Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.1.1.2
      1 /*-
      2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  * (c) UNIX System Laboratories, Inc.
      5  * All or some portions of this file are derived from material licensed
      6  * to the University of California by American Telephone and Telegraph
      7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
      8  * the permission of UNIX System Laboratories, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  *
     38  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
     39  */
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/proc.h>
     44 #include <sys/kernel.h>
     45 #include <sys/buf.h>
     46 #include <sys/signalvar.h>
     47 #include <sys/resourcevar.h>
     48 #include <sys/vmmeter.h>
     49 #ifdef KTRACE
     50 #include <sys/ktrace.h>
     51 #endif
     52 
     53 #include <machine/cpu.h>
     54 
     55 u_char	curpriority;		/* usrpri of curproc */
     56 int	lbolt;			/* once a second sleep address */
     57 
     58 /*
     59  * Force switch among equal priority processes every 100ms.
     60  */
     61 /* ARGSUSED */
     62 void
     63 roundrobin(arg)
     64 	void *arg;
     65 {
     66 
     67 	need_resched();
     68 	timeout(roundrobin, NULL, hz / 10);
     69 }
     70 
     71 /*
     72  * Constants for digital decay and forget:
     73  *	90% of (p_estcpu) usage in 5 * loadav time
     74  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
     75  *          Note that, as ps(1) mentions, this can let percentages
     76  *          total over 100% (I've seen 137.9% for 3 processes).
     77  *
     78  * Note that hardclock updates p_estcpu and p_cpticks independently.
     79  *
     80  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
     81  * That is, the system wants to compute a value of decay such
     82  * that the following for loop:
     83  * 	for (i = 0; i < (5 * loadavg); i++)
     84  * 		p_estcpu *= decay;
     85  * will compute
     86  * 	p_estcpu *= 0.1;
     87  * for all values of loadavg:
     88  *
     89  * Mathematically this loop can be expressed by saying:
     90  * 	decay ** (5 * loadavg) ~= .1
     91  *
     92  * The system computes decay as:
     93  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
     94  *
     95  * We wish to prove that the system's computation of decay
     96  * will always fulfill the equation:
     97  * 	decay ** (5 * loadavg) ~= .1
     98  *
     99  * If we compute b as:
    100  * 	b = 2 * loadavg
    101  * then
    102  * 	decay = b / (b + 1)
    103  *
    104  * We now need to prove two things:
    105  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    106  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    107  *
    108  * Facts:
    109  *         For x close to zero, exp(x) =~ 1 + x, since
    110  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    111  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    112  *         For x close to zero, ln(1+x) =~ x, since
    113  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    114  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    115  *         ln(.1) =~ -2.30
    116  *
    117  * Proof of (1):
    118  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    119  *	solving for factor,
    120  *      ln(factor) =~ (-2.30/5*loadav), or
    121  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    122  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    123  *
    124  * Proof of (2):
    125  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    126  *	solving for power,
    127  *      power*ln(b/(b+1)) =~ -2.30, or
    128  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    129  *
    130  * Actual power values for the implemented algorithm are as follows:
    131  *      loadav: 1       2       3       4
    132  *      power:  5.68    10.32   14.94   19.55
    133  */
    134 
    135 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    136 #define	loadfactor(loadav)	(2 * (loadav))
    137 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    138 
    139 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    140 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    141 
    142 /*
    143  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    144  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    145  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    146  *
    147  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    148  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    149  *
    150  * If you dont want to bother with the faster/more-accurate formula, you
    151  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    152  * (more general) method of calculating the %age of CPU used by a process.
    153  */
    154 #define	CCPU_SHIFT	11
    155 
    156 /*
    157  * Recompute process priorities, every hz ticks.
    158  */
    159 /* ARGSUSED */
    160 void
    161 schedcpu(arg)
    162 	void *arg;
    163 {
    164 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    165 	register struct proc *p;
    166 	register int s;
    167 	register unsigned int newcpu;
    168 
    169 	wakeup((caddr_t)&lbolt);
    170 	for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
    171 		/*
    172 		 * Increment time in/out of memory and sleep time
    173 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    174 		 * (remember them?) overflow takes 45 days.
