74  sommerfe 			ktrcsw(p, 0, 0);
    500  1.26       cgd #endif
    501  1.77   thorpej 		if (relock && interlock != NULL)
    502  1.77   thorpej 			simple_lock(interlock);
    503  1.53   mycroft 		if ((p->p_sigacts->ps_sigact[sig].sa_flags & SA_RESTART) == 0)
    504  1.26       cgd 			return (EINTR);
    505  1.26       cgd 		return (ERESTART);
    506  1.26       cgd 	}
    507  1.26       cgd #ifdef KTRACE
    508  1.26       cgd 	if (KTRPOINT(p, KTR_CSW))
    509  1.74  sommerfe 		ktrcsw(p, 0, 0);
    510  1.26       cgd #endif
    511  1.77   thorpej 	if (relock && interlock != NULL)
    512  1.77   thorpej 		simple_lock(interlock);
    513  1.26       cgd 	return (0);
    514  1.26       cgd }
    515  1.26       cgd 
    516  1.26       cgd /*
    517  1.26       cgd  * Implement timeout for tsleep.
    518  1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    519  1.26       cgd  * set timeout flag and undo the sleep.  If proc
    520  1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    521  1.26       cgd  */
    522  1.26       cgd void
    523  1.77   thorpej endtsleep(void *arg)
    524  1.26       cgd {
    525  1.71  augustss 	struct proc *p;
    526  1.26       cgd 	int s;
    527  1.26       cgd 
    528  1.26       cgd 	p = (struct proc *)arg;
    529  1.83   thorpej 
    530  1.83   thorpej 	SCHED_LOCK(s);
    531  1.26       cgd 	if (p->p_wchan) {
    532  1.26       cgd 		if (p->p_stat == SSLEEP)
    533  1.26       cgd 			setrunnable(p);
    534  1.26       cgd 		else
    535  1.26       cgd 			unsleep(p);
    536  1.26       cgd 		p->p_flag |= P_TIMEOUT;
    537  1.26       cgd 	}
    538  1.83   thorpej 	SCHED_UNLOCK(s);
    539  1.26       cgd }
    540  1.26       cgd 
    541  1.26       cgd /*
    542  1.26       cgd  * Remove a process from its wait queue
    543  1.26       cgd  */
    544  1.26       cgd void
    545  1.77   thorpej unsleep(struct proc *p)
    546  1.26       cgd {
    547  1.71  augustss 	struct slpque *qp;
    548  1.71  augustss 	struct proc **hp;
    549  1.26       cgd 
    550  1.83   thorpej 	SCHED_ASSERT_LOCKED();
    551  1.83   thorpej 
    552  1.26       cgd 	if (p->p_wchan) {
    553  1.73   thorpej 		hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
    554  1.26       cgd 		while (*hp != p)
    555  1.26       cgd 			hp = &(*hp)->p_forw;
    556  1.26       cgd 		*hp = p->p_forw;
    557  1.26       cgd 		if (qp->sq_tailp == &p->p_forw)
    558  1.26       cgd 			qp->sq_tailp = hp;
    559  1.26       cgd 		p->p_wchan = 0;
    560  1.26       cgd 	}
    561  1.26       cgd }
    562  1.26       cgd 
    563  1.26       cgd /*
    564  1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    565  1.63   thorpej  */
    566  1.63   thorpej __inline void
    567  1.77   thorpej awaken(struct proc *p)
    568  1.63   thorpej {
    569  1.63   thorpej 
    570  1.83   thorpej 	SCHED_ASSERT_LOCKED();
    571  1.83   thorpej 
    572  1.63   thorpej 	if (p->p_slptime > 1)
    573  1.63   thorpej 		updatepri(p);
    574  1.63   thorpej 	p->p_slptime = 0;
    575  1.91    bouyer 	if ((p->p_flag & P_SUSPEND) == 0) {
    576  1.91    bouyer 		p->p_stat = SRUN;
    577  1.91    bouyer 		/*
    578  1.91    bouyer 		 * Since curpriority is a user priority, p->p_priority
    579  1.91    bouyer 		 * is always better than curpriority.
