Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.99
      1  1.99  jdolecek /*	$NetBSD: kern_synch.c,v 1.99 2000/12/22 22:59:00 jdolecek Exp $	*/
      2  1.63   thorpej 
      3  1.63   thorpej /*-
      4  1.69   thorpej  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  1.63   thorpej  * All rights reserved.
      6  1.63   thorpej  *
      7  1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.63   thorpej  * NASA Ames Research Center.
     10  1.63   thorpej  *
     11  1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     12  1.63   thorpej  * modification, are permitted provided that the following conditions
     13  1.63   thorpej  * are met:
     14  1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     15  1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     16  1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18  1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     19  1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     20  1.63   thorpej  *    must display the following acknowledgement:
     21  1.63   thorpej  *	This product includes software developed by the NetBSD
     22  1.63   thorpej  *	Foundation, Inc. and its contributors.
     23  1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.63   thorpej  *    contributors may be used to endorse or promote products derived
     25  1.63   thorpej  *    from this software without specific prior written permission.
     26  1.63   thorpej  *
     27  1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38  1.63   thorpej  */
     39  1.26       cgd 
     40  1.26       cgd /*-
     41  1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     43  1.26       cgd  * (c) UNIX System Laboratories, Inc.
     44  1.26       cgd  * All or some portions of this file are derived from material licensed
     45  1.26       cgd  * to the University of California by American Telephone and Telegraph
     46  1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     48  1.26       cgd  *
     49  1.26       cgd  * Redistribution and use in source and binary forms, with or without
     50  1.26       cgd  * modification, are permitted provided that the following conditions
     51  1.26       cgd  * are met:
     52  1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     53  1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     54  1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     55  1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     56  1.26       cgd  *    documentation and/or other materials provided with the distribution.
     57  1.26       cgd  * 3. All advertising materials mentioning features or use of this software
     58  1.26       cgd  *    must display the following acknowledgement:
     59  1.26       cgd  *	This product includes software developed by the University of
     60  1.26       cgd  *	California, Berkeley and its contributors.
     61  1.26       cgd  * 4. Neither the name of the University nor the names of its contributors
     62  1.26       cgd  *    may be used to endorse or promote products derived from this software
     63  1.26       cgd  *    without specific prior written permission.
     64  1.26       cgd  *
     65  1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  1.26       cgd  * SUCH DAMAGE.
     76  1.26       cgd  *
     77  1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78  1.26       cgd  */
     79  1.48       mrg 
     80  1.52  jonathan #include "opt_ddb.h"
     81  1.51   thorpej #include "opt_ktrace.h"
     82  1.82   thorpej #include "opt_lockdebug.h"
     83  1.83   thorpej #include "opt_multiprocessor.h"
     84  1.26       cgd 
     85  1.26       cgd #include <sys/param.h>
     86  1.26       cgd #include <sys/systm.h>
     87  1.68   thorpej #include <sys/callout.h>
     88  1.26       cgd #include <sys/proc.h>
     89  1.26       cgd #include <sys/kernel.h>
     90  1.26       cgd #include <sys/buf.h>
     91  1.26       cgd #include <sys/signalvar.h>
     92  1.26       cgd #include <sys/resourcevar.h>
     93  1.55      ross #include <sys/sched.h>
     94  1.47       mrg 
     95  1.47       mrg #include <uvm/uvm_extern.h>
     96  1.47       mrg 
     97  1.26       cgd #ifdef KTRACE
     98  1.26       cgd #include <sys/ktrace.h>
     99  1.26       cgd #endif
    100  1.26       cgd 
    101  1.26       cgd #include <machine/cpu.h>
    102  1.34  christos 
    103  1.26       cgd int	lbolt;			/* once a second sleep address */
    104  1.88  sommerfe int	rrticks;		/* number of hardclock ticks per roundrobin() */
    105  1.26       cgd 
    106  1.73   thorpej /*
    107  1.73   thorpej  * The global scheduler state.
    108  1.73   thorpej  */
    109  1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    110  1.73   thorpej __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    111  1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    112  1.73   thorpej 
    113  1.83   thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    114  1.84   thorpej #if defined(MULTIPROCESSOR)
    115  1.84   thorpej struct lock kernel_lock;
    116  1.84   thorpej #endif
    117  1.83   thorpej 
    118  1.77   thorpej void schedcpu(void *);
    119  1.77   thorpej void updatepri(struct proc *);
    120  1.77   thorpej void endtsleep(void *);
    121  1.34  christos 
    122  1.77   thorpej __inline void awaken(struct proc *);
    123  1.63   thorpej 
    124  1.68   thorpej struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    125  1.68   thorpej 
    126  1.26       cgd /*
    127  1.26       cgd  * Force switch among equal priority processes every 100ms.
    128  1.88  sommerfe  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    129  1.26       cgd  */
    130  1.26       cgd /* ARGSUSED */
    131  1.26       cgd void
    132  1.89  sommerfe roundrobin(struct cpu_info *ci)
    133  1.26       cgd {
    134  1.89  sommerfe 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    135  1.26       cgd 
    136  1.88  sommerfe 	spc->spc_rrticks = rrticks;
    137  1.88  sommerfe 
    138  1.69   thorpej 	if (curproc != NULL) {
    139  1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    140  1.69   thorpej 			/*
    141  1.69   thorpej 			 * The process has already been through a roundrobin
    142  1.69   thorpej 			 * without switching and may be hogging the CPU.
    143  1.69   thorpej 			 * Indicate that the process should yield.