    175 		 */
    176 		p->p_swtime++;
    177 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    178 			p->p_slptime++;
    179 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    180 		/*
    181 		 * If the process has slept the entire second,
    182 		 * stop recalculating its priority until it wakes up.
    183 		 */
    184 		if (p->p_slptime > 1)
    185 			continue;
    186 		s = splstatclock();	/* prevent state changes */
    187 		/*
    188 		 * p_pctcpu is only for ps.
    189 		 */
    190 #if	(FSHIFT >= CCPU_SHIFT)
    191 		p->p_pctcpu += (hz == 100)?
    192 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    193                 	100 * (((fixpt_t) p->p_cpticks)
    194 				<< (FSHIFT - CCPU_SHIFT)) / hz;
    195 #else
    196 		p->p_pctcpu += ((FSCALE - ccpu) *
    197 			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
    198 #endif
    199 		p->p_cpticks = 0;
    200 		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
    201 		p->p_estcpu = min(newcpu, UCHAR_MAX);
    202 		resetpriority(p);
    203 		if (p->p_priority >= PUSER) {
    204 #define	PPQ	(128 / NQS)		/* priorities per queue */
    205 			if ((p != curproc) &&
    206 			    p->p_stat == SRUN &&
    207 			    (p->p_flag & P_INMEM) &&
    208 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    209 				remrq(p);
    210 				p->p_priority = p->p_usrpri;
    211 				setrunqueue(p);
    212 			} else
    213 				p->p_priority = p->p_usrpri;
    214 		}
    215 		splx(s);
    216 	}
    217 	vmmeter();
    218 	if (bclnlist != NULL)
    219 		wakeup((caddr_t)pageproc);
    220 	timeout(schedcpu, (void *)0, hz);
    221 }
    222 
    223 /*
    224  * Recalculate the priority of a process after it has slept for a while.
    225  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    226  * least six times the loadfactor will decay p_estcpu to zero.
    227  */
    228 void
    229 updatepri(p)
    230 	register struct proc *p;
    231 {
    232 	register unsigned int newcpu = p->p_estcpu;
    233 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    234 
    235 	if (p->p_slptime > 5 * loadfac)
    236 		p->p_estcpu = 0;
    237 	else {
    238 		p->p_slptime--;	/* the first time was done in schedcpu */
    239 		while (newcpu && --p->p_slptime)
    240 			newcpu = (int) decay_cpu(loadfac, newcpu);
    241 		p->p_estcpu = min(newcpu, UCHAR_MAX);
    242 	}
    243 	resetpriority(p);
    244 }
    245 
    246 /*
    247  * We're only looking at 7 bits of the address; everything is
    248  * aligned to 4, lots of things are aligned to greater powers
    249  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    250  */
    251 #define TABLESIZE	128
    252 #define LOOKUP(x)	(((int)(x) >> 8) & (TABLESIZE - 1))
    253 struct slpque {
    254 	struct proc *sq_head;
    255 	struct proc **sq_tailp;
    256 } slpque[TABLESIZE];
    257 
    258 /*
    259  * During autoconfiguration or after a panic, a sleep will simply
    260  * lower the priority briefly to allow interrupts, then return.
    261  * The priority to be used (safepri) is machine-dependent, thus this
    262  * value is initialized and maintained in the machine-dependent layers.
    263  * This priority will typically be 0, or the lowest priority
    264  * that is safe for use on the interrupt stack; it can be made
    265  * higher to block network software interrupts after panics.
    266  */
    267 int safepri;
    268 
    269 /*
    270  * General sleep call.  Suspends the current process until a wakeup is
    271  * performed on the specified identifier.  The process will then be made
    272  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    273  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    274  * before and after sleeping, else signals are not checked.  Returns 0 if
    275  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    276  * signal needs to be delivered, ERESTART is returned if the current system
    277  * call should be restarted if possible, and EINTR is returned if the system
    278  * call should be interrupted by the signal (return EINTR).
