kern_synch.c revision 1.101.2.15 1 /* $NetBSD: kern_synch.c,v 1.101.2.15 2002/07/12 01:40:19 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.101.2.15 2002/07/12 01:40:19 nathanw Exp $");
82
83 #include "opt_ddb.h"
84 #include "opt_ktrace.h"
85 #include "opt_lockdebug.h"
86 #include "opt_multiprocessor.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/proc.h>
92 #include <sys/kernel.h>
93 #include <sys/buf.h>
94 #include <sys/signalvar.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sched.h>
97 #include <sys/sa.h>
98 #include <sys/savar.h>
99
100 #include <uvm/uvm_extern.h>
101
102 #ifdef KTRACE
103 #include <sys/ktrace.h>
104 #endif
105
106 #include <machine/cpu.h>
107
108 int lbolt; /* once a second sleep address */
109 int rrticks; /* number of hardclock ticks per roundrobin() */
110
111 /*
112 * The global scheduler state.
113 */
114 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
115 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
116 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
117
118 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
119
120 void schedcpu(void *);
121 void updatepri(struct lwp *);
122 void endtsleep(void *);
123
124 __inline void awaken(struct lwp *);
125
126 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
127
128
129
130 /*
131 * Force switch among equal priority processes every 100ms.
132 * Called from hardclock every hz/10 == rrticks hardclock ticks.
133 */
134 /* ARGSUSED */
135 void
136 roundrobin(struct cpu_info *ci)
137 {
138 struct schedstate_percpu *spc = &ci->ci_schedstate;
139
140 spc->spc_rrticks = rrticks;
141
142 if (curlwp != NULL) {
143 if (spc->spc_flags & SPCF_SEENRR) {
144 /*
145 * The process has already been through a roundrobin
146 * without switching and may be hogging the CPU.
147 * Indicate that the process should yield.
148 */
149 spc->spc_flags |= SPCF_SHOULDYIELD;
150 } else
151 spc->spc_flags |= SPCF_SEENRR;
152 }
153 need_resched(curcpu());
154 }
155
156 /*
157 * Constants for digital decay and forget:
158 * 90% of (p_estcpu) usage in 5 * loadav time
159 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
160 * Note that, as ps(1) mentions, this can let percentages
161 * total over 100% (I've seen 137.9% for 3 processes).
162 *
163 * Note that hardclock updates p_estcpu and p_cpticks independently.
164 *
165 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
166 * That is, the system wants to compute a value of decay such
167 * that the following for loop:
168 * for (i = 0; i < (5 * loadavg); i++)
169 * p_estcpu *= decay;
170 * will compute
171 * p_estcpu *= 0.1;
172 * for all values of loadavg:
173 *
174 * Mathematically this loop can be expressed by saying:
175 * decay ** (5 * loadavg) ~= .1
176 *
177 * The system computes decay as:
178 * decay = (2 * loadavg) / (2 * loadavg + 1)
179 *
180 * We wish to prove that the system's computation of decay
181 * will always fulfill the equation:
182 * decay ** (5 * loadavg) ~= .1
183 *
184 * If we compute b as:
185 * b = 2 * loadavg
186 * then
187 * decay = b / (b + 1)
188 *
189 * We now need to prove two things:
190 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
191 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
192 *
193 * Facts:
194 * For x close to zero, exp(x) =~ 1 + x, since
195 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
196 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
197 * For x close to zero, ln(1+x) =~ x, since
198 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
199 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
200 * ln(.1) =~ -2.30
201 *
202 * Proof of (1):
203 * Solve (factor)**(power) =~ .1 given power (5*loadav):
204 * solving for factor,
205 * ln(factor) =~ (-2.30/5*loadav), or
206 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
207 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
208 *
209 * Proof of (2):
210 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
211 * solving for power,
212 * power*ln(b/(b+1)) =~ -2.30, or
213 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
214 *
215 * Actual power values for the implemented algorithm are as follows:
216 * loadav: 1 2 3 4
217 * power: 5.68 10.32 14.94 19.55
218 */
219
220 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
221 #define loadfactor(loadav) (2 * (loadav))
222 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
223
224 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
225 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
226
227 /*
228 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
229 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
230 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
231 *
232 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
233 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
234 *
235 * If you dont want to bother with the faster/more-accurate formula, you
236 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
237 * (more general) method of calculating the %age of CPU used by a process.
