kern_synch.c revision 1.101 1 /* $NetBSD: kern_synch.c,v 1.101 2001/01/14 22:31:59 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_ktrace.h"
82 #include "opt_lockdebug.h"
83 #include "opt_multiprocessor.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/callout.h>
88 #include <sys/proc.h>
89 #include <sys/kernel.h>
90 #include <sys/buf.h>
91 #include <sys/signalvar.h>
92 #include <sys/resourcevar.h>
93 #include <sys/sched.h>
94
95 #include <uvm/uvm_extern.h>
96
97 #ifdef KTRACE
98 #include <sys/ktrace.h>
99 #endif
100
101 #include <machine/cpu.h>
102
103 int lbolt; /* once a second sleep address */
104 int rrticks; /* number of hardclock ticks per roundrobin() */
105
106 /*
107 * The global scheduler state.
108 */
109 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
110 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
111 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
112
113 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
114 #if defined(MULTIPROCESSOR)
115 struct lock kernel_lock;
116 #endif
117
118 void schedcpu(void *);
119 void updatepri(struct proc *);
120 void endtsleep(void *);
121
122 __inline void awaken(struct proc *);
123
124 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
125
126 /*
127 * Force switch among equal priority processes every 100ms.
128 * Called from hardclock every hz/10 == rrticks hardclock ticks.
129 */
130 /* ARGSUSED */
131 void
132 roundrobin(struct cpu_info *ci)
133 {
134 struct schedstate_percpu *spc = &ci->ci_schedstate;
135
136 spc->spc_rrticks = rrticks;
137
138 if (curproc != NULL) {
139 if (spc->spc_flags & SPCF_SEENRR) {
140 /*
141 * The process has already been through a roundrobin
142 * without switching and may be hogging the CPU.
143 * Indicate that the process should yield.
144 */
145 spc->spc_flags |= SPCF_SHOULDYIELD;
146 } else
147 spc->spc_flags |= SPCF_SEENRR;
148 }
149 need_resched(curcpu());
150 }
151
152 /*
153 * Constants for digital decay and forget:
154 * 90% of (p_estcpu) usage in 5 * loadav time
155 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
156 * Note that, as ps(1) mentions, this can let percentages
157 * total over 100% (I've seen 137.9% for 3 processes).
158 *
159 * Note that hardclock updates p_estcpu and p_cpticks independently.
160 *
161 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
162 * That is, the system wants to compute a value of decay such
163 * that the following for loop:
164 * for (i = 0; i < (5 * loadavg); i++)
165 * p_estcpu *= decay;
166 * will compute
167 * p_estcpu *= 0.1;
168 * for all values of loadavg:
169 *
170 * Mathematically this loop can be expressed by saying:
171 * decay ** (5 * loadavg) ~= .1
172 *
173 * The system computes decay as:
174 * decay = (2 * loadavg) / (2 * loadavg + 1)
175 *
176 * We wish to prove that the system's computation of decay
177 * will always fulfill the equation:
178 * decay ** (5 * loadavg) ~= .1
179 *
180 * If we compute b as:
181 * b = 2 * loadavg
182 * then
183 * decay = b / (b + 1)
184 *
185 * We now need to prove two things:
186 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
187 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
188 *
189 * Facts:
190 * For x close to zero, exp(x) =~ 1 + x, since
191 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
192 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
193 * For x close to zero, ln(1+x) =~ x, since
194 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
195 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
196 * ln(.1) =~ -2.30
197 *
198 * Proof of (1):
199 * Solve (factor)**(power) =~ .1 given power (5*loadav):
200 * solving for factor,
201 * ln(factor) =~ (-2.30/5*loadav), or
202 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
203 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
204 *
205 * Proof of (2):
206 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
207 * solving for power,
208 * power*ln(b/(b+1)) =~ -2.30, or
209 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
210 *
211 * Actual power values for the implemented algorithm are as follows:
212 * loadav: 1 2 3 4
213 * power: 5.68 10.32 14.94 19.55
214 */
215
216 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
217 #define loadfactor(loadav) (2 * (loadav))
218 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
219
220 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
221 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
222
223 /*
224 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
225 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
226 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
227 *
228 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
229 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
230 *
231 * If you dont want to bother with the faster/more-accurate formula, you
232 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
233 * (more general) method of calculating the %age of CPU used by a process.