    580  1.91    bouyer 		 */
    581  1.91    bouyer 		if (p->p_flag & P_INMEM) {
    582  1.91    bouyer 			setrunqueue(p);
    583  1.91    bouyer 			KASSERT(p->p_cpu != NULL);
    584  1.91    bouyer 			need_resched(p->p_cpu);
    585  1.91    bouyer 		} else
    586  1.92    bouyer 			sched_wakeup(&proc0);
    587  1.91    bouyer 	} else {
    588  1.91    bouyer 		p->p_stat = SSUSPEND;
    589  1.91    bouyer 	}
    590  1.83   thorpej }
    591  1.83   thorpej 
    592  1.83   thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    593  1.83   thorpej void
    594  1.83   thorpej sched_unlock_idle(void)
    595  1.83   thorpej {
    596  1.83   thorpej 
    597  1.83   thorpej 	simple_unlock(&sched_lock);
    598  1.63   thorpej }
    599  1.63   thorpej 
    600  1.83   thorpej void
    601  1.83   thorpej sched_lock_idle(void)
    602  1.83   thorpej {
    603  1.83   thorpej 
    604  1.83   thorpej 	simple_lock(&sched_lock);
    605  1.83   thorpej }
    606  1.83   thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
    607  1.83   thorpej 
    608  1.63   thorpej /*
    609  1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    610  1.26       cgd  */
    611  1.83   thorpej 
    612  1.26       cgd void
    613  1.77   thorpej wakeup(void *ident)
    614  1.26       cgd {
    615  1.83   thorpej 	int s;
    616  1.83   thorpej 
    617  1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    618  1.83   thorpej 
    619  1.83   thorpej 	SCHED_LOCK(s);
    620  1.83   thorpej 	sched_wakeup(ident);
    621  1.83   thorpej 	SCHED_UNLOCK(s);
    622  1.83   thorpej }
    623  1.83   thorpej 
    624  1.83   thorpej void
    625  1.83   thorpej sched_wakeup(void *ident)
    626  1.83   thorpej {
    627  1.71  augustss 	struct slpque *qp;
    628  1.71  augustss 	struct proc *p, **q;
    629  1.26       cgd 
    630  1.83   thorpej 	SCHED_ASSERT_LOCKED();
    631  1.77   thorpej 
    632  1.73   thorpej 	qp = SLPQUE(ident);
    633  1.77   thorpej  restart:
    634  1.34  christos 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    635  1.26       cgd #ifdef DIAGNOSTIC
    636  1.34  christos 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    637  1.26       cgd 			panic("wakeup");
    638  1.26       cgd #endif
    639  1.26       cgd 		if (p->p_wchan == ident) {
    640  1.26       cgd 			p->p_wchan = 0;
    641  1.26       cgd 			*q = p->p_forw;
    642  1.26       cgd 			if (qp->sq_tailp == &p->p_forw)
    643  1.26       cgd 				qp->sq_tailp = q;
    644  1.26       cgd 			if (p->p_stat == SSLEEP) {
    645  1.63   thorpej 				awaken(p);
    646  1.26       cgd 				goto restart;
    647  1.26       cgd 			}
    648  1.26       cgd 		} else
    649  1.26       cgd 			q = &p->p_forw;
    650  1.63   thorpej 	}
    651  1.63   thorpej }
    652  1.63   thorpej 
    653  1.63   thorpej /*
    654  1.63   thorpej  * Make the highest priority process first in line on the specified
    655  1.63   thorpej  * identifier runnable.