238 */
239 #define CCPU_SHIFT 11
240
241 /*
242 * Recompute process priorities, every hz ticks.
243 */
244 /* ARGSUSED */
245 void
246 schedcpu(void *arg)
247 {
248 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
249 struct lwp *l;
250 struct proc *p;
251 int s, s1;
252 unsigned int newcpu;
253 int clkhz;
254
255 proclist_lock_read();
256 for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l,l_list)) {
257 /*
258 * Increment time in/out of memory and sleep time
259 * (if sleeping). We ignore overflow; with 16-bit int's
260 * (remember them?) overflow takes 45 days.
261 */
262 p = l->l_proc;
263 l->l_swtime++;
264 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
265 l->l_stat == LSSUSPENDED)
266 l->l_slptime++;
267 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
268 /*
269 * If the process has slept the entire second,
270 * stop recalculating its priority until it wakes up.
271 */
272 if (l->l_slptime > 1)
273 continue;
274 s = splstatclock(); /* prevent state changes */
275 /*
276 * p_pctcpu is only for ps.
277 */
278 clkhz = stathz != 0 ? stathz : hz;
279 #if (FSHIFT >= CCPU_SHIFT)
280 p->p_pctcpu += (clkhz == 100)?
281 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
282 100 * (((fixpt_t) p->p_cpticks)
283 << (FSHIFT - CCPU_SHIFT)) / clkhz;
284 #else
285 l->l_pctcpu += ((FSCALE - ccpu) *
286 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
287 #endif
288 p->p_cpticks = 0;
289 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
290 p->p_estcpu = newcpu;
291 SCHED_LOCK(s1);
292 resetpriority(l);
293 if (l->l_priority >= PUSER) {
294 if (l->l_stat == LSRUN &&
295 (l->l_flag & L_INMEM) &&
296 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
297 remrunqueue(l);
298 l->l_priority = l->l_usrpri;
299 setrunqueue(l);
300 } else
301 l->l_priority = l->l_usrpri;
302 }
303 SCHED_UNLOCK(s1);
304 splx(s);
305 }
306 proclist_unlock_read();
307 uvm_meter();
308 wakeup((caddr_t)&lbolt);
309 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
310 }
311
312 /*
313 * Recalculate the priority of a process after it has slept for a while.
314 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
315 * least six times the loadfactor will decay p_estcpu to zero.
316 */
317 void
318 updatepri(struct lwp *l)
319 {
320 struct proc *p = l->l_proc;
321 unsigned int newcpu;
322 fixpt_t loadfac;
323
324 SCHED_ASSERT_LOCKED();
325
326 newcpu = p->p_estcpu;
327 loadfac = loadfactor(averunnable.ldavg[0]);
328
329 if (l->l_slptime > 5 * loadfac)
330 p->p_estcpu = 0; /* XXX NJWLWP */
331 else {
332 l->l_slptime--; /* the first time was done in schedcpu */
333 while (newcpu && --l->l_slptime)
334 newcpu = (int) decay_cpu(loadfac, newcpu);
335 p->p_estcpu = newcpu;
336 }
337 resetpriority(l);
338 }
339
340 /*
341 * During autoconfiguration or after a panic, a sleep will simply
342 * lower the priority briefly to allow interrupts, then return.
343 * The priority to be used (safepri) is machine-dependent, thus this
344 * value is initialized and maintained in the machine-dependent layers.
345 * This priority will typically be 0, or the lowest priority
346 * that is safe for use on the interrupt stack; it can be made
347 * higher to block network software interrupts after panics.
348 */
349 int safepri;
350
351 /*
352 * General sleep call. Suspends the current process until a wakeup is
353 * performed on the specified identifier. The process will then be made
354 * runnable with the specified priority. Sleeps at most timo/hz seconds
355 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
356 * before and after sleeping, else signals are not checked. Returns 0 if
357 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
358 * signal needs to be delivered, ERESTART is returned if the current system
359 * call should be restarted if possible, and EINTR is returned if the system
360 * call should be interrupted by the signal (return EINTR).
361 *
362 * The interlock is held until the scheduler_slock is acquired. The
363 * interlock will be locked before returning back to the caller
364 * unless the PNORELOCK flag is specified, in which case the
365 * interlock will always be unlocked upon return.