    144  1.69   thorpej 			 */
    145  1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    146  1.69   thorpej 		} else
    147  1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    148  1.69   thorpej 	}
    149  1.87   thorpej 	need_resched(curcpu());
    150  1.26       cgd }
    151  1.26       cgd 
    152  1.26       cgd /*
    153  1.26       cgd  * Constants for digital decay and forget:
    154  1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    155  1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    156  1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    157  1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    158  1.26       cgd  *
    159  1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    160  1.26       cgd  *
    161  1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    162  1.26       cgd  * That is, the system wants to compute a value of decay such
    163  1.26       cgd  * that the following for loop:
    164  1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    165  1.26       cgd  * 		p_estcpu *= decay;
    166  1.26       cgd  * will compute
    167  1.26       cgd  * 	p_estcpu *= 0.1;
    168  1.26       cgd  * for all values of loadavg:
    169  1.26       cgd  *
    170  1.26       cgd  * Mathematically this loop can be expressed by saying:
    171  1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    172  1.26       cgd  *
    173  1.26       cgd  * The system computes decay as:
    174  1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    175  1.26       cgd  *
    176  1.26       cgd  * We wish to prove that the system's computation of decay
    177  1.26       cgd  * will always fulfill the equation:
    178  1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    179  1.26       cgd  *
    180  1.26       cgd  * If we compute b as:
    181  1.26       cgd  * 	b = 2 * loadavg
    182  1.26       cgd  * then
    183  1.26       cgd  * 	decay = b / (b + 1)
    184  1.26       cgd  *
    185  1.26       cgd  * We now need to prove two things:
    186  1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    187  1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    188  1.26       cgd  *
    189  1.26       cgd  * Facts:
    190  1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    191  1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    192  1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    193  1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    194  1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    195  1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    196  1.26       cgd  *         ln(.1) =~ -2.30
    197  1.26       cgd  *
    198  1.26       cgd  * Proof of (1):
    199  1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    200  1.26       cgd  *	solving for factor,
    201  1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    202  1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    203  1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    204  1.26       cgd  *
    205  1.26       cgd  * Proof of (2):
    206  1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    207  1.26       cgd  *	solving for power,
    208  1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    209  1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    210  1.26       cgd  *
    211  1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    212  1.26       cgd  *      loadav: 1       2       3       4
    213  1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    214  1.26       cgd  */
    215  1.26       cgd 
    216  1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    217  1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    218  1.26       cgd #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    219  1.26       cgd 
    220  1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    221  1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    222  1.26       cgd 
    223  1.26       cgd /*
    224  1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    225  1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    226  1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    227  1.26       cgd  *
    228  1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    229  1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    230  1.26       cgd  *
    231  1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    232  1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    233  1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    234  1.26       cgd  */
    235  1.26       cgd #define	CCPU_SHIFT	11
    236  1.26       cgd 
    237  1.26       cgd /*
    238  1.26       cgd  * Recompute process priorities, every hz ticks.
    239  1.26       cgd  */
    240  1.26       cgd /* ARGSUSED */
    241  1.26       cgd void
    242  1.77   thorpej schedcpu(void *arg)
    243  1.26       cgd {
    244  1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    245  1.71  augustss 	struct proc *p;
    246  1.83   thorpej 	int s, s1;
    247  1.71  augustss 	unsigned int newcpu;
    248  1.66      ross 	int clkhz;
    249  1.26       cgd 
    250  1.62   thorpej 	proclist_lock_read();
    251  1.27   mycroft 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    252  1.26       cgd 		/*
    253  1.26       cgd 		 * Increment time in/out of memory and sleep time
    254  1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    255  1.26       cgd 		 * (remember them?) overflow takes 45 days.
    256  1.26       cgd 		 */
    257  1.26       cgd 		p->p_swtime++;
    258  1.26       cgd 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    259  1.26       cgd 			p->p_slptime++;
    260  1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    261  1.26       cgd 		/*
    262  1.26       cgd 		 * If the process has slept the entire second,
    263  1.26       cgd 		 * stop recalculating its priority until it wakes up.
    264  1.26       cgd 		 */
    265  1.26       cgd 		if (p->p_slptime > 1)
    266  1.26       cgd 			continue;
    267  1.26       cgd 		s = splstatclock();	/* prevent state changes */
    268  1.26       cgd 		/*
    269  1.26       cgd 		 * p_pctcpu is only for ps.
    270  1.26       cgd 		 */
    271  1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    272  1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    273  1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    274  1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    275  1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    276  1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    277  1.26       cgd #else
    278  1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    279  1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    280  1.26       cgd #endif
    281  1.26       cgd 		p->p_cpticks = 0;
    282  1.55      ross 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    283  1.55      ross 		p->p_estcpu = newcpu;
    284  1.83   thorpej 		SCHED_LOCK(s1);
    285  1.26       cgd 		resetpriority(p);
    286  1.26       cgd 		if (p->p_priority >= PUSER) {
    287  1.72   thorpej 			if (p->p_stat == SRUN &&
    288  1.26       cgd 			    (p->p_flag & P_INMEM) &&
    289  1.26       cgd 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    290  1.43       cgd 				remrunqueue(p);
    291  1.26       cgd 				p->p_priority = p->p_usrpri;
    292  1.26       cgd 				setrunqueue(p);
    293  1.26       cgd 			} else
    294  1.26       cgd 				p->p_priority = p->p_usrpri;
    295  1.26       cgd 		}
    296  1.83   thorpej 		SCHED_UNLOCK(s1);
    297  1.26       cgd 		splx(s);
    298  1.26       cgd 	}
    299  1.61   thorpej 	proclist_unlock_read();
    300  1.47       mrg 	uvm_meter();
    301  1.67      fvdl 	wakeup((caddr_t)&lbolt);
    302  1.68   thorpej 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    303  1.26       cgd }
    304  1.26       cgd 
    305  1.26       cgd /*
    306  1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    307  1.26       cgd  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    308  1.26       cgd  * least six times the loadfactor will decay p_estcpu to zero.