234 */
235 #define CCPU_SHIFT 11
236
237 /*
238 * Recompute process priorities, every hz ticks.
239 */
240 /* ARGSUSED */
241 void
242 schedcpu(void *arg)
243 {
244 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
245 struct proc *p;
246 int s, s1;
247 unsigned int newcpu;
248 int clkhz;
249
250 proclist_lock_read();
251 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
252 /*
253 * Increment time in/out of memory and sleep time
254 * (if sleeping). We ignore overflow; with 16-bit int's
255 * (remember them?) overflow takes 45 days.
256 */
257 p->p_swtime++;
258 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
259 p->p_slptime++;
260 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
261 /*
262 * If the process has slept the entire second,
263 * stop recalculating its priority until it wakes up.
264 */
265 if (p->p_slptime > 1)
266 continue;
267 s = splstatclock(); /* prevent state changes */
268 /*
269 * p_pctcpu is only for ps.
270 */
271 clkhz = stathz != 0 ? stathz : hz;
272 #if (FSHIFT >= CCPU_SHIFT)
273 p->p_pctcpu += (clkhz == 100)?
274 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
275 100 * (((fixpt_t) p->p_cpticks)
276 << (FSHIFT - CCPU_SHIFT)) / clkhz;
277 #else
278 p->p_pctcpu += ((FSCALE - ccpu) *
279 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
280 #endif
281 p->p_cpticks = 0;
282 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
283 p->p_estcpu = newcpu;
284 SCHED_LOCK(s1);
285 resetpriority(p);
286 if (p->p_priority >= PUSER) {
287 if (p->p_stat == SRUN &&
288 (p->p_flag & P_INMEM) &&
289 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
290 remrunqueue(p);
291 p->p_priority = p->p_usrpri;
292 setrunqueue(p);
293 } else
294 p->p_priority = p->p_usrpri;
295 }
296 SCHED_UNLOCK(s1);
297 splx(s);
298 }
299 proclist_unlock_read();
300 uvm_meter();
301 wakeup((caddr_t)&lbolt);
302 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
303 }
304
305 /*
306 * Recalculate the priority of a process after it has slept for a while.
307 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
308 * least six times the loadfactor will decay p_estcpu to zero.
309 */
310 void
311 updatepri(struct proc *p)
312 {
313 unsigned int newcpu;
314 fixpt_t loadfac;
315
316 SCHED_ASSERT_LOCKED();
317
318 newcpu = p->p_estcpu;
319 loadfac = loadfactor(averunnable.ldavg[0]);
320
321 if (p->p_slptime > 5 * loadfac)
322 p->p_estcpu = 0;
323 else {
324 p->p_slptime--; /* the first time was done in schedcpu */
325 while (newcpu && --p->p_slptime)
326 newcpu = (int) decay_cpu(loadfac, newcpu);
327 p->p_estcpu = newcpu;
328 }
329 resetpriority(p);
330 }
331
332 /*
333 * During autoconfiguration or after a panic, a sleep will simply
334 * lower the priority briefly to allow interrupts, then return.
335 * The priority to be used (safepri) is machine-dependent, thus this
336 * value is initialized and maintained in the machine-dependent layers.
337 * This priority will typically be 0, or the lowest priority
338 * that is safe for use on the interrupt stack; it can be made
339 * higher to block network software interrupts after panics.
340 */
341 int safepri;
342
343 /*
344 * General sleep call. Suspends the current process until a wakeup is
345 * performed on the specified identifier. The process will then be made
346 * runnable with the specified priority. Sleeps at most timo/hz seconds
347 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
348 * before and after sleeping, else signals are not checked. Returns 0 if
349 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
350 * signal needs to be delivered, ERESTART is returned if the current system
351 * call should be restarted if possible, and EINTR is returned if the system
352 * call should be interrupted by the signal (return EINTR).