366 */
367 int
368 ltsleep(void *ident, int priority, const char *wmesg, int timo,
369 __volatile struct simplelock *interlock)
370 {
371 struct lwp *l = curlwp;
372 struct proc *p = l->l_proc;
373 struct slpque *qp;
374 int sig, s;
375 int catch = priority & PCATCH;
376 int relock = (priority & PNORELOCK) == 0;
377 int exiterr = (priority & PNOEXITERR) == 0;
378
379 /*
380 * XXXSMP
381 * This is probably bogus. Figure out what the right
382 * thing to do here really is.
383 * Note that not sleeping if ltsleep is called with curlwp == NULL
384 * in the shutdown case is disgusting but partly necessary given
385 * how shutdown (barely) works.
386 */
387 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
388 /*
389 * After a panic, or during autoconfiguration,
390 * just give interrupts a chance, then just return;
391 * don't run any other procs or panic below,
392 * in case this is the idle process and already asleep.
393 */
394 s = splhigh();
395 splx(safepri);
396 splx(s);
397 if (interlock != NULL && relock == 0)
398 simple_unlock(interlock);
399 return (0);
400 }
401
402 KASSERT(p != NULL);
403 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
404
405 #ifdef KTRACE
406 if (KTRPOINT(p, KTR_CSW))
407 ktrcsw(p, 1, 0);
408 #endif
409
410 SCHED_LOCK(s);
411
412 #ifdef DIAGNOSTIC
413 if (ident == NULL)
414 panic("ltsleep: ident == NULL");
415 if (l->l_stat != LSONPROC)
416 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
417 if (l->l_back != NULL)
418 panic("ltsleep: p_back != NULL");
419 #endif
420
421 l->l_wchan = ident;
422 l->l_wmesg = wmesg;
423 l->l_slptime = 0;
424 l->l_priority = priority & PRIMASK;
425
426 qp = SLPQUE(ident);
427 if (qp->sq_head == 0)
428 qp->sq_head = l;
429 else {
430 *qp->sq_tailp = l;
431 }
432 *(qp->sq_tailp = &l->l_forw) = 0;
433
434 if (timo)
435 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
436
437 /*
438 * We can now release the interlock; the scheduler_slock
439 * is held, so a thread can't get in to do wakeup() before
440 * we do the switch.
441 *
442 * XXX We leave the code block here, after inserting ourselves
443 * on the sleep queue, because we might want a more clever
444 * data structure for the sleep queues at some point.
445 */
446 if (interlock != NULL)
447 simple_unlock(interlock);
448
449 /*
450 * We put ourselves on the sleep queue and start our timeout
451 * before calling CURSIG, as we could stop there, and a wakeup
452 * or a SIGCONT (or both) could occur while we were stopped.
453 * A SIGCONT would cause us to be marked as SSLEEP
454 * without resuming us, thus we must be ready for sleep
455 * when CURSIG is called. If the wakeup happens while we're
456 * stopped, p->p_wchan will be 0 upon return from CURSIG.
457 */
458 if (catch) {
459 l->l_flag |= L_SINTR;
460 if ((sig = CURSIG(l)) != 0) {
461 if (l->l_wchan != NULL)
462 unsleep(l);
463 l->l_stat = LSONPROC;
464 SCHED_UNLOCK(s);
465 goto resume;
466 }
467 if (l->l_wchan == NULL) {
468 catch = 0;
469 SCHED_UNLOCK(s);
470 goto resume;
471 }
472 } else
473 sig = 0;
474 l->l_stat = LSSLEEP;
475 p->p_nrlwps--;
476 p->p_stats->p_ru.ru_nvcsw++;
477 SCHED_ASSERT_LOCKED();
478 if (l->l_flag & L_SA)
479 sa_switch(l, SA_UPCALL_BLOCKED);
480 else
481 mi_switch(l, NULL);
482
483 #if defined(DDB) && !defined(GPROF)
484 /* handy breakpoint location after process "wakes" */
485 __asm(".globl bpendtsleep ; bpendtsleep:");
486 #endif
487 /* p->p_nrlwps is incremented by whoever made us runnable again,
488 * either setrunnable() or awaken().