    309  1.26       cgd  */
    310  1.26       cgd void
    311  1.77   thorpej updatepri(struct proc *p)
    312  1.26       cgd {
    313  1.83   thorpej 	unsigned int newcpu;
    314  1.83   thorpej 	fixpt_t loadfac;
    315  1.83   thorpej 
    316  1.83   thorpej 	SCHED_ASSERT_LOCKED();
    317  1.83   thorpej 
    318  1.83   thorpej 	newcpu = p->p_estcpu;
    319  1.83   thorpej 	loadfac = loadfactor(averunnable.ldavg[0]);
    320  1.26       cgd 
    321  1.26       cgd 	if (p->p_slptime > 5 * loadfac)
    322  1.26       cgd 		p->p_estcpu = 0;
    323  1.26       cgd 	else {
    324  1.26       cgd 		p->p_slptime--;	/* the first time was done in schedcpu */
    325  1.26       cgd 		while (newcpu && --p->p_slptime)
    326  1.26       cgd 			newcpu = (int) decay_cpu(loadfac, newcpu);
    327  1.55      ross 		p->p_estcpu = newcpu;
    328  1.26       cgd 	}
    329  1.26       cgd 	resetpriority(p);
    330  1.26       cgd }
    331  1.26       cgd 
    332  1.26       cgd /*
    333  1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    334  1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    335  1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    336  1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    337  1.26       cgd  * This priority will typically be 0, or the lowest priority
    338  1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    339  1.26       cgd  * higher to block network software interrupts after panics.
    340  1.26       cgd  */
    341  1.26       cgd int safepri;
    342  1.26       cgd 
    343  1.26       cgd /*
    344  1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    345  1.26       cgd  * performed on the specified identifier.  The process will then be made
    346  1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    347  1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    348  1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    349  1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    350  1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    351  1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    352  1.26       cgd  * call should be interrupted by the signal (return EINTR).
    353  1.77   thorpej  *
    354  1.77   thorpej  * The interlock is held until the scheduler_slock is held.  The
    355  1.77   thorpej  * interlock will be locked before returning back to the caller
    356  1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    357  1.77   thorpej  * interlock will always be unlocked upon return.
    358  1.26       cgd  */
    359  1.26       cgd int
    360  1.77   thorpej ltsleep(void *ident, int priority, const char *wmesg, int timo,
    361  1.77   thorpej     __volatile struct simplelock *interlock)
    362  1.26       cgd {
    363  1.71  augustss 	struct proc *p = curproc;
    364  1.71  augustss 	struct slpque *qp;
    365  1.77   thorpej 	int sig, s;
    366  1.77   thorpej 	int catch = priority & PCATCH;
    367  1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    368  1.26       cgd 
    369  1.77   thorpej 	/*
    370  1.77   thorpej 	 * XXXSMP
    371  1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    372  1.77   thorpej 	 * thing to do here really is.
    373  1.78  sommerfe 	 * Note that not sleeping if ltsleep is called with curproc == NULL
    374  1.78  sommerfe 	 * in the shutdown case is disgusting but partly necessary given
    375  1.78  sommerfe 	 * how shutdown (barely) works.
    376  1.77   thorpej 	 */
    377  1.78  sommerfe 	if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
    378  1.26       cgd 		/*
    379  1.26       cgd 		 * After a panic, or during autoconfiguration,
    380  1.26       cgd 		 * just give interrupts a chance, then just return;
    381  1.26       cgd 		 * don't run any other procs or panic below,
    382  1.26       cgd 		 * in case this is the idle process and already asleep.
    383  1.26       cgd 		 */
    384  1.42       cgd 		s = splhigh();
    385  1.26       cgd 		splx(safepri);
    386  1.26       cgd 		splx(s);
    387  1.77   thorpej 		if (interlock != NULL && relock == 0)
    388  1.77   thorpej 			simple_unlock(interlock);
    389  1.26       cgd 		return (0);
    390  1.26       cgd 	}
    391  1.78  sommerfe 
    392  1.42       cgd 
    393  1.42       cgd #ifdef KTRACE
    394  1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    395  1.74  sommerfe 		ktrcsw(p, 1, 0);
    396  1.42       cgd #endif
    397  1.77   thorpej 
    398  1.83   thorpej 	SCHED_LOCK(s);
    399  1.42       cgd 
    400  1.26       cgd #ifdef DIAGNOSTIC
    401  1.64   thorpej 	if (ident == NULL)
    402  1.77   thorpej 		panic("ltsleep: ident == NULL");
    403  1.72   thorpej 	if (p->p_stat != SONPROC)
    404  1.77   thorpej 		panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
    405  1.64   thorpej 	if (p->p_back != NULL)
    406  1.77   thorpej 		panic("ltsleep: p_back != NULL");
    407  1.26       cgd #endif
    408  1.77   thorpej 
    409  1.26       cgd 	p->p_wchan = ident;
    410  1.26       cgd 	p->p_wmesg = wmesg;
    411  1.26       cgd 	p->p_slptime = 0;
    412  1.26       cgd 	p->p_priority = priority & PRIMASK;
    413  1.77   thorpej 
    414  1.73   thorpej 	qp = SLPQUE(ident);
    415  1.26       cgd 	if (qp->sq_head == 0)
    416  1.26       cgd 		qp->sq_head = p;
    417  1.26       cgd 	else
    418  1.26       cgd 		*qp->sq_tailp = p;
    419  1.26       cgd 	*(qp->sq_tailp = &p->p_forw) = 0;
    420  1.77   thorpej 
    421  1.26       cgd 	if (timo)
    422  1.68   thorpej 		callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
    423  1.77   thorpej 
    424  1.77   thorpej 	/*
    425  1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    426  1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    427  1.77   thorpej 	 * we do the switch.
    428  1.77   thorpej 	 *
    429  1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    430  1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    431  1.77   thorpej 	 * data structure for the sleep queues at some point.