353 *
354 * The interlock is held until the scheduler_slock is held. The
355 * interlock will be locked before returning back to the caller
356 * unless the PNORELOCK flag is specified, in which case the
357 * interlock will always be unlocked upon return.
358 */
359 int
360 ltsleep(void *ident, int priority, const char *wmesg, int timo,
361 __volatile struct simplelock *interlock)
362 {
363 struct proc *p = curproc;
364 struct slpque *qp;
365 int sig, s;
366 int catch = priority & PCATCH;
367 int relock = (priority & PNORELOCK) == 0;
368
369 /*
370 * XXXSMP
371 * This is probably bogus. Figure out what the right
372 * thing to do here really is.
373 * Note that not sleeping if ltsleep is called with curproc == NULL
374 * in the shutdown case is disgusting but partly necessary given
375 * how shutdown (barely) works.
376 */
377 if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
378 /*
379 * After a panic, or during autoconfiguration,
380 * just give interrupts a chance, then just return;
381 * don't run any other procs or panic below,
382 * in case this is the idle process and already asleep.
383 */
384 s = splhigh();
385 splx(safepri);
386 splx(s);
387 if (interlock != NULL && relock == 0)
388 simple_unlock(interlock);
389 return (0);
390 }
391
392
393 #ifdef KTRACE
394 if (KTRPOINT(p, KTR_CSW))
395 ktrcsw(p, 1, 0);
396 #endif
397
398 SCHED_LOCK(s);
399
400 #ifdef DIAGNOSTIC
401 if (ident == NULL)
402 panic("ltsleep: ident == NULL");
403 if (p->p_stat != SONPROC)
404 panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
405 if (p->p_back != NULL)
406 panic("ltsleep: p_back != NULL");
407 #endif
408
409 p->p_wchan = ident;
410 p->p_wmesg = wmesg;
411 p->p_slptime = 0;
412 p->p_priority = priority & PRIMASK;
413
414 qp = SLPQUE(ident);
415 if (qp->sq_head == 0)
416 qp->sq_head = p;
417 else
418 *qp->sq_tailp = p;
419 *(qp->sq_tailp = &p->p_forw) = 0;
420
421 if (timo)
422 callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
423
424 /*
425 * We can now release the interlock; the scheduler_slock
426 * is held, so a thread can't get in to do wakeup() before
427 * we do the switch.
428 *
429 * XXX We leave the code block here, after inserting ourselves
430 * on the sleep queue, because we might want a more clever
431 * data structure for the sleep queues at some point.
432 */
433 if (interlock != NULL)
434 simple_unlock(interlock);
435
436 /*
437 * We put ourselves on the sleep queue and start our timeout
438 * before calling CURSIG, as we could stop there, and a wakeup
439 * or a SIGCONT (or both) could occur while we were stopped.
440 * A SIGCONT would cause us to be marked as SSLEEP
441 * without resuming us, thus we must be ready for sleep
442 * when CURSIG is called. If the wakeup happens while we're
443 * stopped, p->p_wchan will be 0 upon return from CURSIG.