    656  1.63   thorpej  */
    657  1.63   thorpej void
    658  1.77   thorpej wakeup_one(void *ident)
    659  1.63   thorpej {
    660  1.63   thorpej 	struct slpque *qp;
    661  1.63   thorpej 	struct proc *p, **q;
    662  1.63   thorpej 	struct proc *best_sleepp, **best_sleepq;
    663  1.63   thorpej 	struct proc *best_stopp, **best_stopq;
    664  1.63   thorpej 	int s;
    665  1.63   thorpej 
    666  1.63   thorpej 	best_sleepp = best_stopp = NULL;
    667  1.63   thorpej 	best_sleepq = best_stopq = NULL;
    668  1.63   thorpej 
    669  1.83   thorpej 	SCHED_LOCK(s);
    670  1.77   thorpej 
    671  1.73   thorpej 	qp = SLPQUE(ident);
    672  1.77   thorpej 
    673  1.63   thorpej 	for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
    674  1.63   thorpej #ifdef DIAGNOSTIC
    675  1.63   thorpej 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    676  1.63   thorpej 			panic("wakeup_one");
    677  1.63   thorpej #endif
    678  1.63   thorpej 		if (p->p_wchan == ident) {
    679  1.63   thorpej 			if (p->p_stat == SSLEEP) {
    680  1.63   thorpej 				if (best_sleepp == NULL ||
    681  1.63   thorpej 				    p->p_priority < best_sleepp->p_priority) {
    682  1.63   thorpej 					best_sleepp = p;
    683  1.63   thorpej 					best_sleepq = q;
    684  1.63   thorpej 				}
    685  1.63   thorpej 			} else {
    686  1.63   thorpej 				if (best_stopp == NULL ||
    687  1.63   thorpej 				    p->p_priority < best_stopp->p_priority) {
    688  1.63   thorpej 					best_stopp = p;
    689  1.63   thorpej 					best_stopq = q;
    690  1.63   thorpej 				}
    691  1.63   thorpej 			}
    692  1.63   thorpej 		}
    693  1.63   thorpej 	}
    694  1.63   thorpej 
    695  1.63   thorpej 	/*
    696  1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    697  1.63   thorpej 	 * process.
    698  1.63   thorpej 	 */
    699  1.63   thorpej 	if (best_sleepp != NULL) {
    700  1.63   thorpej 		p = best_sleepp;
    701  1.63   thorpej 		q = best_sleepq;
    702  1.63   thorpej 	} else {
    703  1.63   thorpej 		p = best_stopp;
    704  1.63   thorpej 		q = best_stopq;
    705  1.63   thorpej 	}
    706  1.63   thorpej 
    707  1.63   thorpej 	if (p != NULL) {
    708  1.77   thorpej 		p->p_wchan = NULL;
    709  1.63   thorpej 		*q = p->p_forw;
    710  1.63   thorpej 		if (qp->sq_tailp == &p->p_forw)
    711  1.63   thorpej 			qp->sq_tailp = q;
    712  1.63   thorpej 		if (p->p_stat == SSLEEP)
    713  1.63   thorpej 			awaken(p);
    714  1.26       cgd 	}
    715  1.83   thorpej 	SCHED_UNLOCK(s);
    716  1.26       cgd }
    717  1.26       cgd 
    718  1.26       cgd /*
    719  1.69   thorpej  * General yield call.  Puts the current process back on its run queue and
    720  1.69   thorpej  * performs a voluntary context switch.
    721  1.69   thorpej  */
    722  1.69   thorpej void
    723  1.77   thorpej yield(void)
    724  1.69   thorpej {
    725  1.69   thorpej 	struct proc *p = curproc;
    726  1.69   thorpej 	int s;
    727  1.69   thorpej 
    728  1.83   thorpej 	SCHED_LOCK(s);
    729  1.69   thorpej 	p->p_priority = p->p_usrpri;
    730  1.91    bouyer 	if ((p->p_flag & P_SUSPEND) == 0) {
    731  1.91    bouyer 		p->p_stat = SRUN;
    732  1.91    bouyer 		setrunqueue(p);
    733  1.91    bouyer 	} else
    734  1.91    bouyer 		p->p_stat = SSUSPEND;
    735  1.69   thorpej 	p->p_stats->p_ru.ru_nvcsw++;
    736  1.74  sommerfe 	mi_switch(p);
    737  1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    738  1.69   thorpej 	splx(s);
    739  1.69   thorpej }
    740  1.69   thorpej 
    741  1.69   thorpej /*
    742  1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    743  1.69   thorpej  * and performs an involuntary context switch.  If a process is supplied,
    744  1.69   thorpej  * we switch to that process.  Otherwise, we use the normal process selection
    745  1.69   thorpej  * criteria.
    746  1.69   thorpej  */
    747  1.69   thorpej void
    748  1.77   thorpej preempt(struct proc *newp)
    749  1.69   thorpej {
    750  1.69   thorpej 	struct proc *p = curproc;
    751  1.69   thorpej 	int s;
    752  1.69   thorpej 
    753  1.69   thorpej 	/*
    754  1.69   thorpej 	 * XXX Switching to a specific process is not supported yet.