    432  1.77   thorpej 	 */
    433  1.77   thorpej 	if (interlock != NULL)
    434  1.77   thorpej 		simple_unlock(interlock);
    435  1.77   thorpej 
    436  1.26       cgd 	/*
    437  1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    438  1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    439  1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    440  1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    441  1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    442  1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    443  1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    444  1.26       cgd 	 */
    445  1.26       cgd 	if (catch) {
    446  1.26       cgd 		p->p_flag |= P_SINTR;
    447  1.34  christos 		if ((sig = CURSIG(p)) != 0) {
    448  1.77   thorpej 			if (p->p_wchan != NULL)
    449  1.26       cgd 				unsleep(p);
    450  1.72   thorpej 			p->p_stat = SONPROC;
    451  1.83   thorpej 			SCHED_UNLOCK(s);
    452  1.26       cgd 			goto resume;
    453  1.26       cgd 		}
    454  1.77   thorpej 		if (p->p_wchan == NULL) {
    455  1.26       cgd 			catch = 0;
    456  1.83   thorpej 			SCHED_UNLOCK(s);
    457  1.26       cgd 			goto resume;
    458  1.26       cgd 		}
    459  1.26       cgd 	} else
    460  1.26       cgd 		sig = 0;
    461  1.26       cgd 	p->p_stat = SSLEEP;
    462  1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    463  1.77   thorpej 
    464  1.83   thorpej 	SCHED_ASSERT_LOCKED();
    465  1.74  sommerfe 	mi_switch(p);
    466  1.83   thorpej 
    467  1.26       cgd #ifdef	DDB
    468  1.26       cgd 	/* handy breakpoint location after process "wakes" */
    469  1.26       cgd 	asm(".globl bpendtsleep ; bpendtsleep:");
    470  1.26       cgd #endif
    471  1.77   thorpej 
    472  1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    473  1.83   thorpej 	splx(s);
    474  1.83   thorpej 
    475  1.77   thorpej  resume:
    476  1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    477  1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    478  1.76   thorpej 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
    479  1.83   thorpej 
    480  1.26       cgd 	p->p_flag &= ~P_SINTR;
    481  1.26       cgd 	if (p->p_flag & P_TIMEOUT) {
    482  1.26       cgd 		p->p_flag &= ~P_TIMEOUT;
    483  1.26       cgd 		if (sig == 0) {
    484  1.26       cgd #ifdef KTRACE
    485  1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    486  1.74  sommerfe 				ktrcsw(p, 0, 0);
    487  1.26       cgd #endif
    488  1.77   thorpej 			if (relock && interlock != NULL)
    489  1.77   thorpej 				simple_lock(interlock);
    490  1.26       cgd 			return (EWOULDBLOCK);
    491  1.26       cgd 		}
    492  1.26       cgd 	} else if (timo)
    493  1.68   thorpej 		callout_stop(&p->p_tsleep_ch);
    494  1.34  christos 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    495  1.26       cgd #ifdef KTRACE
    496  1.26       cgd 		if (KTRPOINT(p, KTR_CSW))
    497  1.74  sommerfe 			ktrcsw(p, 0, 0);
    498  1.26       cgd #endif
    499  1.77   thorpej 		if (relock && interlock != NULL)
    500  1.77   thorpej 			simple_lock(interlock);
    501  1.98  jdolecek 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    502  1.26       cgd 			return (EINTR);
    503  1.26       cgd 		return (ERESTART);
    504  1.26       cgd 	}
    505  1.26       cgd #ifdef KTRACE
    506  1.26       cgd 	if (KTRPOINT(p, KTR_CSW))
    507  1.74  sommerfe 		ktrcsw(p, 0, 0);
    508  1.26       cgd #endif
    509  1.77   thorpej 	if (relock && interlock != NULL)
    510  1.77   thorpej 		simple_lock(interlock);
    511  1.26       cgd 	return (0);
    512  1.26       cgd }
    513  1.26       cgd 
    514  1.26       cgd /*
    515  1.26       cgd  * Implement timeout for tsleep.
    516  1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    517  1.26       cgd  * set timeout flag and undo the sleep.  If proc
    518  1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    519  1.26       cgd  */
    520  1.26       cgd void
    521  1.77   thorpej endtsleep(void *arg)
    522  1.26       cgd {
    523  1.71  augustss 	struct proc *p;
    524  1.26       cgd 	int s;
    525  1.26       cgd 
    526  1.26       cgd 	p = (struct proc *)arg;
    527  1.83   thorpej 
    528  1.83   thorpej 	SCHED_LOCK(s);
    529  1.26       cgd 	if (p->p_wchan) {
    530  1.26       cgd 		if (p->p_stat == SSLEEP)
    531  1.26       cgd 			setrunnable(p);
    532  1.26       cgd 		else
    533  1.26       cgd 			unsleep(p);
    534  1.26       cgd 		p->p_flag |= P_TIMEOUT;
    535  1.26       cgd 	}
    536  1.83   thorpej 	SCHED_UNLOCK(s);
    537  1.26       cgd }
    538  1.26       cgd 
    539  1.26       cgd /*
    540  1.26       cgd  * Remove a process from its wait queue
    541  1.26       cgd  */
    542  1.26       cgd void
    543  1.77   thorpej unsleep(struct proc *p)
    544  1.26       cgd {
    545  1.71  augustss 	struct slpque *qp;
    546  1.71  augustss 	struct proc **hp;
    547  1.26       cgd 
    548  1.83   thorpej 	SCHED_ASSERT_LOCKED();
    549  1.83   thorpej 
    550  1.26       cgd 	if (p->p_wchan) {
    551  1.73   thorpej 		hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
    552  1.26       cgd 		while (*hp != p)
    553  1.26       cgd 			hp = &(*hp)->p_forw;
    554  1.26       cgd 		*hp = p->p_forw;
    555  1.26       cgd 		if (qp->sq_tailp == &p->p_forw)
    556  1.26       cgd 			qp->sq_tailp = hp;
    557  1.26       cgd 		p->p_wchan = 0;
    558  1.26       cgd 	}
    559  1.26       cgd }
    560  1.26       cgd 
    561  1.26       cgd /*
    562  1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    563  1.63   thorpej  */
    564  1.63   thorpej __inline void
    565  1.77   thorpej awaken(struct proc *p)
    566  1.63   thorpej {
    567  1.63   thorpej 
    568  1.83   thorpej 	SCHED_ASSERT_LOCKED();
    569  1.83   thorpej 
    570  1.63   thorpej 	if (p->p_slptime > 1)
    571  1.63   thorpej 		updatepri(p);
    572  1.63   thorpej 	p->p_slptime = 0;
    573  1.93    bouyer 	p->p_stat = SRUN;
    574  1.93    bouyer 
    575  1.93    bouyer 	/*
    576  1.93    bouyer 	 * Since curpriority is a user priority, p->p_priority
    577  1.93    bouyer 	 * is always better than curpriority.