489 */
490
491 SCHED_ASSERT_UNLOCKED();
492 splx(s);
493
494 resume:
495 KDASSERT(l->l_cpu != NULL);
496 KDASSERT(l->l_cpu == curcpu());
497 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
498
499 l->l_flag &= ~L_SINTR;
500 if (l->l_flag & L_TIMEOUT) {
501 l->l_flag &= ~L_TIMEOUT;
502 if (sig == 0) {
503 #ifdef KTRACE
504 if (KTRPOINT(p, KTR_CSW))
505 ktrcsw(p, 0, 0);
506 #endif
507 if (relock && interlock != NULL)
508 simple_lock(interlock);
509 return (EWOULDBLOCK);
510 }
511 } else if (timo)
512 callout_stop(&l->l_tsleep_ch);
513 if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
514 #ifdef KTRACE
515 if (KTRPOINT(p, KTR_CSW))
516 ktrcsw(p, 0, 0);
517 #endif
518 if (relock && interlock != NULL)
519 simple_lock(interlock);
520 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
521 return (EINTR);
522 return (ERESTART);
523 }
524 /* XXXNJW this is very much a kluge.
525 * revisit. a better way of preventing looping/hanging syscalls like
526 * wait4() and _lwp_wait() from wedging an exiting process
527 * would be preferred.
528 */
529 if (catch && ((p->p_flag & P_WEXIT) && exiterr))
530 return (EINTR);
531 #ifdef KTRACE
532 if (KTRPOINT(p, KTR_CSW))
533 ktrcsw(p, 0, 0);
534 #endif
535 if (relock && interlock != NULL)
536 simple_lock(interlock);
537 return (0);
538 }
539
540 /*
541 * Implement timeout for tsleep.
542 * If process hasn't been awakened (wchan non-zero),
543 * set timeout flag and undo the sleep. If proc
544 * is stopped, just unsleep so it will remain stopped.
545 */
546 void
547 endtsleep(void *arg)
548 {
549 struct lwp *l;
550 int s;
551
552 l = (struct lwp *)arg;
553 SCHED_LOCK(s);
554 if (l->l_wchan) {
555 if (l->l_stat == LSSLEEP)
556 setrunnable(l);
557 else
558 unsleep(l);
559 l->l_flag |= L_TIMEOUT;
560 }
561 SCHED_UNLOCK(s);
562 }
563
564 /*
565 * Remove a process from its wait queue
566 */
567 void
568 unsleep(struct lwp *l)
569 {
570 struct slpque *qp;
571 struct lwp **hp;
572
573 SCHED_ASSERT_LOCKED();
574
575 if (l->l_wchan) {
576 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
577 while (*hp != l)
578 hp = &(*hp)->l_forw;
579 *hp = l->l_forw;
580 if (qp->sq_tailp == &l->l_forw)
581 qp->sq_tailp = hp;
582 l->l_wchan = 0;
583 }
584 }
585
586 /*
587 * Optimized-for-wakeup() version of setrunnable().
588 */
589 __inline void
590 awaken(struct lwp *l)
591 {
592
593 SCHED_ASSERT_LOCKED();
594
595 if (l->l_slptime > 1)
596 updatepri(l);
597 l->l_slptime = 0;
598 l->l_stat = LSRUN;
599 l->l_proc->p_nrlwps++;
600 /*
601 * Since curpriority is a user priority, p->p_priority
602 * is always better than curpriority.
603 */
604 if (l->l_flag & L_INMEM) {
605 setrunqueue(l);
606 KASSERT(l->l_cpu != NULL);
607 need_resched(l->l_cpu);
608 } else
609 sched_wakeup(&proc0);
610 }
611
612 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
613 void
614 sched_unlock_idle(void)
615 {
616
617 simple_unlock(&sched_lock);
618 }
619
620 void
621 sched_lock_idle(void)
622 {
623
624 simple_lock(&sched_lock);
625 }
626 #endif /* MULTIPROCESSOR || LOCKDEBUG */
627
628 /*
629 * Make all processes sleeping on the specified identifier runnable.
630 */
631
632 void
633 wakeup(void *ident)
634 {
635 int s;
636
637 SCHED_ASSERT_UNLOCKED();
638
639 SCHED_LOCK(s);
640 sched_wakeup(ident);
641 SCHED_UNLOCK(s);
642 }
643
644 void
645 sched_wakeup(void *ident)
646 {
647 struct slpque *qp;
648 struct lwp *l, **q;
649
650 SCHED_ASSERT_LOCKED();
651
652 qp = SLPQUE(ident);
653 restart:
654 for (q = &qp->sq_head; (l = *q) != NULL; ) {
655 #ifdef DIAGNOSTIC
656 if (l->l_back || (l->l_stat != LSSLEEP &&
657 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
658 panic("wakeup");
659 #endif
660 if (l->l_wchan == ident) {
661 l->l_wchan = 0;
662 *q = l->l_forw;
663 if (qp->sq_tailp == &l->l_forw)
664 qp->sq_tailp = q;
665 if (l->l_stat == LSSLEEP) {
666 awaken(l);
667 goto restart;
668 }
669 } else
670 q = &l->l_forw;
671 }
672 }
673
674 /*
675 * Make the highest priority process first in line on the specified
676 * identifier runnable.