444 */
445 if (catch) {
446 p->p_flag |= P_SINTR;
447 if ((sig = CURSIG(p)) != 0) {
448 if (p->p_wchan != NULL)
449 unsleep(p);
450 p->p_stat = SONPROC;
451 SCHED_UNLOCK(s);
452 goto resume;
453 }
454 if (p->p_wchan == NULL) {
455 catch = 0;
456 SCHED_UNLOCK(s);
457 goto resume;
458 }
459 } else
460 sig = 0;
461 p->p_stat = SSLEEP;
462 p->p_stats->p_ru.ru_nvcsw++;
463
464 SCHED_ASSERT_LOCKED();
465 mi_switch(p);
466
467 #ifdef DDB
468 /* handy breakpoint location after process "wakes" */
469 asm(".globl bpendtsleep ; bpendtsleep:");
470 #endif
471
472 SCHED_ASSERT_UNLOCKED();
473 splx(s);
474
475 resume:
476 KDASSERT(p->p_cpu != NULL);
477 KDASSERT(p->p_cpu == curcpu());
478 p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
479
480 p->p_flag &= ~P_SINTR;
481 if (p->p_flag & P_TIMEOUT) {
482 p->p_flag &= ~P_TIMEOUT;
483 if (sig == 0) {
484 #ifdef KTRACE
485 if (KTRPOINT(p, KTR_CSW))
486 ktrcsw(p, 0, 0);
487 #endif
488 if (relock && interlock != NULL)
489 simple_lock(interlock);
490 return (EWOULDBLOCK);
491 }
492 } else if (timo)
493 callout_stop(&p->p_tsleep_ch);
494 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
495 #ifdef KTRACE
496 if (KTRPOINT(p, KTR_CSW))
497 ktrcsw(p, 0, 0);
498 #endif
499 if (relock && interlock != NULL)
500 simple_lock(interlock);
501 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
502 return (EINTR);
503 return (ERESTART);
504 }
505 #ifdef KTRACE
506 if (KTRPOINT(p, KTR_CSW))
507 ktrcsw(p, 0, 0);
508 #endif
509 if (relock && interlock != NULL)
510 simple_lock(interlock);
511 return (0);
512 }
513
514 /*
515 * Implement timeout for tsleep.
516 * If process hasn't been awakened (wchan non-zero),
517 * set timeout flag and undo the sleep. If proc
518 * is stopped, just unsleep so it will remain stopped.
519 */
520 void
521 endtsleep(void *arg)
522 {
523 struct proc *p;
524 int s;
525
526 p = (struct proc *)arg;
527
528 SCHED_LOCK(s);
529 if (p->p_wchan) {
530 if (p->p_stat == SSLEEP)
531 setrunnable(p);
532 else
533 unsleep(p);
534 p->p_flag |= P_TIMEOUT;
535 }
536 SCHED_UNLOCK(s);
537 }
538
539 /*
540 * Remove a process from its wait queue
541 */
542 void
543 unsleep(struct proc *p)
544 {
545 struct slpque *qp;
546 struct proc **hp;
547
548 SCHED_ASSERT_LOCKED();
549
550 if (p->p_wchan) {
551 hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
552 while (*hp != p)
553 hp = &(*hp)->p_forw;
554 *hp = p->p_forw;
555 if (qp->sq_tailp == &p->p_forw)
556 qp->sq_tailp = hp;
557 p->p_wchan = 0;
558 }
559 }
560
561 /*
562 * Optimized-for-wakeup() version of setrunnable().
563 */
564 __inline void
565 awaken(struct proc *p)
566 {
567
568 SCHED_ASSERT_LOCKED();
569
570 if (p->p_slptime > 1)
571 updatepri(p);
572 p->p_slptime = 0;
573 p->p_stat = SRUN;
574
575 /*
576 * Since curpriority is a user priority, p->p_priority
577 * is always better than curpriority.
578 */
579 if (p->p_flag & P_INMEM) {
580 setrunqueue(p);
581 KASSERT(p->p_cpu != NULL);
582 need_resched(p->p_cpu);
583 } else
584 sched_wakeup(&proc0);
585 }
586
587 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
588 void
589 sched_unlock_idle(void)
590 {
591
592 simple_unlock(&sched_lock);
593 }
594
595 void
596 sched_lock_idle(void)
597 {
598
599 simple_lock(&sched_lock);
600 }
601 #endif /* MULTIPROCESSOR || LOCKDEBUG */
602
603 /*
604 * Make all processes sleeping on the specified identifier runnable.