    578  1.93    bouyer 	 */
    579  1.93    bouyer 	if (p->p_flag & P_INMEM) {
    580  1.93    bouyer 		setrunqueue(p);
    581  1.93    bouyer 		KASSERT(p->p_cpu != NULL);
    582  1.93    bouyer 		need_resched(p->p_cpu);
    583  1.93    bouyer 	} else
    584  1.93    bouyer 		sched_wakeup(&proc0);
    585  1.83   thorpej }
    586  1.83   thorpej 
    587  1.83   thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    588  1.83   thorpej void
    589  1.83   thorpej sched_unlock_idle(void)
    590  1.83   thorpej {
    591  1.83   thorpej 
    592  1.83   thorpej 	simple_unlock(&sched_lock);
    593  1.63   thorpej }
    594  1.63   thorpej 
    595  1.83   thorpej void
    596  1.83   thorpej sched_lock_idle(void)
    597  1.83   thorpej {
    598  1.83   thorpej 
    599  1.83   thorpej 	simple_lock(&sched_lock);
    600  1.83   thorpej }
    601  1.83   thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
    602  1.83   thorpej 
    603  1.63   thorpej /*
    604  1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    605  1.26       cgd  */
    606  1.83   thorpej 
    607  1.26       cgd void
    608  1.77   thorpej wakeup(void *ident)
    609  1.26       cgd {
    610  1.83   thorpej 	int s;
    611  1.83   thorpej 
    612  1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    613  1.83   thorpej 
    614  1.83   thorpej 	SCHED_LOCK(s);
    615  1.83   thorpej 	sched_wakeup(ident);
    616  1.83   thorpej 	SCHED_UNLOCK(s);
    617  1.83   thorpej }
    618  1.83   thorpej 
    619  1.83   thorpej void
    620  1.83   thorpej sched_wakeup(void *ident)
    621  1.83   thorpej {
    622  1.71  augustss 	struct slpque *qp;
    623  1.71  augustss 	struct proc *p, **q;
    624  1.26       cgd 
    625  1.83   thorpej 	SCHED_ASSERT_LOCKED();
    626  1.77   thorpej 
    627  1.73   thorpej 	qp = SLPQUE(ident);
    628  1.77   thorpej  restart:
    629  1.34  christos 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    630  1.26       cgd #ifdef DIAGNOSTIC
    631  1.34  christos 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    632  1.26       cgd 			panic("wakeup");
    633  1.26       cgd #endif
    634  1.26       cgd 		if (p->p_wchan == ident) {
    635  1.26       cgd 			p->p_wchan = 0;
    636  1.26       cgd 			*q = p->p_forw;
    637  1.26       cgd 			if (qp->sq_tailp == &p->p_forw)
    638  1.26       cgd 				qp->sq_tailp = q;
    639  1.26       cgd 			if (p->p_stat == SSLEEP) {
    640  1.63   thorpej 				awaken(p);
    641  1.26       cgd 				goto restart;
    642  1.26       cgd 			}
    643  1.26       cgd 		} else
    644  1.26       cgd 			q = &p->p_forw;
    645  1.63   thorpej 	}
    646  1.63   thorpej }
    647  1.63   thorpej 
    648  1.63   thorpej /*
    649  1.63   thorpej  * Make the highest priority process first in line on the specified
    650  1.63   thorpej  * identifier runnable.
    651  1.63   thorpej  */
    652  1.63   thorpej void
    653  1.77   thorpej wakeup_one(void *ident)
    654  1.63   thorpej {
    655  1.63   thorpej 	struct slpque *qp;
    656  1.63   thorpej 	struct proc *p, **q;
    657  1.63   thorpej 	struct proc *best_sleepp, **best_sleepq;
    658  1.63   thorpej 	struct proc *best_stopp, **best_stopq;
    659  1.63   thorpej 	int s;
    660  1.63   thorpej 
    661  1.63   thorpej 	best_sleepp = best_stopp = NULL;
    662  1.63   thorpej 	best_sleepq = best_stopq = NULL;
    663  1.63   thorpej 
    664  1.83   thorpej 	SCHED_LOCK(s);
    665  1.77   thorpej 
    666  1.73   thorpej 	qp = SLPQUE(ident);
    667  1.77   thorpej 
    668  1.63   thorpej 	for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
    669  1.63   thorpej #ifdef DIAGNOSTIC
    670  1.63   thorpej 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    671  1.63   thorpej 			panic("wakeup_one");
    672  1.63   thorpej #endif
    673  1.63   thorpej 		if (p->p_wchan == ident) {
    674  1.63   thorpej 			if (p->p_stat == SSLEEP) {
    675  1.63   thorpej 				if (best_sleepp == NULL ||
    676  1.63   thorpej 				    p->p_priority < best_sleepp->p_priority) {
    677  1.63   thorpej 					best_sleepp = p;
    678  1.63   thorpej 					best_sleepq = q;
    679  1.63   thorpej 				}
    680  1.63   thorpej 			} else {
    681  1.63   thorpej 				if (best_stopp == NULL ||
    682  1.63   thorpej 				    p->p_priority < best_stopp->p_priority) {
    683  1.63   thorpej 					best_stopp = p;
    684  1.63   thorpej 					best_stopq = q;
    685  1.63   thorpej 				}
    686  1.63   thorpej 			}
    687  1.63   thorpej 		}
    688  1.63   thorpej 	}
    689  1.63   thorpej 
    690  1.63   thorpej 	/*
    691  1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    692  1.63   thorpej 	 * process.
