Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.101.2.1
      1 /*	$NetBSD: kern_synch.c,v 1.101.2.1 2001/03/05 22:49:42 nathanw Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78  */
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_ktrace.h"
     82 #include "opt_lockdebug.h"
     83 #include "opt_multiprocessor.h"
     84 
     85 #include <sys/param.h>
     86 #include <sys/systm.h>
     87 #include <sys/callout.h>
     88 #include <sys/proc.h>
     89 #include <sys/lwp.h>
     90 #include <sys/kernel.h>
     91 #include <sys/buf.h>
     92 #include <sys/signalvar.h>
     93 #include <sys/resourcevar.h>
     94 #include <sys/sched.h>
     95 #include <sys/sa.h>
     96 #include <sys/savar.h>
     97 
     98 #include <uvm/uvm_extern.h>
     99 
    100 #ifdef KTRACE
    101 #include <sys/ktrace.h>
    102 #endif
    103 
    104 #include <machine/cpu.h>
    105 
    106 int	lbolt;			/* once a second sleep address */
    107 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    108 
    109 /*
    110  * The global scheduler state.
    111  */
    112 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    113 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    114 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    115 
    116 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    117 #if defined(MULTIPROCESSOR)
    118 struct lock kernel_lock;
    119 #endif
    120 
    121 void schedcpu(void *);
    122 void updatepri(struct lwp *);
    123 void endtsleep(void *);
    124 
    125 __inline void awaken(struct lwp *);
    126 
    127 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    128 
    129 
    130 
    131 /*
    132  * Force switch among equal priority processes every 100ms.
    133  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    134  */
    135 /* ARGSUSED */
    136 void
    137 roundrobin(struct cpu_info *ci)
    138 {
    139 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    140 
    141 	spc->spc_rrticks = rrticks;
    142 
    143 	if (curproc != NULL) {
    144 		if (spc->spc_flags & SPCF_SEENRR) {
    145 			/*
    146 			 * The process has already been through a roundrobin
    147 			 * without switching and may be hogging the CPU.
    148 			 * Indicate that the process should yield.
    149 			 */
    150 			spc->spc_flags |= SPCF_SHOULDYIELD;
    151 		} else
    152 			spc->spc_flags |= SPCF_SEENRR;
    153 	}
    154 	need_resched(curcpu());
    155 }
    156 
    157 /*
    158  * Constants for digital decay and forget:
    159  *	90% of (p_estcpu) usage in 5 * loadav time
    160  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    161  *          Note that, as ps(1) mentions, this can let percentages
    162  *          total over 100% (I've seen 137.9% for 3 processes).
    163  *
    164  * Note that hardclock updates p_estcpu and p_cpticks independently.
    165  *
    166  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    167  * That is, the system wants to compute a value of decay such
    168  * that the following for loop:
    169  * 	for (i = 0; i < (5 * loadavg); i++)
    170  * 		p_estcpu *= decay;
    171  * will compute
    172  * 	p_estcpu *= 0.1;
    173  * for all values of loadavg:
    174  *
    175  * Mathematically this loop can be expressed by saying:
    176  * 	decay ** (5 * loadavg) ~= .1
    177  *
    178  * The system computes decay as:
    179  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    180  *
    181  * We wish to prove that the system's computation of decay
    182  * will always fulfill the equation:
    183  * 	decay ** (5 * loadavg) ~= .1
    184  *
    185  * If we compute b as:
    186  * 	b = 2 * loadavg
    187  * then
    188  * 	decay = b / (b + 1)
    189  *
    190  * We now need to prove two things:
    191  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    192  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    193  *
    194  * Facts:
    195  *         For x close to zero, exp(x) =~ 1 + x, since
    196  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    197  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    198  *         For x close to zero, ln(1+x) =~ x, since
    199  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    200  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    201  *         ln(.1) =~ -2.30
    202  *
    203  * Proof of (1):
    204  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    205  *	solving for factor,
    206  *      ln(factor) =~ (-2.30/5*loadav), or
    207  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    208  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    209  *
    210  * Proof of (2):
    211  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    212  *	solving for power,
    213  *      power*ln(b/(b+1)) =~ -2.30, or
    214  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    215  *
    216  * Actual power values for the implemented algorithm are as follows:
    217  *      loadav: 1       2       3       4
    218  *      power:  5.68    10.32   14.94   19.55
    219  */
    220 
    221 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    222 #define	loadfactor(loadav)	(2 * (loadav))
    223 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    224 
    225 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    226 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    227 
    228 /*
    229  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    230  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    231  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    232  *
    233  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    234  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    235  *
    236  * If you dont want to bother with the faster/more-accurate formula, you
    237  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    238  * (more general) method of calculating the %age of CPU used by a process.