    279  */
    280 int
    281 tsleep(ident, priority, wmesg, timo)
    282 	void *ident;
    283 	int priority, timo;
    284 	char *wmesg;
    285 {
    286 	register struct proc *p = curproc;
    287 	register struct slpque *qp;
    288 	register s;
    289 	int sig, catch = priority & PCATCH;
    290 	extern int cold;
    291 	void endtsleep __P((void *));
    292 
    293 #ifdef KTRACE
    294 	if (KTRPOINT(p, KTR_CSW))
    295 		ktrcsw(p->p_tracep, 1, 0);
    296 #endif
    297 	s = splhigh();
    298 	if (cold || panicstr) {
    299 		/*
    300 		 * After a panic, or during autoconfiguration,
    301 		 * just give interrupts a chance, then just return;
    302 		 * don't run any other procs or panic below,
    303 		 * in case this is the idle process and already asleep.
    304 		 */
    305 		splx(safepri);
    306 		splx(s);
    307 		return (0);
    308 	}
    309 #ifdef DIAGNOSTIC
    310 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
    311 		panic("tsleep");
    312 #endif
    313 	p->p_wchan = ident;
    314 	p->p_wmesg = wmesg;
    315 	p->p_slptime = 0;
    316 	p->p_priority = priority & PRIMASK;
    317 	qp = &slpque[LOOKUP(ident)];
    318 	if (qp->sq_head == 0)
    319 		qp->sq_head = p;
    320 	else
    321 		*qp->sq_tailp = p;
    322 	*(qp->sq_tailp = &p->p_forw) = 0;
    323 	if (timo)
    324 		timeout(endtsleep, (void *)p, timo);
    325 	/*
    326 	 * We put ourselves on the sleep queue and start our timeout
    327 	 * before calling CURSIG, as we could stop there, and a wakeup
    328 	 * or a SIGCONT (or both) could occur while we were stopped.
    329 	 * A SIGCONT would cause us to be marked as SSLEEP
    330 	 * without resuming us, thus we must be ready for sleep
    331 	 * when CURSIG is called.  If the wakeup happens while we're
    332 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    333 	 */
    334 	if (catch) {
    335 		p->p_flag |= P_SINTR;
    336 		if (sig = CURSIG(p)) {
    337 			if (p->p_wchan)
    338 				unsleep(p);
    339 			p->p_stat = SRUN;
    340 			goto resume;
    341 		}
    342 		if (p->p_wchan == 0) {
    343 			catch = 0;
    344 			goto resume;
    345 		}
    346 	} else
    347 		sig = 0;
    348 	p->p_stat = SSLEEP;
    349 	p->p_stats->p_ru.ru_nvcsw++;
    350 	mi_switch();
    351 resume:
    352 	curpriority = p->p_usrpri;
    353 	splx(s);
    354 	p->p_flag &= ~P_SINTR;
    355 	if (p->p_flag & P_TIMEOUT) {
    356 		p->p_flag &= ~P_TIMEOUT;
    357 		if (sig == 0) {
    358 #ifdef KTRACE
    359 			if (KTRPOINT(p, KTR_CSW))
    360 				ktrcsw(p->p_tracep, 0, 0);
    361 #endif
    362 			return (EWOULDBLOCK);
    363 		}
    364 	} else if (timo)
    365 		untimeout(endtsleep, (void *)p);
    366 	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
    367 #ifdef KTRACE
    368 		if (KTRPOINT(p, KTR_CSW))
    369 			ktrcsw(p->p_tracep, 0, 0);
    370 #endif
    371 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
    372 			return (EINTR);
    373 		return (ERESTART);
    374 	}
    375 #ifdef KTRACE
    376 	if (KTRPOINT(p, KTR_CSW))
    377 		ktrcsw(p->p_tracep, 0, 0);
    378 #endif
    379 	return (0);
    380 }
    381 
    382 /*
    383  * Implement timeout for tsleep.
    384  * If process hasn't been awakened (wchan non-zero),
    385  * set timeout flag and undo the sleep.  If proc
    386  * is stopped, just unsleep so it will remain stopped.
    387  */
    388 void
    389 endtsleep(arg)
    390 	void *arg;
    391 {
    392 	register struct proc *p;
    393 	int s;
    394 
    395 	p = (struct proc *)arg;
    396 	s = splhigh();
    397 	if (p->p_wchan) {
    398 		if (p->p_stat == SSLEEP)
    399 			setrunnable(p);
    400 		else
    401 			unsleep(p);
    402 		p->p_flag |= P_TIMEOUT;
    403 	}
    404 	splx(s);
    405 }
    406 
    407 /*
    408  * Short-term, non-interruptable sleep.