    693  1.63   thorpej 	 */
    694  1.63   thorpej 	if (best_sleepp != NULL) {
    695  1.63   thorpej 		p = best_sleepp;
    696  1.63   thorpej 		q = best_sleepq;
    697  1.63   thorpej 	} else {
    698  1.63   thorpej 		p = best_stopp;
    699  1.63   thorpej 		q = best_stopq;
    700  1.63   thorpej 	}
    701  1.63   thorpej 
    702  1.63   thorpej 	if (p != NULL) {
    703  1.77   thorpej 		p->p_wchan = NULL;
    704  1.63   thorpej 		*q = p->p_forw;
    705  1.63   thorpej 		if (qp->sq_tailp == &p->p_forw)
    706  1.63   thorpej 			qp->sq_tailp = q;
    707  1.63   thorpej 		if (p->p_stat == SSLEEP)
    708  1.63   thorpej 			awaken(p);
    709  1.26       cgd 	}
    710  1.83   thorpej 	SCHED_UNLOCK(s);
    711  1.26       cgd }
    712  1.26       cgd 
    713  1.26       cgd /*
    714  1.69   thorpej  * General yield call.  Puts the current process back on its run queue and
    715  1.69   thorpej  * performs a voluntary context switch.
    716  1.69   thorpej  */
    717  1.69   thorpej void
    718  1.77   thorpej yield(void)
    719  1.69   thorpej {
    720  1.69   thorpej 	struct proc *p = curproc;
    721  1.69   thorpej 	int s;
    722  1.69   thorpej 
    723  1.83   thorpej 	SCHED_LOCK(s);
    724  1.69   thorpej 	p->p_priority = p->p_usrpri;
    725  1.93    bouyer 	p->p_stat = SRUN;
    726  1.93    bouyer 	setrunqueue(p);
    727  1.69   thorpej 	p->p_stats->p_ru.ru_nvcsw++;
    728  1.74  sommerfe 	mi_switch(p);
    729  1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    730  1.69   thorpej 	splx(s);
    731  1.69   thorpej }
    732  1.69   thorpej 
    733  1.69   thorpej /*
    734  1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    735  1.69   thorpej  * and performs an involuntary context switch.  If a process is supplied,
    736  1.69   thorpej  * we switch to that process.  Otherwise, we use the normal process selection
    737  1.69   thorpej  * criteria.
    738  1.69   thorpej  */
    739  1.69   thorpej void
    740  1.77   thorpej preempt(struct proc *newp)
    741  1.69   thorpej {
    742  1.69   thorpej 	struct proc *p = curproc;
    743  1.69   thorpej 	int s;
    744  1.69   thorpej 
    745  1.69   thorpej 	/*
    746  1.69   thorpej 	 * XXX Switching to a specific process is not supported yet.
    747  1.69   thorpej 	 */
    748  1.69   thorpej 	if (newp != NULL)
    749  1.69   thorpej 		panic("preempt: cpu_preempt not yet implemented");
    750  1.69   thorpej 
    751  1.83   thorpej 	SCHED_LOCK(s);
    752  1.69   thorpej 	p->p_priority = p->p_usrpri;
    753  1.93    bouyer 	p->p_stat = SRUN;
    754  1.93    bouyer 	setrunqueue(p);
    755  1.69   thorpej 	p->p_stats->p_ru.ru_nivcsw++;
    756  1.74  sommerfe 	mi_switch(p);
    757  1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    758  1.69   thorpej 	splx(s);
    759  1.69   thorpej }
    760  1.69   thorpej 
    761  1.69   thorpej /*
    762  1.72   thorpej  * The machine independent parts of context switch.
    763  1.86   thorpej  * Must be called at splsched() (no higher!) and with
    764  1.86   thorpej  * the sched_lock held.
    765  1.26       cgd  */
    766  1.26       cgd void
    767  1.77   thorpej mi_switch(struct proc *p)
    768  1.26       cgd {
    769  1.76   thorpej 	struct schedstate_percpu *spc;
    770  1.71  augustss 	struct rlimit *rlim;
    771  1.71  augustss 	long s, u;
    772  1.26       cgd 	struct timeval tv;
    773  1.85  sommerfe #if defined(MULTIPROCESSOR)
    774  1.85  sommerfe 	int hold_count;
    775  1.85  sommerfe #endif
    776  1.26       cgd 
    777  1.83   thorpej 	SCHED_ASSERT_LOCKED();
    778  1.83   thorpej 
    779  1.85  sommerfe #if defined(MULTIPROCESSOR)
    780  1.90  sommerfe 	/*
    781  1.90  sommerfe 	 * Release the kernel_lock, as we are about to yield the CPU.
    782  1.90  sommerfe 	 * The scheduler lock is still held until cpu_switch()
    783  1.90  sommerfe 	 * selects a new process and removes it from the run queue.
    784  1.90  sommerfe 	 */
    785  1.90  sommerfe 	if (p->p_flag & P_BIGLOCK)
    786  1.90  sommerfe 		hold_count = spinlock_release_all(&kernel_lock);
    787  1.85  sommerfe #endif
    788  1.85  sommerfe 
    789  1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    790  1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    791  1.76   thorpej 
    792  1.76   thorpej 	spc = &p->p_cpu->ci_schedstate;
    793  1.76   thorpej 
    794  1.82   thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    795  1.82   thorpej 	spinlock_switchcheck();
    796  1.82   thorpej #endif
    797  1.54       chs #ifdef LOCKDEBUG
    798  1.81   thorpej 	simple_lock_switchcheck();
    799  1.50      fvdl #endif
    800  1.81   thorpej 
    801  1.26       cgd 	/*
    802  1.26       cgd 	 * Compute the amount of time during which the current
    803  1.26       cgd 	 * process was running, and add that to its total so far.