    239  */
    240 #define	CCPU_SHIFT	11
    241 
    242 /*
    243  * Recompute process priorities, every hz ticks.
    244  */
    245 /* ARGSUSED */
    246 void
    247 schedcpu(void *arg)
    248 {
    249 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    250 	struct lwp *l;
    251 	struct proc *p;
    252 	int s, s1;
    253 	unsigned int newcpu;
    254 	int clkhz;
    255 
    256 	proclist_lock_read();
    257 	for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l,l_list)) {
    258 		/*
    259 		 * Increment time in/out of memory and sleep time
    260 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    261 		 * (remember them?) overflow takes 45 days.
    262 		 */
    263 		p = l->l_proc;
    264 		l->l_swtime++;
    265 		if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    266 		    l->l_stat == LSSUSPENDED)
    267 			l->l_slptime++;
    268 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    269 		/*
    270 		 * If the process has slept the entire second,
    271 		 * stop recalculating its priority until it wakes up.
    272 		 */
    273 		if (l->l_slptime > 1)
    274 			continue;
    275 		s = splstatclock();	/* prevent state changes */
    276 		/*
    277 		 * p_pctcpu is only for ps.
    278 		 */
    279 		clkhz = stathz != 0 ? stathz : hz;
    280 #if	(FSHIFT >= CCPU_SHIFT)
    281 		p->p_pctcpu += (clkhz == 100)?
    282 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    283                 	100 * (((fixpt_t) p->p_cpticks)
    284 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    285 #else
    286 		l->l_pctcpu += ((FSCALE - ccpu) *
    287 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    288 #endif
    289 		p->p_cpticks = 0;
    290 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    291 		p->p_estcpu = newcpu;
    292 		SCHED_LOCK(s1);
    293 		resetpriority(l);
    294 		if (l->l_priority >= PUSER) {
    295 			if (l->l_stat == LSRUN &&
    296 			    (l->l_flag & L_INMEM) &&
    297 			    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    298 				remrunqueue(l);
    299 				l->l_priority = l->l_usrpri;
    300 				setrunqueue(l);
    301 			} else
    302 				l->l_priority = l->l_usrpri;
    303 		}
    304 		SCHED_UNLOCK(s1);
    305 		splx(s);
    306 	}
    307 	proclist_unlock_read();
    308 	uvm_meter();
    309 	wakeup((caddr_t)&lbolt);
    310 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    311 }
    312 
    313 /*
    314  * Recalculate the priority of a process after it has slept for a while.
    315  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    316  * least six times the loadfactor will decay p_estcpu to zero.
    317  */
    318 void
    319 updatepri(struct lwp *l)
    320 {
    321 	struct proc *p = l->l_proc;
    322 	unsigned int newcpu;
    323 	fixpt_t loadfac;
    324 
    325 	SCHED_ASSERT_LOCKED();
    326 
    327 	newcpu = p->p_estcpu;
    328 	loadfac = loadfactor(averunnable.ldavg[0]);
    329 
    330 	if (l->l_slptime > 5 * loadfac)
    331 		p->p_estcpu = 0; /* XXX NJWLWP */
    332 	else {
    333 		l->l_slptime--;	/* the first time was done in schedcpu */
    334 		while (newcpu && --l->l_slptime)
    335 			newcpu = (int) decay_cpu(loadfac, newcpu);
    336 		p->p_estcpu = newcpu;
    337 	}
    338 	resetpriority(l);
    339 }
    340 
    341 /*
    342  * During autoconfiguration or after a panic, a sleep will simply
    343  * lower the priority briefly to allow interrupts, then return.