    755  1.69   thorpej 	 */
    756  1.69   thorpej 	if (newp != NULL)
    757  1.69   thorpej 		panic("preempt: cpu_preempt not yet implemented");
    758  1.69   thorpej 
    759  1.83   thorpej 	SCHED_LOCK(s);
    760  1.69   thorpej 	p->p_priority = p->p_usrpri;
    761  1.91    bouyer 	if ((p->p_flag & P_SUSPEND) == 0) {
    762  1.91    bouyer 		p->p_stat = SRUN;
    763  1.91    bouyer 		setrunqueue(p);
    764  1.91    bouyer 	} else
    765  1.91    bouyer 		p->p_stat = SSUSPEND;
    766  1.69   thorpej 	p->p_stats->p_ru.ru_nivcsw++;
    767  1.74  sommerfe 	mi_switch(p);
    768  1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    769  1.69   thorpej 	splx(s);
    770  1.69   thorpej }
    771  1.69   thorpej 
    772  1.69   thorpej /*
    773  1.72   thorpej  * The machine independent parts of context switch.
    774  1.86   thorpej  * Must be called at splsched() (no higher!) and with
    775  1.86   thorpej  * the sched_lock held.
    776  1.26       cgd  */
    777  1.26       cgd void
    778  1.77   thorpej mi_switch(struct proc *p)
    779  1.26       cgd {
    780  1.76   thorpej 	struct schedstate_percpu *spc;
    781  1.71  augustss 	struct rlimit *rlim;
    782  1.71  augustss 	long s, u;
    783  1.26       cgd 	struct timeval tv;
    784  1.85  sommerfe #if defined(MULTIPROCESSOR)
    785  1.85  sommerfe 	int hold_count;
    786  1.85  sommerfe #endif
    787  1.26       cgd 
    788  1.83   thorpej 	SCHED_ASSERT_LOCKED();
    789  1.83   thorpej 
    790  1.85  sommerfe #if defined(MULTIPROCESSOR)
    791  1.90  sommerfe 	/*
    792  1.90  sommerfe 	 * Release the kernel_lock, as we are about to yield the CPU.
    793  1.90  sommerfe 	 * The scheduler lock is still held until cpu_switch()
    794  1.90  sommerfe 	 * selects a new process and removes it from the run queue.
    795  1.90  sommerfe 	 */
    796  1.90  sommerfe 	if (p->p_flag & P_BIGLOCK)
    797  1.90  sommerfe 		hold_count = spinlock_release_all(&kernel_lock);
    798  1.85  sommerfe #endif
    799  1.85  sommerfe 
    800  1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    801  1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    802  1.76   thorpej 
    803  1.76   thorpej 	spc = &p->p_cpu->ci_schedstate;
    804  1.76   thorpej 
    805  1.82   thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    806  1.82   thorpej 	spinlock_switchcheck();
    807  1.82   thorpej #endif
    808  1.54       chs #ifdef LOCKDEBUG
    809  1.81   thorpej 	simple_lock_switchcheck();
    810  1.50      fvdl #endif
    811  1.81   thorpej 
    812  1.26       cgd 	/*
    813  1.26       cgd 	 * Compute the amount of time during which the current
    814  1.26       cgd 	 * process was running, and add that to its total so far.
    815  1.26       cgd 	 */
    816  1.26       cgd 	microtime(&tv);
    817  1.73   thorpej 	u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    818  1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    819  1.26       cgd 	if (u < 0) {
    820  1.26       cgd 		u += 1000000;
    821  1.26       cgd 		s--;
    822  1.26       cgd 	} else if (u >= 1000000) {
    823  1.26       cgd 		u -= 1000000;
    824  1.26       cgd 		s++;
    825  1.26       cgd 	}
    826  1.26       cgd 	p->p_rtime.tv_usec = u;
    827  1.26       cgd 	p->p_rtime.tv_sec = s;
    828  1.26       cgd 
    829  1.26       cgd 	/*
    830  1.26       cgd 	 * Check if the process exceeds its cpu resource allocation.