    804  1.26       cgd 	 */
    805  1.26       cgd 	microtime(&tv);
    806  1.73   thorpej 	u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    807  1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    808  1.26       cgd 	if (u < 0) {
    809  1.26       cgd 		u += 1000000;
    810  1.26       cgd 		s--;
    811  1.26       cgd 	} else if (u >= 1000000) {
    812  1.26       cgd 		u -= 1000000;
    813  1.26       cgd 		s++;
    814  1.26       cgd 	}
    815  1.26       cgd 	p->p_rtime.tv_usec = u;
    816  1.26       cgd 	p->p_rtime.tv_sec = s;
    817  1.26       cgd 
    818  1.26       cgd 	/*
    819  1.26       cgd 	 * Check if the process exceeds its cpu resource allocation.
    820  1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    821  1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    822  1.26       cgd 	 */
    823  1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    824  1.26       cgd 	if (s >= rlim->rlim_cur) {
    825  1.26       cgd 		if (s >= rlim->rlim_max)
    826  1.26       cgd 			psignal(p, SIGKILL);
    827  1.26       cgd 		else {
    828  1.26       cgd 			psignal(p, SIGXCPU);
    829  1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    830  1.26       cgd 				rlim->rlim_cur += 5;
    831  1.26       cgd 		}
    832  1.26       cgd 	}
    833  1.77   thorpej 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    834  1.77   thorpej 	    p->p_nice == NZERO) {
    835  1.39        ws 		p->p_nice = autoniceval + NZERO;
    836  1.26       cgd 		resetpriority(p);
    837  1.26       cgd 	}
    838  1.69   thorpej 
    839  1.69   thorpej 	/*
    840  1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    841  1.69   thorpej 	 * scheduling flags.
    842  1.69   thorpej 	 */
    843  1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    844  1.26       cgd 
    845  1.26       cgd 	/*
    846  1.76   thorpej 	 * Pick a new current process and switch to it.  When we
    847  1.76   thorpej 	 * run again, we'll return back here.
    848  1.26       cgd 	 */
    849  1.47       mrg 	uvmexp.swtch++;
    850  1.26       cgd 	cpu_switch(p);
    851  1.76   thorpej 
    852  1.76   thorpej 	/*
    853  1.83   thorpej 	 * Make sure that MD code released the scheduler lock before
    854  1.83   thorpej 	 * resuming us.
    855  1.83   thorpej 	 */
    856  1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    857  1.83   thorpej 
    858  1.83   thorpej 	/*
    859  1.76   thorpej 	 * We're running again; record our new start time.  We might
    860  1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
    861  1.76   thorpej 	 * schedstate_percpu pointer.
    862  1.76   thorpej 	 */
    863  1.76   thorpej 	KDASSERT(p->p_cpu != NULL);
    864  1.76   thorpej 	KDASSERT(p->p_cpu == curcpu());
    865  1.76   thorpej 	microtime(&p->p_cpu->ci_schedstate.spc_runtime);
    866  1.85  sommerfe 
    867  1.85  sommerfe #if defined(MULTIPROCESSOR)
    868  1.90  sommerfe 	/*
    869  1.90  sommerfe 	 * Reacquire the kernel_lock now.  We do this after we've
    870  1.90  sommerfe 	 * released the scheduler lock to avoid deadlock, and before
    871  1.90  sommerfe 	 * we reacquire the interlock.
    872  1.90  sommerfe 	 */
    873  1.90  sommerfe 	if (p->p_flag & P_BIGLOCK)
    874  1.90  sommerfe 		spinlock_acquire_count(&kernel_lock, hold_count);
    875  1.85  sommerfe #endif
    876  1.26       cgd }
    877  1.26       cgd 
    878  1.26       cgd /*
    879  1.26       cgd  * Initialize the (doubly-linked) run queues
    880  1.26       cgd  * to be empty.
    881  1.26       cgd  */
    882  1.26       cgd void
    883  1.26       cgd rqinit()
    884  1.26       cgd {
    885  1.71  augustss 	int i;
    886  1.26       cgd 
    887  1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
    888  1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    889  1.73   thorpej 		    (struct proc *)&sched_qs[i];
    890  1.26       cgd }
    891  1.26       cgd 
    892  1.26       cgd /*
    893  1.26       cgd  * Change process state to be runnable,
    894  1.26       cgd  * placing it on the run queue if it is in memory,
    895  1.26       cgd  * and awakening the swapper if it isn't in memory.