    344  * The priority to be used (safepri) is machine-dependent, thus this
    345  * value is initialized and maintained in the machine-dependent layers.
    346  * This priority will typically be 0, or the lowest priority
    347  * that is safe for use on the interrupt stack; it can be made
    348  * higher to block network software interrupts after panics.
    349  */
    350 int safepri;
    351 
    352 /*
    353  * General sleep call.  Suspends the current process until a wakeup is
    354  * performed on the specified identifier.  The process will then be made
    355  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    356  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    357  * before and after sleeping, else signals are not checked.  Returns 0 if
    358  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    359  * signal needs to be delivered, ERESTART is returned if the current system
    360  * call should be restarted if possible, and EINTR is returned if the system
    361  * call should be interrupted by the signal (return EINTR).
    362  *
    363  * The interlock is held until the scheduler_slock is held.  The
    364  * interlock will be locked before returning back to the caller
    365  * unless the PNORELOCK flag is specified, in which case the
    366  * interlock will always be unlocked upon return.
    367  */
    368 int
    369 ltsleep(void *ident, int priority, const char *wmesg, int timo,
    370     __volatile struct simplelock *interlock)
    371 {
    372 	struct lwp *l = curproc;
    373 	struct proc *p = l->l_proc;
    374 	struct slpque *qp;
    375 	int sig, s;
    376 	int catch = priority & PCATCH;
    377 	int relock = (priority & PNORELOCK) == 0;
    378 	int exiterr = (priority & PNOEXITERR) == 0;
    379 
    380 	/*
    381 	 * XXXSMP
    382 	 * This is probably bogus.  Figure out what the right
    383 	 * thing to do here really is.
    384 	 * Note that not sleeping if ltsleep is called with curproc == NULL
    385 	 * in the shutdown case is disgusting but partly necessary given
    386 	 * how shutdown (barely) works.
    387 	 */
    388 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    389 		/*
    390 		 * After a panic, or during autoconfiguration,
    391 		 * just give interrupts a chance, then just return;
    392 		 * don't run any other procs or panic below,
    393 		 * in case this is the idle process and already asleep.
    394 		 */
    395 		s = splhigh();
    396 		splx(safepri);
    397 		splx(s);
    398 		if (interlock != NULL && relock == 0)
    399 			simple_unlock(interlock);
    400 		return (0);
    401 	}
    402 
    403 
    404 #ifdef KTRACE
    405 	if (KTRPOINT(p, KTR_CSW))
    406 		ktrcsw(p, 1, 0);
    407 #endif
    408 
    409 	SCHED_LOCK(s);
    410 
    411 #ifdef DIAGNOSTIC
    412 	if (ident == NULL)
    413 		panic("ltsleep: ident == NULL");
    414 	if (l->l_stat != LSONPROC)
    415 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    416 	if (l->l_back != NULL)
    417 		panic("ltsleep: p_back != NULL");
    418 #endif
    419 
    420 	l->l_wchan = ident;
    421 	l->l_wmesg = wmesg;
    422 	l->l_slptime = 0;
    423 	l->l_priority = priority & PRIMASK;
    424 
    425 	qp = SLPQUE(ident);
    426 	if (qp->sq_head == 0)
    427 		qp->sq_head = l;
    428 	else {
    429 		*qp->sq_tailp = l;
    430 	}
    431 	*(qp->sq_tailp = &l->l_forw) = 0;
    432 
    433 	if (timo)
    434 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    435 
    436 	/*
    437 	 * We can now release the interlock; the scheduler_slock
    438 	 * is held, so a thread can't get in to do wakeup() before
    439 	 * we do the switch.
    440 	 *
    441 	 * XXX We leave the code block here, after inserting ourselves
    442 	 * on the sleep queue, because we might want a more clever
    443 	 * data structure for the sleep queues at some point.
    444 	 */
    445 	if (interlock != NULL)
    446 		simple_unlock(interlock);
    447 
    448 	/*
    449 	 * We put ourselves on the sleep queue and start our timeout
    450 	 * before calling CURSIG, as we could stop there, and a wakeup
    451 	 * or a SIGCONT (or both) could occur while we were stopped.