    831  1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    832  1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    833  1.26       cgd 	 */
    834  1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    835  1.26       cgd 	if (s >= rlim->rlim_cur) {
    836  1.26       cgd 		if (s >= rlim->rlim_max)
    837  1.26       cgd 			psignal(p, SIGKILL);
    838  1.26       cgd 		else {
    839  1.26       cgd 			psignal(p, SIGXCPU);
    840  1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    841  1.26       cgd 				rlim->rlim_cur += 5;
    842  1.26       cgd 		}
    843  1.26       cgd 	}
    844  1.77   thorpej 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    845  1.77   thorpej 	    p->p_nice == NZERO) {
    846  1.39        ws 		p->p_nice = autoniceval + NZERO;
    847  1.26       cgd 		resetpriority(p);
    848  1.26       cgd 	}
    849  1.69   thorpej 
    850  1.69   thorpej 	/*
    851  1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    852  1.69   thorpej 	 * scheduling flags.
    853  1.69   thorpej 	 */
    854  1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    855  1.26       cgd 
    856  1.26       cgd 	/*
    857  1.76   thorpej 	 * Pick a new current process and switch to it.  When we
    858  1.76   thorpej 	 * run again, we'll return back here.
    859  1.26       cgd 	 */
    860  1.47       mrg 	uvmexp.swtch++;
    861  1.26       cgd 	cpu_switch(p);
    862  1.76   thorpej 
    863  1.76   thorpej 	/*
    864  1.83   thorpej 	 * Make sure that MD code released the scheduler lock before
    865  1.83   thorpej 	 * resuming us.
    866  1.83   thorpej 	 */
    867  1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    868  1.83   thorpej 
    869  1.83   thorpej 	/*
    870  1.76   thorpej 	 * We're running again; record our new start time.  We might
    871  1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
    872  1.76   thorpej 	 * schedstate_percpu pointer.
    873  1.76   thorpej 	 */
    874  1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    875  1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    876  1.76   thorpej 	microtime(&p->p_cpu->ci_schedstate.spc_runtime);
    877  1.85  sommerfe 
    878  1.85  sommerfe #if defined(MULTIPROCESSOR)
    879  1.90  sommerfe 	/*
    880  1.90  sommerfe 	 * Reacquire the kernel_lock now.  We do this after we've
    881  1.90  sommerfe 	 * released the scheduler lock to avoid deadlock, and before
    882  1.90  sommerfe 	 * we reacquire the interlock.
    883  1.90  sommerfe 	 */
    884  1.90  sommerfe 	if (p->p_flag & P_BIGLOCK)
    885  1.90  sommerfe 		spinlock_acquire_count(&kernel_lock, hold_count);
    886  1.85  sommerfe #endif
    887  1.26       cgd }
    888  1.26       cgd 
    889  1.26       cgd /*
    890  1.26       cgd  * Initialize the (doubly-linked) run queues
    891  1.26       cgd  * to be empty.
    892  1.26       cgd  */
    893  1.26       cgd void
    894  1.26       cgd rqinit()
    895  1.26       cgd {
    896  1.71  augustss 	int i;
    897  1.26       cgd 
    898  1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
    899  1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    900  1.73   thorpej 		    (struct proc *)&sched_qs[i];
    901  1.26       cgd }
    902  1.26       cgd 
    903  1.26       cgd /*
    904  1.26       cgd  * Change process state to be runnable,
    905  1.26       cgd  * placing it on the run queue if it is in memory,
    906  1.26       cgd  * and awakening the swapper if it isn't in memory.