    896  1.26       cgd  */
    897  1.26       cgd void
    898  1.77   thorpej setrunnable(struct proc *p)
    899  1.26       cgd {
    900  1.26       cgd 
    901  1.83   thorpej 	SCHED_ASSERT_LOCKED();
    902  1.83   thorpej 
    903  1.26       cgd 	switch (p->p_stat) {
    904  1.26       cgd 	case 0:
    905  1.26       cgd 	case SRUN:
    906  1.72   thorpej 	case SONPROC:
    907  1.26       cgd 	case SZOMB:
    908  1.60   thorpej 	case SDEAD:
    909  1.26       cgd 	default:
    910  1.26       cgd 		panic("setrunnable");
    911  1.26       cgd 	case SSTOP:
    912  1.33   mycroft 		/*
    913  1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    914  1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    915  1.33   mycroft 		 */
    916  1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    917  1.99  jdolecek 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
    918  1.99  jdolecek 			p->p_sigctx.ps_sigcheck = 1;
    919  1.53   mycroft 		}
    920  1.26       cgd 	case SSLEEP:
    921  1.26       cgd 		unsleep(p);		/* e.g. when sending signals */
    922  1.26       cgd 		break;
    923  1.26       cgd 
    924  1.26       cgd 	case SIDL:
    925  1.26       cgd 		break;
    926  1.26       cgd 	}
    927  1.93    bouyer 	p->p_stat = SRUN;
    928  1.93    bouyer 	if (p->p_flag & P_INMEM)
    929  1.93    bouyer 		setrunqueue(p);
    930  1.93    bouyer 
    931  1.26       cgd 	if (p->p_slptime > 1)
    932  1.26       cgd 		updatepri(p);
    933  1.26       cgd 	p->p_slptime = 0;
    934  1.26       cgd 	if ((p->p_flag & P_INMEM) == 0)
    935  1.83   thorpej 		sched_wakeup((caddr_t)&proc0);
    936  1.76   thorpej 	else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
    937  1.76   thorpej 		/*
    938  1.76   thorpej 		 * XXXSMP
    939  1.87   thorpej 		 * This is not exactly right.  Since p->p_cpu persists
    940  1.87   thorpej 		 * across a context switch, this gives us some sort
    941  1.87   thorpej 		 * of processor affinity.  But we need to figure out
    942  1.87   thorpej 		 * at what point it's better to reschedule on a different
    943  1.87   thorpej 		 * CPU than the last one.
    944  1.76   thorpej 		 */
    945  1.87   thorpej 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    946  1.76   thorpej 	}
    947  1.26       cgd }
    948  1.26       cgd 
    949  1.26       cgd /*
    950  1.26       cgd  * Compute the priority of a process when running in user mode.
    951  1.26       cgd  * Arrange to reschedule if the resulting priority is better
    952  1.26       cgd  * than that of the current process.
    953  1.26       cgd  */
    954  1.26       cgd void
    955  1.77   thorpej resetpriority(struct proc *p)
    956  1.26       cgd {
    957  1.71  augustss 	unsigned int newpriority;
    958  1.26       cgd 
    959  1.83   thorpej 	SCHED_ASSERT_LOCKED();
    960  1.83   thorpej 
    961  1.55      ross 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
    962  1.26       cgd 	newpriority = min(newpriority, MAXPRI);
    963  1.26       cgd 	p->p_usrpri = newpriority;
    964  1.76   thorpej 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
    965  1.76   thorpej 		/*
    966  1.76   thorpej 		 * XXXSMP
    967  1.76   thorpej 		 * Same applies as in setrunnable() above.
    968  1.76   thorpej 		 */
    969  1.87   thorpej 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    970  1.76   thorpej 	}
    971  1.55      ross }
    972  1.55      ross 
    973  1.55      ross /*
    974  1.56      ross  * We adjust the priority of the current process.  The priority of a process
    975  1.56      ross  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
    976  1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
    977  1.56      ross  * will compute a different value each time p_estcpu increases. This can
    978  1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    979  1.56      ross  * queue will not change.  The cpu usage estimator ramps up quite quickly
    980  1.56      ross  * when the process is running (linearly), and decays away exponentially, at
    981  1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
    982  1.80   nathanw  * principle is that the system will 90% forget that the process used a lot
    983  1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    984  1.56      ross  * processes which haven't run much recently, and to round-robin among other
    985  1.56      ross  * processes.
    986  1.55      ross  */
    987  1.55      ross 
    988  1.55      ross void
    989  1.77   thorpej schedclock(struct proc *p)
    990  1.55      ross {
    991  1.83   thorpej 	int s;
    992  1.77   thorpej 
    993  1.55      ross 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
    994  1.83   thorpej 
    995  1.83   thorpej 	SCHED_LOCK(s);
    996  1.55      ross 	resetpriority(p);
    997  1.83   thorpej 	SCHED_UNLOCK(s);
    998  1.83   thorpej 
    999  1.55      ross 	if (p->p_priority >= PUSER)
   1000  1.55      ross 		p->p_priority = p->p_usrpri;
   1001  1.26       cgd }
   1002  1.94    bouyer 
   1003  1.94    bouyer void
   1004  1.94    bouyer suspendsched()
   1005  1.94    bouyer {
   1006  1.97     enami 	struct proc *p;
   1007  1.97     enami 	int s;
   1008  1.94    bouyer 
   1009  1.94    bouyer 	/*
   1010  1.97     enami 	 * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
   1011  1.94    bouyer 	 */
   1012  1.95   thorpej 	proclist_lock_read();
   1013  1.95   thorpej 	SCHED_LOCK(s);
   1014  1.95   thorpej 	for (p = LIST_FIRST(&allproc); p != NULL; p = LIST_NEXT(p, p_list)) {
   1015  1.97     enami 		if ((p->p_flag & P_SYSTEM) != 0)
   1016  1.94    bouyer 			continue;
   1017  1.97     enami 		switch (p->p_stat) {
   1018  1.97     enami 		case SRUN:
   1019  1.97     enami 			if ((p->p_flag & P_INMEM) != 0)
   1020  1.97     enami 				remrunqueue(p);
   1021  1.97     enami 			/* FALLTHROUGH */
   1022  1.97     enami 		case SSLEEP:
   1023  1.97     enami 			p->p_stat = SSTOP;
   1024  1.97     enami 			break;
   1025  1.97     enami 		case SONPROC:
   1026  1.97     enami 			/*
   1027  1.97     enami 			 * XXX SMP: we need to deal with processes on
   1028  1.97     enami 			 * others CPU !
   1029  1.97     enami 			 */
   1030  1.97     enami 			break;
   1031  1.97     enami 		default:
   1032  1.97     enami 			break;
   1033  1.94    bouyer 		}
   1034  1.94    bouyer 	}
   1035  1.94    bouyer 	SCHED_UNLOCK(s);
   1036  1.97     enami 	proclist_unlock_read();
   1037  1.94    bouyer }
   1038