    452 	 * A SIGCONT would cause us to be marked as SSLEEP
    453 	 * without resuming us, thus we must be ready for sleep
    454 	 * when CURSIG is called.  If the wakeup happens while we're
    455 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    456 	 */
    457 	if (catch) {
    458 		l->l_flag |= L_SINTR;
    459 		if ((sig = CURSIG(l)) != 0) {
    460 			if (l->l_wchan != NULL)
    461 				unsleep(l);
    462 			l->l_stat = LSONPROC;
    463 			SCHED_UNLOCK(s);
    464 			goto resume;
    465 		}
    466 		if (l->l_wchan == NULL) {
    467 			catch = 0;
    468 			SCHED_UNLOCK(s);
    469 			goto resume;
    470 		}
    471 	} else
    472 		sig = 0;
    473 	l->l_stat = LSSLEEP;
    474 	p->p_nrlwps--;
    475 	p->p_stats->p_ru.ru_nvcsw++;
    476 	SCHED_ASSERT_LOCKED();
    477 	if (l->l_flag & L_SA)
    478 		sa_switch(l, SA_UPCALL_BLOCKED);
    479 	else
    480 		mi_switch(l, NULL);
    481 
    482 #ifdef	DDB
    483 	/* handy breakpoint location after process "wakes" */
    484 	asm(".globl bpendtsleep ; bpendtsleep:");
    485 #endif
    486 
    487 	SCHED_ASSERT_UNLOCKED();
    488 	splx(s);
    489 
    490  resume:
    491 	KDASSERT(l->l_cpu != NULL);
    492 	KDASSERT(l->l_cpu == curcpu());
    493 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    494 	p->p_nrlwps++;
    495 
    496 	l->l_flag &= ~L_SINTR;
    497 	if (l->l_flag & L_TIMEOUT) {
    498 		l->l_flag &= ~L_TIMEOUT;
    499 		if (sig == 0) {
    500 #ifdef KTRACE
    501 			if (KTRPOINT(p, KTR_CSW))
    502 				ktrcsw(p, 0, 0);
    503 #endif
    504 			if (relock && interlock != NULL)
    505 				simple_lock(interlock);
    506 			return (EWOULDBLOCK);
    507 		}
    508 	} else if (timo)
    509 		callout_stop(&l->l_tsleep_ch);
    510 	if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
    511 #ifdef KTRACE
    512 		if (KTRPOINT(p, KTR_CSW))
    513 			ktrcsw(p, 0, 0);
    514 #endif
    515 		if (relock && interlock != NULL)
    516 			simple_lock(interlock);
    517 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    518 			return (EINTR);
    519 		return (ERESTART);
    520 	}
    521 	/* XXXNJW this is very much a kluge.
    522 	 * revisit. a better way of preventing looping/hanging syscalls like
    523 	 * wait4() and _lwp_wait() from wedging an exiting process
    524 	 * would be preferred.
    525 	 */
    526 	if (catch && ((p->p_flag & P_WEXIT) && exiterr))
    527 		return (EINTR);
    528 #ifdef KTRACE
    529 	if (KTRPOINT(p, KTR_CSW))
    530 		ktrcsw(p, 0, 0);
    531 #endif
    532 	if (relock && interlock != NULL)
    533 		simple_lock(interlock);
    534 	return (0);
    535 }
    536 
    537 /*
    538  * Implement timeout for tsleep.
    539  * If process hasn't been awakened (wchan non-zero),
    540  * set timeout flag and undo the sleep.  If proc
    541  * is stopped, just unsleep so it will remain stopped.
    542  */
    543 void
    544 endtsleep(void *arg)
    545 {
    546 	struct lwp *l;
    547 	int s;
    548 
    549 	l = (struct lwp *)arg;
    550 	SCHED_LOCK(s);
    551 	if (l->l_wchan) {
    552 		if (l->l_stat == LSSLEEP)
    553 			setrunnable(l);
    554 		else
    555 			unsleep(l);
    556 		l->l_flag |= L_TIMEOUT;
    557 	}
    558 	SCHED_UNLOCK(s);
    559 }
    560 
    561 /*
    562  * Remove a process from its wait queue
    563  */
    564 void
    565 unsleep(struct lwp *l)
    566 {
    567 	struct slpque *qp;
    568 	struct lwp **hp;
    569 
    570 	SCHED_ASSERT_LOCKED();
    571 
    572 	if (l->l_wchan) {
    573 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    574 		while (*hp != l)
    575 			hp = &(*hp)->l_forw;
    576 		*hp = l->l_forw;
    577 		if (qp->sq_tailp == &l->l_forw)
    578 			qp->sq_tailp = hp;
    579 		l->l_wchan = 0;
    580 	}
    581 }
    582 
    583 /*
    584  * Optimized-for-wakeup() version of setrunnable().