677 */
678 void
679 wakeup_one(void *ident)
680 {
681 struct slpque *qp;
682 struct lwp *l, **q;
683 struct lwp *best_sleepp, **best_sleepq;
684 struct lwp *best_stopp, **best_stopq;
685 int s;
686
687 best_sleepp = best_stopp = NULL;
688 best_sleepq = best_stopq = NULL;
689
690 SCHED_LOCK(s);
691
692 qp = SLPQUE(ident);
693
694 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
695 #ifdef DIAGNOSTIC
696 if (l->l_back || (l->l_stat != LSSLEEP &&
697 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
698 panic("wakeup_one");
699 #endif
700 if (l->l_wchan == ident) {
701 if (l->l_stat == LSSLEEP) {
702 if (best_sleepp == NULL ||
703 l->l_priority < best_sleepp->l_priority) {
704 best_sleepp = l;
705 best_sleepq = q;
706 }
707 } else {
708 if (best_stopp == NULL ||
709 l->l_priority < best_stopp->l_priority) {
710 best_stopp = l;
711 best_stopq = q;
712 }
713 }
714 }
715 }
716
717 /*
718 * Consider any SSLEEP process higher than the highest priority SSTOP
719 * process.
720 */
721 if (best_sleepp != NULL) {
722 l = best_sleepp;
723 q = best_sleepq;
724 } else {
725 l = best_stopp;
726 q = best_stopq;
727 }
728
729 if (l != NULL) {
730 l->l_wchan = NULL;
731 *q = l->l_forw;
732 if (qp->sq_tailp == &l->l_forw)
733 qp->sq_tailp = q;
734 if (l->l_stat == LSSLEEP)
735 awaken(l);
736 }
737 SCHED_UNLOCK(s);
738 }
739
740 /*
741 * General yield call. Puts the current process back on its run queue and
742 * performs a voluntary context switch.
743 */
744 void
745 yield(void)
746 {
747 struct lwp *l = curlwp;
748 int s;
749
750 SCHED_LOCK(s);
751 l->l_priority = l->l_usrpri;
752 l->l_stat = LSRUN;
753 setrunqueue(l);
754 l->l_proc->p_stats->p_ru.ru_nvcsw++;
755 mi_switch(l, NULL);
756 SCHED_ASSERT_UNLOCKED();
757 splx(s);
758 }
759
760 /*
761 * General preemption call. Puts the current process back on its run queue
762 * and performs an involuntary context switch. If a process is supplied,
763 * we switch to that process. Otherwise, we use the normal process selection
764 * criteria.
765 */
766
767 void
768 preempt(struct lwp *newl)
769 {
770 struct lwp *l = curlwp;
771 int r, s;
772
773 if (l->l_flag & L_SA) {
774 SCHED_LOCK(s);
775 l->l_priority = l->l_usrpri;
776 l->l_stat = LSRUN;
777 setrunqueue(l);
778 l->l_proc->p_stats->p_ru.ru_nivcsw++;
779 r = mi_switch(l, newl);
780 SCHED_ASSERT_UNLOCKED();
781 splx(s);
782 if (r != 0)
783 sa_upcall(l, SA_UPCALL_PREEMPTED, l, NULL, 0, NULL);
784 } else {
785 SCHED_LOCK(s);
786 l->l_priority = l->l_usrpri;
787 l->l_stat = LSRUN;
788 setrunqueue(l);
789 l->l_proc->p_stats->p_ru.ru_nivcsw++;
790 mi_switch(l, newl);
791 SCHED_ASSERT_UNLOCKED();
792 splx(s);
793 }
794
795 }
796
797 /*
798 * The machine independent parts of context switch.
799 * Must be called at splsched() (no higher!) and with
800 * the sched_lock held.
801 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
802 * the next lwp.
803 *
804 * Returns 1 if another process was actually run.