605 */
606
607 void
608 wakeup(void *ident)
609 {
610 int s;
611
612 SCHED_ASSERT_UNLOCKED();
613
614 SCHED_LOCK(s);
615 sched_wakeup(ident);
616 SCHED_UNLOCK(s);
617 }
618
619 void
620 sched_wakeup(void *ident)
621 {
622 struct slpque *qp;
623 struct proc *p, **q;
624
625 SCHED_ASSERT_LOCKED();
626
627 qp = SLPQUE(ident);
628 restart:
629 for (q = &qp->sq_head; (p = *q) != NULL; ) {
630 #ifdef DIAGNOSTIC
631 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
632 panic("wakeup");
633 #endif
634 if (p->p_wchan == ident) {
635 p->p_wchan = 0;
636 *q = p->p_forw;
637 if (qp->sq_tailp == &p->p_forw)
638 qp->sq_tailp = q;
639 if (p->p_stat == SSLEEP) {
640 awaken(p);
641 goto restart;
642 }
643 } else
644 q = &p->p_forw;
645 }
646 }
647
648 /*
649 * Make the highest priority process first in line on the specified
650 * identifier runnable.
651 */
652 void
653 wakeup_one(void *ident)
654 {
655 struct slpque *qp;
656 struct proc *p, **q;
657 struct proc *best_sleepp, **best_sleepq;
658 struct proc *best_stopp, **best_stopq;
659 int s;
660
661 best_sleepp = best_stopp = NULL;
662 best_sleepq = best_stopq = NULL;
663
664 SCHED_LOCK(s);
665
666 qp = SLPQUE(ident);
667
668 for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
669 #ifdef DIAGNOSTIC
670 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
671 panic("wakeup_one");
672 #endif
673 if (p->p_wchan == ident) {
674 if (p->p_stat == SSLEEP) {
675 if (best_sleepp == NULL ||
676 p->p_priority < best_sleepp->p_priority) {
677 best_sleepp = p;
678 best_sleepq = q;
679 }
680 } else {
681 if (best_stopp == NULL ||
682 p->p_priority < best_stopp->p_priority) {
683 best_stopp = p;
684 best_stopq = q;
685 }
686 }
687 }
688 }
689
690 /*
691 * Consider any SSLEEP process higher than the highest priority SSTOP
692 * process.
693 */
694 if (best_sleepp != NULL) {
695 p = best_sleepp;
696 q = best_sleepq;
697 } else {
698 p = best_stopp;
699 q = best_stopq;
700 }
701
702 if (p != NULL) {
703 p->p_wchan = NULL;
704 *q = p->p_forw;
705 if (qp->sq_tailp == &p->p_forw)
706 qp->sq_tailp = q;
707 if (p->p_stat == SSLEEP)
708 awaken(p);
709 }
710 SCHED_UNLOCK(s);
711 }
712
713 /*
714 * General yield call. Puts the current process back on its run queue and
715 * performs a voluntary context switch.
716 */
717 void
718 yield(void)
719 {
720 struct proc *p = curproc;
721 int s;
722
723 SCHED_LOCK(s);
724 p->p_priority = p->p_usrpri;
725 p->p_stat = SRUN;
726 setrunqueue(p);
727 p->p_stats->p_ru.ru_nvcsw++;
728 mi_switch(p);
729 SCHED_ASSERT_UNLOCKED();
730 splx(s);
731 }
732
733 /*
734 * General preemption call. Puts the current process back on its run queue
735 * and performs an involuntary context switch. If a process is supplied,
736 * we switch to that process. Otherwise, we use the normal process selection
737 * criteria.
738 */
739 void
740 preempt(struct proc *newp)
741 {
742 struct proc *p = curproc;
743 int s;
744
745 /*
746 * XXX Switching to a specific process is not supported yet.
747 */
748 if (newp != NULL)
749 panic("preempt: cpu_preempt not yet implemented");
750
751 SCHED_LOCK(s);
752 p->p_priority = p->p_usrpri;
753 p->p_stat = SRUN;
754 setrunqueue(p);
755 p->p_stats->p_ru.ru_nivcsw++;
756 mi_switch(p);
757 SCHED_ASSERT_UNLOCKED();
758 splx(s);
759 }
760
761 /*
762 * The machine independent parts of context switch.