    585  */
    586 __inline void
    587 awaken(struct lwp *l)
    588 {
    589 
    590 	SCHED_ASSERT_LOCKED();
    591 
    592 	if (l->l_slptime > 1)
    593 		updatepri(l);
    594 	l->l_slptime = 0;
    595 	l->l_stat = LSRUN;
    596 
    597 	/*
    598 	 * Since curpriority is a user priority, p->p_priority
    599 	 * is always better than curpriority.
    600 	 */
    601 	if (l->l_flag & L_INMEM) {
    602 		setrunqueue(l);
    603 		KASSERT(l->l_cpu != NULL);
    604 		need_resched(l->l_cpu);
    605 	} else
    606 		sched_wakeup(&proc0);
    607 }
    608 
    609 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    610 void
    611 sched_unlock_idle(void)
    612 {
    613 
    614 	simple_unlock(&sched_lock);
    615 }
    616 
    617 void
    618 sched_lock_idle(void)
    619 {
    620 
    621 	simple_lock(&sched_lock);
    622 }
    623 #endif /* MULTIPROCESSOR || LOCKDEBUG */
    624 
    625 /*
    626  * Make all processes sleeping on the specified identifier runnable.
    627  */
    628 
    629 void
    630 wakeup(void *ident)
    631 {
    632 	int s;
    633 
    634 	SCHED_ASSERT_UNLOCKED();
    635 
    636 	SCHED_LOCK(s);
    637 	sched_wakeup(ident);
    638 	SCHED_UNLOCK(s);
    639 }
    640 
    641 void
    642 sched_wakeup(void *ident)
    643 {
    644 	struct slpque *qp;
    645 	struct lwp *l, **q;
    646 
    647 	SCHED_ASSERT_LOCKED();
    648 
    649 	qp = SLPQUE(ident);
    650  restart:
    651 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    652 #ifdef DIAGNOSTIC
    653 		if (l->l_back || (l->l_stat != LSSLEEP &&
    654 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    655 			panic("wakeup");
    656 #endif
    657 		if (l->l_wchan == ident) {
    658 			l->l_wchan = 0;
    659 			*q = l->l_forw;
    660 			if (qp->sq_tailp == &l->l_forw)
    661 				qp->sq_tailp = q;
    662 			if (l->l_stat == LSSLEEP) {
    663 				awaken(l);
    664 				goto restart;
    665 			}
    666 		} else
    667 			q = &l->l_forw;
    668 	}
    669 }
    670 
    671 /*
    672  * Make the highest priority process first in line on the specified
    673  * identifier runnable.
    674  */
    675 void
    676 wakeup_one(void *ident)
    677 {
    678 	struct slpque *qp;
    679 	struct lwp *l, **q;
    680 	struct lwp *best_sleepp, **best_sleepq;
    681 	struct lwp *best_stopp, **best_stopq;
    682 	int s;
    683 
    684 	best_sleepp = best_stopp = NULL;
    685 	best_sleepq = best_stopq = NULL;
    686 
    687 	SCHED_LOCK(s);
    688 
    689 	qp = SLPQUE(ident);
    690 
    691 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    692 #ifdef DIAGNOSTIC
    693 		if (l->l_back || (l->l_stat != LSSLEEP &&
    694 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    695 			panic("wakeup_one");
    696 #endif
    697 		if (l->l_wchan == ident) {
    698 			if (l->l_stat == LSSLEEP) {
    699 				if (best_sleepp == NULL ||
    700 				    l->l_priority < best_sleepp->l_priority) {
    701 					best_sleepp = l;
    702 					best_sleepq = q;
    703 				}
    704 			} else {
    705 				if (best_stopp == NULL ||
    706 				    l->l_priority < best_stopp->l_priority) {
    707 				    	best_stopp = l;
    708 					best_stopq = q;
    709 				}
    710 			}
    711 		}
    712 	}
    713 
    714 	/*
    715 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    716 	 * process.