805 */
806 int
807 mi_switch(struct lwp *l, struct lwp *new)
808 {
809 struct schedstate_percpu *spc;
810 struct rlimit *rlim;
811 long s, u;
812 struct timeval tv;
813 #if defined(MULTIPROCESSOR)
814 int hold_count;
815 #endif
816 struct proc *p = l->l_proc;
817 int retval;
818
819 SCHED_ASSERT_LOCKED();
820
821 #if defined(MULTIPROCESSOR)
822 /*
823 * Release the kernel_lock, as we are about to yield the CPU.
824 * The scheduler lock is still held until cpu_switch()
825 * selects a new process and removes it from the run queue.
826 */
827 if (p->p_flag & P_BIGLOCK)
828 hold_count = spinlock_release_all(&kernel_lock);
829 #endif
830
831 KDASSERT(l->l_cpu != NULL);
832 KDASSERT(l->l_cpu == curcpu());
833
834 spc = &l->l_cpu->ci_schedstate;
835
836 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
837 spinlock_switchcheck();
838 #endif
839 #ifdef LOCKDEBUG
840 simple_lock_switchcheck();
841 #endif
842
843 /*
844 * Compute the amount of time during which the current
845 * process was running, and add that to its total so far.
846 */
847 microtime(&tv);
848 u = p->p_rtime.tv_usec +
849 (tv.tv_usec - spc->spc_runtime.tv_usec);
850 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
851 if (u < 0) {
852 u += 1000000;
853 s--;
854 } else if (u >= 1000000) {
855 u -= 1000000;
856 s++;
857 }
858 p->p_rtime.tv_usec = u;
859 p->p_rtime.tv_sec = s;
860
861 /*
862 * Check if the process exceeds its cpu resource allocation.
863 * If over max, kill it. In any case, if it has run for more
864 * than 10 minutes, reduce priority to give others a chance.
865 */
866 rlim = &p->p_rlimit[RLIMIT_CPU];
867 if (s >= rlim->rlim_cur) {
868 /*
869 * XXXSMP: we're inside the scheduler lock perimeter;
870 * use sched_psignal.
871 */
872 if (s >= rlim->rlim_max)
873 sched_psignal(p, SIGKILL);
874 else {
875 sched_psignal(p, SIGXCPU);
876 if (rlim->rlim_cur < rlim->rlim_max)
877 rlim->rlim_cur += 5;
878 }
879 }
880 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
881 p->p_nice == NZERO) {
882 p->p_nice = autoniceval + NZERO;
883 resetpriority(l);
884 }
885
886 /*
887 * Process is about to yield the CPU; clear the appropriate
888 * scheduling flags.
889 */
890 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
891
892 /*
893 * Pick a new current process and switch to it. When we
894 * run again, we'll return back here.
895 */
896 uvmexp.swtch++;
897 if (new == NULL) {
898 retval = cpu_switch(l);
899 } else {
900 cpu_preempt(l, new);
901 retval = 0;
902 }
903
904 /*
905 * Make sure that MD code released the scheduler lock before
906 * resuming us.
907 */
908 SCHED_ASSERT_UNLOCKED();
909
910 /*
911 * We're running again; record our new start time. We might
912 * be running on a new CPU now, so don't use the cache'd
913 * schedstate_percpu pointer.
914 */
915 KDASSERT(l->l_cpu != NULL);
916 KDASSERT(l->l_cpu == curcpu());
917 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
918
919 #if defined(MULTIPROCESSOR)
920 /*
921 * Reacquire the kernel_lock now. We do this after we've
922 * released the scheduler lock to avoid deadlock, and before
923 * we reacquire the interlock.
924 */
925 if (p->p_flag & P_BIGLOCK)
926 spinlock_acquire_count(&kernel_lock, hold_count);
927 #endif
928
929 return retval;
930 }
931
932 /*
933 * Initialize the (doubly-linked) run queues
934 * to be empty.
935 */
936 void
937 rqinit()
938 {
939 int i;
940
941 for (i = 0; i < RUNQUE_NQS; i++)
942 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
943 (struct lwp *)&sched_qs[i];
944 }
945
946 /*
947 * Change process state to be runnable,
948 * placing it on the run queue if it is in memory,
949 * and awakening the swapper if it isn't in memory.
950 */
951 void
952 setrunnable(struct lwp *l)
953 {
954 struct proc *p = l->l_proc;
955
956 SCHED_ASSERT_LOCKED();
957
958 switch (l->l_stat) {
959 case 0:
960 case LSRUN:
961 case LSONPROC:
962 case LSZOMB:
963 case LSDEAD:
964 default:
965 panic("setrunnable");
966 case LSSTOP:
967 /*
968 * If we're being traced (possibly because someone attached us
969 * while we were stopped), check for a signal from the debugger.