    409  */
    410 void
    411 sleep(ident, priority)
    412 	void *ident;
    413 	int priority;
    414 {
    415 	register struct proc *p = curproc;
    416 	register struct slpque *qp;
    417 	register s;
    418 	extern int cold;
    419 
    420 #ifdef DIAGNOSTIC
    421 	if (priority > PZERO) {
    422 		printf("sleep called with priority %d > PZERO, wchan: %x\n",
    423 		    priority, ident);
    424 		panic("old sleep");
    425 	}
    426 #endif
    427 	s = splhigh();
    428 	if (cold || panicstr) {
    429 		/*
    430 		 * After a panic, or during autoconfiguration,
    431 		 * just give interrupts a chance, then just return;
    432 		 * don't run any other procs or panic below,
    433 		 * in case this is the idle process and already asleep.
    434 		 */
    435 		splx(safepri);
    436 		splx(s);
    437 		return;
    438 	}
    439 #ifdef DIAGNOSTIC
    440 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
    441 		panic("sleep");
    442 #endif
    443 	p->p_wchan = ident;
    444 	p->p_wmesg = NULL;
    445 	p->p_slptime = 0;
    446 	p->p_priority = priority;
    447 	qp = &slpque[LOOKUP(ident)];
    448 	if (qp->sq_head == 0)
    449 		qp->sq_head = p;
    450 	else
    451 		*qp->sq_tailp = p;
    452 	*(qp->sq_tailp = &p->p_forw) = 0;
    453 	p->p_stat = SSLEEP;
    454 	p->p_stats->p_ru.ru_nvcsw++;
    455 #ifdef KTRACE
    456 	if (KTRPOINT(p, KTR_CSW))
    457 		ktrcsw(p->p_tracep, 1, 0);
    458 #endif
    459 	mi_switch();
    460 #ifdef KTRACE
    461 	if (KTRPOINT(p, KTR_CSW))
    462 		ktrcsw(p->p_tracep, 0, 0);
    463 #endif
    464 	curpriority = p->p_usrpri;
    465 	splx(s);
    466 }
    467 
    468 /*
    469  * Remove a process from its wait queue
    470  */
    471 void
    472 unsleep(p)
    473 	register struct proc *p;
    474 {
    475 	register struct slpque *qp;
    476 	register struct proc **hp;
    477 	int s;
    478 
    479 	s = splhigh();
    480 	if (p->p_wchan) {
    481 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
    482 		while (*hp != p)
    483 			hp = &(*hp)->p_forw;
    484 		*hp = p->p_forw;
    485 		if (qp->sq_tailp == &p->p_forw)
    486 			qp->sq_tailp = hp;
    487 		p->p_wchan = 0;
    488 	}
    489 	splx(s);
    490 }
    491 
    492 /*
    493  * Make all processes sleeping on the specified identifier runnable.
    494  */
    495 void
    496 wakeup(ident)
    497 	register void *ident;
    498 {
    499 	register struct slpque *qp;
    500 	register struct proc *p, **q;
    501 	int s;
    502 
    503 	s = splhigh();
    504 	qp = &slpque[LOOKUP(ident)];
    505 restart:
    506 	for (q = &qp->sq_head; p = *q; ) {
    507 #ifdef DIAGNOSTIC
    508 		if (p->p_back || p->p_stat != SSLEEP && p->p_stat != SSTOP)
    509 			panic("wakeup");
    510 #endif
    511 		if (p->p_wchan == ident) {
    512 			p->p_wchan = 0;
    513 			*q = p->p_forw;
    514 			if (qp->sq_tailp == &p->p_forw)
    515 				qp->sq_tailp = q;
    516 			if (p->p_stat == SSLEEP) {
    517 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
    518 				if (p->p_slptime > 1)
    519 					updatepri(p);
    520 				p->p_slptime = 0;
    521 				p->p_stat = SRUN;
    522 				if (p->p_flag & P_INMEM)
    523 					setrunqueue(p);
    524 				/*
    525 				 * Since curpriority is a user priority,
    526 				 * p->p_priority is always better than
    527 				 * curpriority.