    717 	 */
    718 	if (best_sleepp != NULL) {
    719 		l = best_sleepp;
    720 		q = best_sleepq;
    721 	} else {
    722 		l = best_stopp;
    723 		q = best_stopq;
    724 	}
    725 
    726 	if (l != NULL) {
    727 		l->l_wchan = NULL;
    728 		*q = l->l_forw;
    729 		if (qp->sq_tailp == &l->l_forw)
    730 			qp->sq_tailp = q;
    731 		if (l->l_stat == LSSLEEP)
    732 			awaken(l);
    733 	}
    734 	SCHED_UNLOCK(s);
    735 }
    736 
    737 /*
    738  * General yield call.  Puts the current process back on its run queue and
    739  * performs a voluntary context switch.
    740  */
    741 void
    742 yield(void)
    743 {
    744 	struct lwp *l = curproc;
    745 	int s;
    746 
    747 	SCHED_LOCK(s);
    748 	l->l_priority = l->l_usrpri;
    749 	l->l_stat = LSRUN;
    750 	setrunqueue(l);
    751 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    752 	mi_switch(l, NULL);
    753 	SCHED_ASSERT_UNLOCKED();
    754 	splx(s);
    755 }
    756 
    757 /*
    758  * General preemption call.  Puts the current process back on its run queue
    759  * and performs an involuntary context switch.  If a process is supplied,
    760  * we switch to that process.  Otherwise, we use the normal process selection
    761  * criteria.
    762  */
    763 
    764 void
    765 preempt(struct lwp *newl)
    766 {
    767 	struct lwp *l = curproc;
    768 	int s;
    769 
    770 	SCHED_LOCK(s);
    771 	l->l_priority = l->l_usrpri;
    772 	l->l_stat = LSRUN;
    773 	setrunqueue(l);
    774 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
    775 	mi_switch(l, newl);
    776 	if (l->l_flag & L_SA)
    777 		sa_upcall(l, SA_UPCALL_PREEMPTED, l, NULL, 0, 0);
    778 	SCHED_ASSERT_UNLOCKED();
    779 	splx(s);
    780 }
    781 
    782 /*
    783  * The machine independent parts of context switch.
    784  * Must be called at splsched() (no higher!) and with
    785  * the sched_lock held.
    786  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    787  * the next lwp.
    788  */
    789 void
    790 mi_switch(struct lwp *l, struct lwp *new)
    791 {
    792 	struct schedstate_percpu *spc;
    793 	struct rlimit *rlim;
    794 	long s, u;
    795 	struct timeval tv;
    796 #if defined(MULTIPROCESSOR)
    797 	int hold_count;
    798 #endif
    799 	struct proc *p = l->l_proc;
    800 
    801 	SCHED_ASSERT_LOCKED();
    802 
    803 #if defined(MULTIPROCESSOR)
    804 	/*
    805 	 * Release the kernel_lock, as we are about to yield the CPU.
    806 	 * The scheduler lock is still held until cpu_switch()
    807 	 * selects a new process and removes it from the run queue.
    808 	 */
    809 	if (p->p_flag & P_BIGLOCK)
    810 		hold_count = spinlock_release_all(&kernel_lock);
    811 #endif
    812 
    813 	KDASSERT(l->l_cpu != NULL);
    814 	KDASSERT(l->l_cpu == curcpu());
    815 
    816 	spc = &l->l_cpu->ci_schedstate;
    817 
    818 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    819 	spinlock_switchcheck();
    820 #endif
    821 #ifdef LOCKDEBUG
    822 	simple_lock_switchcheck();
    823 #endif
    824 
    825 	/*
    826 	 * Compute the amount of time during which the current
    827 	 * process was running, and add that to its total so far.