    907  1.26       cgd  */
    908  1.26       cgd void
    909  1.77   thorpej setrunnable(struct proc *p)
    910  1.26       cgd {
    911  1.26       cgd 
    912  1.83   thorpej 	SCHED_ASSERT_LOCKED();
    913  1.83   thorpej 
    914  1.26       cgd 	switch (p->p_stat) {
    915  1.26       cgd 	case 0:
    916  1.26       cgd 	case SRUN:
    917  1.91    bouyer 	case SSUSPEND:
    918  1.72   thorpej 	case SONPROC:
    919  1.26       cgd 	case SZOMB:
    920  1.60   thorpej 	case SDEAD:
    921  1.26       cgd 	default:
    922  1.26       cgd 		panic("setrunnable");
    923  1.26       cgd 	case SSTOP:
    924  1.33   mycroft 		/*
    925  1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    926  1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    927  1.33   mycroft 		 */
    928  1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    929  1.53   mycroft 			sigaddset(&p->p_siglist, p->p_xstat);
    930  1.53   mycroft 			p->p_sigcheck = 1;
    931  1.53   mycroft 		}
    932  1.26       cgd 	case SSLEEP:
    933  1.26       cgd 		unsleep(p);		/* e.g. when sending signals */
    934  1.26       cgd 		break;
    935  1.26       cgd 
    936  1.26       cgd 	case SIDL:
    937  1.26       cgd 		break;
    938  1.26       cgd 	}
    939  1.91    bouyer 	if ((p->p_flag & P_SUSPEND) == 0) {
    940  1.91    bouyer 		p->p_stat = SRUN;
    941  1.91    bouyer 		if (p->p_flag & P_INMEM)
    942  1.91    bouyer 			setrunqueue(p);
    943  1.91    bouyer 	} else
    944  1.91    bouyer 		p->p_stat = SSUSPEND;
    945  1.26       cgd 	if (p->p_slptime > 1)
    946  1.26       cgd 		updatepri(p);
    947  1.26       cgd 	p->p_slptime = 0;
    948  1.26       cgd 	if ((p->p_flag & P_INMEM) == 0)
    949  1.83   thorpej 		sched_wakeup((caddr_t)&proc0);
    950  1.76   thorpej 	else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
    951  1.76   thorpej 		/*
    952  1.76   thorpej 		 * XXXSMP
    953  1.87   thorpej 		 * This is not exactly right.  Since p->p_cpu persists
    954  1.87   thorpej 		 * across a context switch, this gives us some sort
    955  1.87   thorpej 		 * of processor affinity.  But we need to figure out
    956  1.87   thorpej 		 * at what point it's better to reschedule on a different
    957  1.87   thorpej 		 * CPU than the last one.
    958  1.76   thorpej 		 */
    959  1.87   thorpej 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    960  1.76   thorpej 	}
    961  1.26       cgd }
    962  1.26       cgd 
    963  1.26       cgd /*
    964  1.26       cgd  * Compute the priority of a process when running in user mode.
    965  1.26       cgd  * Arrange to reschedule if the resulting priority is better
    966  1.26       cgd  * than that of the current process.
    967  1.26       cgd  */
    968  1.26       cgd void
    969  1.77   thorpej resetpriority(struct proc *p)
    970  1.26       cgd {
    971  1.71  augustss 	unsigned int newpriority;
    972  1.26       cgd 
    973  1.83   thorpej 	SCHED_ASSERT_LOCKED();
    974  1.83   thorpej 
    975  1.55      ross 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
    976  1.26       cgd 	newpriority = min(newpriority, MAXPRI);
    977  1.26       cgd 	p->p_usrpri = newpriority;
    978  1.76   thorpej 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
    979  1.76   thorpej 		/*
    980  1.76   thorpej 		 * XXXSMP
    981  1.76   thorpej 		 * Same applies as in setrunnable() above.
    982  1.76   thorpej 		 */
    983  1.87   thorpej 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    984  1.76   thorpej 	}
    985  1.55      ross }
    986  1.55      ross 
    987  1.55      ross /*
    988  1.56      ross  * We adjust the priority of the current process.  The priority of a process
    989  1.56      ross  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
    990  1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
    991  1.56      ross  * will compute a different value each time p_estcpu increases. This can
    992  1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    993  1.56      ross  * queue will not change.  The cpu usage estimator ramps up quite quickly
    994  1.56      ross  * when the process is running (linearly), and decays away exponentially, at
    995  1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
    996  1.80   nathanw  * principle is that the system will 90% forget that the process used a lot
    997  1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    998  1.56      ross  * processes which haven't run much recently, and to round-robin among other
    999  1.56      ross  * processes.
   1000  1.55      ross  */
   1001  1.55      ross 
   1002  1.55      ross void
   1003  1.77   thorpej schedclock(struct proc *p)
   1004  1.55      ross {
   1005  1.83   thorpej 	int s;
   1006  1.77   thorpej 
   1007  1.55      ross 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1008  1.83   thorpej 
   1009  1.83   thorpej 	SCHED_LOCK(s);
   1010  1.55      ross 	resetpriority(p);
   1011  1.83   thorpej 	SCHED_UNLOCK(s);
   1012  1.83   thorpej 
   1013  1.55      ross 	if (p->p_priority >= PUSER)
   1014  1.55      ross 		p->p_priority = p->p_usrpri;
   1015  1.91    bouyer }
   1016  1.91    bouyer 
   1017  1.91    bouyer /*
   1018  1.91    bouyer  * Mark all non-system processes as non-runnable, and remove from run queue.