    528 				 */
    529 				if ((p->p_flag & P_INMEM) == 0)
    530 					wakeup((caddr_t)&proc0);
    531 				else
    532 					need_resched();
    533 				/* END INLINE EXPANSION */
    534 				goto restart;
    535 			}
    536 		} else
    537 			q = &p->p_forw;
    538 	}
    539 	splx(s);
    540 }
    541 
    542 /*
    543  * The machine independent parts of mi_switch().
    544  * Must be called at splstatclock() or higher.
    545  */
    546 void
    547 mi_switch()
    548 {
    549 	register struct proc *p = curproc;	/* XXX */
    550 	register struct rlimit *rlim;
    551 	register long s, u;
    552 	struct timeval tv;
    553 
    554 	/*
    555 	 * Compute the amount of time during which the current
    556 	 * process was running, and add that to its total so far.
    557 	 */
    558 	microtime(&tv);
    559 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
    560 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
    561 	if (u < 0) {
    562 		u += 1000000;
    563 		s--;
    564 	} else if (u >= 1000000) {
    565 		u -= 1000000;
    566 		s++;
    567 	}
    568 	p->p_rtime.tv_usec = u;
    569 	p->p_rtime.tv_sec = s;
    570 
    571 	/*
    572 	 * Check if the process exceeds its cpu resource allocation.
    573 	 * If over max, kill it.  In any case, if it has run for more
    574 	 * than 10 minutes, reduce priority to give others a chance.
    575 	 */
    576 	rlim = &p->p_rlimit[RLIMIT_CPU];
    577 	if (s >= rlim->rlim_cur) {
    578 		if (s >= rlim->rlim_max)
    579 			psignal(p, SIGKILL);
    580 		else {
    581 			psignal(p, SIGXCPU);
    582 			if (rlim->rlim_cur < rlim->rlim_max)
    583 				rlim->rlim_cur += 5;
    584 		}
    585 	}
    586 	if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
    587 		p->p_nice = NZERO + 4;
    588 		resetpriority(p);
    589 	}
    590 
    591 	/*
    592 	 * Pick a new current process and record its start time.
    593 	 */
    594 	cnt.v_swtch++;
    595 	cpu_switch(p);
    596 	microtime(&runtime);
    597 }
    598 
    599 /*
    600  * Initialize the (doubly-linked) run queues
    601  * to be empty.
    602  */
    603 rqinit()
    604 {
    605 	register int i;
    606 
    607 	for (i = 0; i < NQS; i++)
    608 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
    609 }
    610 
    611 /*
    612  * Change process state to be runnable,
    613  * placing it on the run queue if it is in memory,
    614  * and awakening the swapper if it isn't in memory.
    615  */
    616 void
    617 setrunnable(p)
    618 	register struct proc *p;
    619 {
    620 	register int s;
    621 
    622 	s = splhigh();
    623 	switch (p->p_stat) {
    624 	case 0:
    625 	case SRUN:
    626 	case SZOMB:
    627 	default:
    628 		panic("setrunnable");
    629 	case SSTOP:
    630 	case SSLEEP:
    631 		unsleep(p);		/* e.g. when sending signals */
    632 		break;
    633 
    634 	case SIDL:
    635 		break;
    636 	}
    637 	p->p_stat = SRUN;
    638 	if (p->p_flag & P_INMEM)
    639 		setrunqueue(p);
    640 	splx(s);
    641 	if (p->p_slptime > 1)
    642 		updatepri(p);
    643 	p->p_slptime = 0;
    644 	if ((p->p_flag & P_INMEM) == 0)
    645 		wakeup((caddr_t)&proc0);
    646 	else if (p->p_priority < curpriority)
    647 		need_resched();
    648 }
    649 
    650 /*
    651  * Compute the priority of a process when running in user mode.
    652  * Arrange to reschedule if the resulting priority is better
    653  * than that of the current process.
    654  */
    655 void
    656 resetpriority(p)
    657 	register struct proc *p;
    658 {
    659 	register unsigned int newpriority;
    660 
    661 	newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
    662 	newpriority = min(newpriority, MAXPRI);
    663 	p->p_usrpri = newpriority;
    664 	if (newpriority < curpriority)
    665 		need_resched();
    666 }
    667