    828 	 */
    829 	microtime(&tv);
    830 	u = p->p_rtime.tv_usec +
    831 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    832 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    833 	if (u < 0) {
    834 		u += 1000000;
    835 		s--;
    836 	} else if (u >= 1000000) {
    837 		u -= 1000000;
    838 		s++;
    839 	}
    840 	p->p_rtime.tv_usec = u;
    841 	p->p_rtime.tv_sec = s;
    842 
    843 	/*
    844 	 * Check if the process exceeds its cpu resource allocation.
    845 	 * If over max, kill it.  In any case, if it has run for more
    846 	 * than 10 minutes, reduce priority to give others a chance.
    847 	 */
    848 	rlim = &p->p_rlimit[RLIMIT_CPU];
    849 	if (s >= rlim->rlim_cur) {
    850 		/*
    851 		 * XXXSMP: we're inside the scheduler lock perimeter;
    852 		 * use sched_psignal.
    853 		 */
    854 		if (s >= rlim->rlim_max)
    855 			sched_psignal(p, SIGKILL);
    856 		else {
    857 			sched_psignal(p, SIGXCPU);
    858 			if (rlim->rlim_cur < rlim->rlim_max)
    859 				rlim->rlim_cur += 5;
    860 		}
    861 	}
    862 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    863 	    p->p_nice == NZERO) {
    864 		p->p_nice = autoniceval + NZERO;
    865 		resetpriority(l);
    866 	}
    867 
    868 	/*
    869 	 * Process is about to yield the CPU; clear the appropriate
    870 	 * scheduling flags.
    871 	 */
    872 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    873 
    874 	/*
    875 	 * Pick a new current process and switch to it.  When we
    876 	 * run again, we'll return back here.
    877 	 */
    878 	uvmexp.swtch++;
    879 	if (new == NULL)
    880 		cpu_switch(l);
    881 	else
    882 		cpu_preempt(l, new);
    883 
    884 	/*
    885 	 * Make sure that MD code released the scheduler lock before
    886 	 * resuming us.
    887 	 */
    888 	SCHED_ASSERT_UNLOCKED();
    889 
    890 	/*
    891 	 * We're running again; record our new start time.  We might
    892 	 * be running on a new CPU now, so don't use the cache'd
    893 	 * schedstate_percpu pointer.
    894 	 */
    895 	KDASSERT(l->l_cpu != NULL);
    896 	KDASSERT(l->l_cpu == curcpu());
    897 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    898 
    899 #if defined(MULTIPROCESSOR)
    900 	/*
    901 	 * Reacquire the kernel_lock now.  We do this after we've
    902 	 * released the scheduler lock to avoid deadlock, and before
    903 	 * we reacquire the interlock.
    904 	 */
    905 	if (p->p_flag & P_BIGLOCK)
    906 		spinlock_acquire_count(&kernel_lock, hold_count);
    907 #endif
    908 }
    909 
    910 /*
    911  * Initialize the (doubly-linked) run queues
    912  * to be empty.
    913  */
    914 void
    915 rqinit()
    916 {
    917 	int i;
    918 
    919 	for (i = 0; i < RUNQUE_NQS; i++)
    920 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    921 		    (struct lwp *)&sched_qs[i];
    922 }
    923 
    924 /*
    925  * Change process state to be runnable,
    926  * placing it on the run queue if it is in memory,
    927  * and awakening the swapper if it isn't in memory.
    928  */
    929 void
    930 setrunnable(struct lwp *l)
    931 {
    932 	struct proc *p = l->l_proc;
    933 
    934 	SCHED_ASSERT_LOCKED();
    935 
    936 	switch (l->l_stat) {
    937 	case 0:
    938 	case LSRUN:
    939 	case LSONPROC:
    940 	case LSZOMB:
    941 	case LSDEAD:
    942 	default:
    943 		panic("setrunnable");
    944 	case LSSTOP:
    945 		/*
    946 		 * If we're being traced (possibly because someone attached us
    947 		 * while we were stopped), check for a signal from the debugger.