970 */
971 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
972 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
973 CHECKSIGS(p);
974 }
975 case LSSLEEP:
976 unsleep(l); /* e.g. when sending signals */
977 break;
978
979 case LSIDL:
980 break;
981 case LSSUSPENDED:
982 break;
983 }
984 l->l_stat = LSRUN;
985 p->p_nrlwps++;
986
987 if (l->l_flag & L_INMEM)
988 setrunqueue(l);
989
990 if (l->l_slptime > 1)
991 updatepri(l);
992 l->l_slptime = 0;
993 if ((l->l_flag & L_INMEM) == 0)
994 wakeup((caddr_t)&proc0);
995 else if (l->l_priority < curcpu()->ci_schedstate.spc_curpriority) {
996 /*
997 * XXXSMP
998 * This is not exactly right. Since p->p_cpu persists
999 * across a context switch, this gives us some sort
1000 * of processor affinity. But we need to figure out
1001 * at what point it's better to reschedule on a different
1002 * CPU than the last one.
1003 */
1004 need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
1005 }
1006 }
1007
1008 /*
1009 * Compute the priority of a process when running in user mode.
1010 * Arrange to reschedule if the resulting priority is better
1011 * than that of the current process.
1012 */
1013 void
1014 resetpriority(struct lwp *l)
1015 {
1016 unsigned int newpriority;
1017 struct proc *p = l->l_proc;
1018
1019 SCHED_ASSERT_LOCKED();
1020
1021 newpriority = PUSER + p->p_estcpu +
1022 NICE_WEIGHT * (p->p_nice - NZERO);
1023 newpriority = min(newpriority, MAXPRI);
1024 l->l_usrpri = newpriority;
1025 if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
1026 /*
1027 * XXXSMP
1028 * Same applies as in setrunnable() above.
1029 */
1030 need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
1031 }
1032 }
1033
1034 /*
1035 * Recompute priority for all LWPs in a process.
1036 */
1037 void
1038 resetprocpriority(struct proc *p)
1039 {
1040 struct lwp *l;
1041
1042 LIST_FOREACH(l, &p->p_lwps, l_list)
1043 resetpriority(l);
1044 }
1045
1046 /*
1047 * We adjust the priority of the current process. The priority of a process
1048 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1049 * is increased here. The formula for computing priorities (in kern_synch.c)
1050 * will compute a different value each time p_estcpu increases. This can
1051 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1052 * queue will not change. The cpu usage estimator ramps up quite quickly
1053 * when the process is running (linearly), and decays away exponentially, at
1054 * a rate which is proportionally slower when the system is busy. The basic
1055 * principle is that the system will 90% forget that the process used a lot
1056 * of CPU time in 5 * loadav seconds. This causes the system to favor
1057 * processes which haven't run much recently, and to round-robin among other
1058 * processes.
1059 */
1060
1061 void
1062 schedclock(struct lwp *l)
1063 {
1064 struct proc *p = l->l_proc;
1065 int s;
1066
1067 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1068 SCHED_LOCK(s);
1069 resetpriority(l);
1070 SCHED_UNLOCK(s);
1071
1072 if (l->l_priority >= PUSER)
1073 l->l_priority = l->l_usrpri;
1074 }
1075
1076 void
1077 suspendsched()
1078 {
1079 struct lwp *l;
1080 int s;
1081
1082 /*
1083 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1084 * LSSUSPENDED.
1085 */
1086 proclist_lock_read();
1087 SCHED_LOCK(s);
1088 for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l, l_list)) {
1089 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1090 continue;
1091
1092 switch (l->l_stat) {
1093 case LSRUN:
1094 l->l_proc->p_nrlwps--;
1095 if ((l->l_flag & L_INMEM) != 0)
1096 remrunqueue(l);
1097 /* FALLTHROUGH */
1098 case LSSLEEP:
1099 l->l_stat = LSSUSPENDED;
1100 break;
1101 case LSONPROC:
1102 /*
1103 * XXX SMP: we need to deal with processes on
1104 * others CPU !
1105 */
1106 break;
1107 default:
1108 break;
1109 }
1110 }
1111 SCHED_UNLOCK(s);
1112 proclist_unlock_read();
1113 }
1114
1115
1116