   1019  1.91    bouyer  */
   1020  1.91    bouyer void
   1021  1.91    bouyer suspendsched()
   1022  1.91    bouyer {
   1023  1.91    bouyer 	int s, i;
   1024  1.91    bouyer 	struct proc *p, *next;
   1025  1.91    bouyer 
   1026  1.91    bouyer 	SCHED_LOCK(s);
   1027  1.91    bouyer 	sched_suspended++;
   1028  1.91    bouyer 	if (sched_suspended > 1) {
   1029  1.91    bouyer 		/* sheduling was already suspended */
   1030  1.91    bouyer 		SCHED_UNLOCK(s);
   1031  1.91    bouyer 		return;
   1032  1.91    bouyer 	}
   1033  1.91    bouyer 	/* mark P_SUSPEND all processes that aren't P_SYSTEM or curproc */
   1034  1.91    bouyer 	for (p = LIST_FIRST(&allproc); p != NULL; p = next) {
   1035  1.91    bouyer 		next = LIST_NEXT(p, p_list);
   1036  1.91    bouyer 		if (p == curproc || (p->p_flag & P_SYSTEM) != 0)
   1037  1.91    bouyer 			continue;
   1038  1.91    bouyer 		p->p_flag |= P_SUSPEND;
   1039  1.91    bouyer 	}
   1040  1.91    bouyer 	/* go through the run queues, remove P_SUSPEND processes */
   1041  1.91    bouyer 	for (i = 0; i < RUNQUE_NQS; i++) {
   1042  1.91    bouyer 		for (p = (struct proc *)&sched_qs[i];
   1043  1.91    bouyer 		    p->p_forw != (struct proc *)&sched_qs[i]; p = next) {
   1044  1.91    bouyer 			next = p->p_forw;
   1045  1.91    bouyer 			if ((p->p_flag & P_SUSPEND) != 0) {
   1046  1.91    bouyer 				remrunqueue(p);
   1047  1.91    bouyer 				p->p_stat = SSUSPEND;
   1048  1.91    bouyer 			}
   1049  1.91    bouyer 		}
   1050  1.91    bouyer 	}
   1051  1.91    bouyer 	SCHED_UNLOCK(s);
   1052  1.91    bouyer }
   1053  1.91    bouyer 
   1054  1.91    bouyer /* resume scheduling, replace all suspended processes on a run queue */
   1055  1.91    bouyer void
   1056  1.91    bouyer resumesched()
   1057  1.91    bouyer {
   1058  1.91    bouyer 	int s;
   1059  1.91    bouyer 	struct proc *p, *next;
   1060  1.91    bouyer 
   1061  1.91    bouyer 	SCHED_LOCK(s);
   1062  1.91    bouyer 	sched_suspended--;
   1063  1.91    bouyer 	if (sched_suspended < 0)
   1064  1.91    bouyer 		panic("resumesched");
   1065  1.91    bouyer 	if (sched_suspended > 0) {
   1066  1.91    bouyer 		/* someone still wants the sheduling to be suspended */
   1067  1.91    bouyer 		/* XXX should we mark curproc P_SUSPEND as well ? */
   1068  1.91    bouyer 		SCHED_UNLOCK(s);
   1069  1.91    bouyer 		return;
   1070  1.91    bouyer 	}
   1071  1.91    bouyer 	for (p = LIST_FIRST(&allproc); p != NULL; p = next) {
   1072  1.91    bouyer 		next = LIST_NEXT(p, p_list);
   1073  1.91    bouyer 		p->p_flag &= ~P_SUSPEND;
   1074  1.91    bouyer 		if (p->p_stat == SSUSPEND) {
   1075  1.91    bouyer 			p->p_stat = SRUN;
   1076  1.91    bouyer 			setrunqueue(p);
   1077  1.91    bouyer 		}
   1078  1.91    bouyer 	}
   1079  1.91    bouyer 	SCHED_UNLOCK(s);
   1080  1.26       cgd }
   1081