    948 		 */
    949 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    950 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
    951 			CHECKSIGS(p);
    952 		}
    953 	case LSSLEEP:
    954 		unsleep(l);		/* e.g. when sending signals */
    955 		break;
    956 
    957 	case LSIDL:
    958 		break;
    959 	case LSSUSPENDED:
    960 		break;
    961 	}
    962 	l->l_stat = LSRUN;
    963 	if (l->l_flag & L_INMEM)
    964 		setrunqueue(l);
    965 
    966 	if (l->l_slptime > 1)
    967 		updatepri(l);
    968 	l->l_slptime = 0;
    969 	if ((l->l_flag & L_INMEM) == 0)
    970 		wakeup((caddr_t)&proc0);
    971 	else if (l->l_priority < curcpu()->ci_schedstate.spc_curpriority) {
    972 		/*
    973 		 * XXXSMP
    974 		 * This is not exactly right.  Since p->p_cpu persists
    975 		 * across a context switch, this gives us some sort
    976 		 * of processor affinity.  But we need to figure out
    977 		 * at what point it's better to reschedule on a different
    978 		 * CPU than the last one.
    979 		 */
    980 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    981 	}
    982 }
    983 
    984 /*
    985  * Compute the priority of a process when running in user mode.
    986  * Arrange to reschedule if the resulting priority is better
    987  * than that of the current process.
    988  */
    989 void
    990 resetpriority(struct lwp *l)
    991 {
    992 	unsigned int newpriority;
    993 	struct proc *p = l->l_proc;
    994 
    995 	SCHED_ASSERT_LOCKED();
    996 
    997 	newpriority = PUSER + p->p_estcpu +
    998 			NICE_WEIGHT * (p->p_nice - NZERO);
    999 	newpriority = min(newpriority, MAXPRI);
   1000 	l->l_usrpri = newpriority;
   1001 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
   1002 		/*
   1003 		 * XXXSMP
   1004 		 * Same applies as in setrunnable() above.
   1005 		 */
   1006 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
   1007 	}
   1008 }
   1009 
   1010 /*
   1011  * Recompute priority for all LWPs in a process.
   1012  */
   1013 void
   1014 resetprocpriority(struct proc *p)
   1015 {
   1016 	struct lwp *l;
   1017 
   1018 	LIST_FOREACH(l, &p->p_lwps, l_list)
   1019 	    resetpriority(l);
   1020 }
   1021 
   1022 /*
   1023  * We adjust the priority of the current process.  The priority of a process
   1024  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
   1025  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1026  * will compute a different value each time p_estcpu increases. This can
   1027  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1028  * queue will not change.  The cpu usage estimator ramps up quite quickly
   1029  * when the process is running (linearly), and decays away exponentially, at
   1030  * a rate which is proportionally slower when the system is busy.  The basic
   1031  * principle is that the system will 90% forget that the process used a lot
   1032  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1033  * processes which haven't run much recently, and to round-robin among other
   1034  * processes.
   1035  */
   1036 
   1037 void
   1038 schedclock(struct lwp *l)
   1039 {
   1040 	struct proc *p = l->l_proc;
   1041 	int s;
   1042 
   1043 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1044 	SCHED_LOCK(s);
   1045 	resetpriority(l);
   1046 	SCHED_UNLOCK(s);
   1047 
   1048 	if (l->l_priority >= PUSER)
   1049 		l->l_priority = l->l_usrpri;
   1050 }
   1051 
   1052 void
   1053 suspendsched()
   1054 {
   1055 	struct lwp *l;
   1056 	int s;
   1057 
   1058 	/*
   1059 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1060 	 * LSSUSPENDED.
   1061 	 */
   1062 	proclist_lock_read();
   1063 	SCHED_LOCK(s);
   1064 	for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l, l_list)) {
   1065 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1066 			continue;
   1067 
   1068 		switch (l->l_stat) {
   1069 		case LSRUN:
   1070 			if ((l->l_flag & L_INMEM) != 0)
   1071 				remrunqueue(l);
   1072 			/* FALLTHROUGH */
   1073 		case LSSLEEP:
   1074 			l->l_stat = LSSUSPENDED;
   1075 			break;
   1076 		case LSONPROC:
   1077 			/*
   1078 			 * XXX SMP: we need to deal with processes on
   1079 			 * others CPU !
   1080 			 */
   1081 			break;
   1082 		default:
   1083 			break;
   1084 		}
   1085 	}
   1086 	SCHED_UNLOCK(s);
   1087 	proclist_unlock_read();
   1088 }
   1089 
   1090 
   1091