763 * Must be called at splsched() (no higher!) and with
764 * the sched_lock held.
765 */
766 void
767 mi_switch(struct proc *p)
768 {
769 struct schedstate_percpu *spc;
770 struct rlimit *rlim;
771 long s, u;
772 struct timeval tv;
773 #if defined(MULTIPROCESSOR)
774 int hold_count;
775 #endif
776
777 SCHED_ASSERT_LOCKED();
778
779 #if defined(MULTIPROCESSOR)
780 /*
781 * Release the kernel_lock, as we are about to yield the CPU.
782 * The scheduler lock is still held until cpu_switch()
783 * selects a new process and removes it from the run queue.
784 */
785 if (p->p_flag & P_BIGLOCK)
786 hold_count = spinlock_release_all(&kernel_lock);
787 #endif
788
789 KDASSERT(p->p_cpu != NULL);
790 KDASSERT(p->p_cpu == curcpu());
791
792 spc = &p->p_cpu->ci_schedstate;
793
794 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
795 spinlock_switchcheck();
796 #endif
797 #ifdef LOCKDEBUG
798 simple_lock_switchcheck();
799 #endif
800
801 /*
802 * Compute the amount of time during which the current
803 * process was running, and add that to its total so far.
804 */
805 microtime(&tv);
806 u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
807 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
808 if (u < 0) {
809 u += 1000000;
810 s--;
811 } else if (u >= 1000000) {
812 u -= 1000000;
813 s++;
814 }
815 p->p_rtime.tv_usec = u;
816 p->p_rtime.tv_sec = s;
817
818 /*
819 * Check if the process exceeds its cpu resource allocation.
820 * If over max, kill it. In any case, if it has run for more
821 * than 10 minutes, reduce priority to give others a chance.
822 */
823 rlim = &p->p_rlimit[RLIMIT_CPU];
824 if (s >= rlim->rlim_cur) {
825 /*
826 * XXXSMP: we're inside the scheduler lock perimeter;
827 * use sched_psignal.
828 */
829 if (s >= rlim->rlim_max)
830 sched_psignal(p, SIGKILL);
831 else {
832 sched_psignal(p, SIGXCPU);
833 if (rlim->rlim_cur < rlim->rlim_max)
834 rlim->rlim_cur += 5;
835 }
836 }
837 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
838 p->p_nice == NZERO) {
839 p->p_nice = autoniceval + NZERO;
840 resetpriority(p);
841 }
842
843 /*
844 * Process is about to yield the CPU; clear the appropriate
845 * scheduling flags.
846 */
847 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
848
849 /*
850 * Pick a new current process and switch to it. When we
851 * run again, we'll return back here.
852 */
853 uvmexp.swtch++;
854 cpu_switch(p);
855
856 /*
857 * Make sure that MD code released the scheduler lock before
858 * resuming us.
859 */
860 SCHED_ASSERT_UNLOCKED();
861
862 /*
863 * We're running again; record our new start time. We might
864 * be running on a new CPU now, so don't use the cache'd
865 * schedstate_percpu pointer.
866 */
867 KDASSERT(p->p_cpu != NULL);
868 KDASSERT(p->p_cpu == curcpu());
869 microtime(&p->p_cpu->ci_schedstate.spc_runtime);
870
871 #if defined(MULTIPROCESSOR)
872 /*
873 * Reacquire the kernel_lock now. We do this after we've
874 * released the scheduler lock to avoid deadlock, and before
875 * we reacquire the interlock.
876 */
877 if (p->p_flag & P_BIGLOCK)
878 spinlock_acquire_count(&kernel_lock, hold_count);
879 #endif
880 }
881
882 /*
883 * Initialize the (doubly-linked) run queues
884 * to be empty.
885 */
886 void
887 rqinit()
888 {
889 int i;
890
891 for (i = 0; i < RUNQUE_NQS; i++)
892 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
893 (struct proc *)&sched_qs[i];
894 }
895
896 /*
897 * Change process state to be runnable,
898 * placing it on the run queue if it is in memory,
899 * and awakening the swapper if it isn't in memory.
900 */
901 void
902 setrunnable(struct proc *p)
903 {
904
905 SCHED_ASSERT_LOCKED();
906
907 switch (p->p_stat) {
908 case 0:
909 case SRUN:
910 case SONPROC:
911 case SZOMB:
912 case SDEAD:
913 default:
914 panic("setrunnable");
915 case SSTOP:
916 /*
917 * If we're being traced (possibly because someone attached us
918 * while we were stopped), check for a signal from the debugger.
919 */
920 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
921 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
922 CHECKSIGS(p);
923 }
924 case SSLEEP:
925 unsleep(p); /* e.g. when sending signals */
926 break;
927
928 case SIDL:
929 break;
930 }
931 p->p_stat = SRUN;
932 if (p->p_flag & P_INMEM)
933 setrunqueue(p);
934
935 if (p->p_slptime > 1)
936 updatepri(p);
937 p->p_slptime = 0;
938 if ((p->p_flag & P_INMEM) == 0)
939 sched_wakeup((caddr_t)&proc0);
940 else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
941 /*
942 * XXXSMP
943 * This is not exactly right. Since p->p_cpu persists
944 * across a context switch, this gives us some sort
945 * of processor affinity. But we need to figure out
946 * at what point it's better to reschedule on a different
947 * CPU than the last one.
948 */
949 need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
950 }
951 }
952
953 /*
954 * Compute the priority of a process when running in user mode.
955 * Arrange to reschedule if the resulting priority is better
956 * than that of the current process.
957 */
958 void
959 resetpriority(struct proc *p)
960 {
961 unsigned int newpriority;
962
963 SCHED_ASSERT_LOCKED();
964
965 newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
966 newpriority = min(newpriority, MAXPRI);
967 p->p_usrpri = newpriority;
968 if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
969 /*
970 * XXXSMP
971 * Same applies as in setrunnable() above.
972 */
973 need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
974 }
975 }
976
977 /*
978 * We adjust the priority of the current process. The priority of a process
979 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
980 * is increased here. The formula for computing priorities (in kern_synch.c)
981 * will compute a different value each time p_estcpu increases. This can
982 * cause a switch, but unless the priority crosses a PPQ boundary the actual
983 * queue will not change. The cpu usage estimator ramps up quite quickly
984 * when the process is running (linearly), and decays away exponentially, at
985 * a rate which is proportionally slower when the system is busy. The basic
986 * principle is that the system will 90% forget that the process used a lot
987 * of CPU time in 5 * loadav seconds. This causes the system to favor
988 * processes which haven't run much recently, and to round-robin among other
989 * processes.
990 */
991
992 void
993 schedclock(struct proc *p)
994 {
995 int s;
996
997 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
998
999 SCHED_LOCK(s);
1000 resetpriority(p);
1001 SCHED_UNLOCK(s);
1002
1003 if (p->p_priority >= PUSER)
1004 p->p_priority = p->p_usrpri;
1005 }
1006
1007 void
1008 suspendsched()
1009 {
1010 struct proc *p;
1011 int s;
1012
1013 /*
1014 * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
1015 */
1016 proclist_lock_read();
1017 SCHED_LOCK(s);
1018 for (p = LIST_FIRST(&allproc); p != NULL; p = LIST_NEXT(p, p_list)) {
1019 if ((p->p_flag & P_SYSTEM) != 0)
1020 continue;
1021 switch (p->p_stat) {
1022 case SRUN:
1023 if ((p->p_flag & P_INMEM) != 0)
1024 remrunqueue(p);
1025 /* FALLTHROUGH */
1026 case SSLEEP:
1027 p->p_stat = SSTOP;
1028 break;
1029 case SONPROC:
1030 /*
1031 * XXX SMP: we need to deal with processes on
1032 * others CPU !
1033 */
1034 break;
1035 default:
1036 break;
1037 }
1038 }
1039 SCHED_UNLOCK(s);
1040 proclist_unlock_read();
1041 }
1042