kern_synch.c revision 1.101.2.16 1 /* $NetBSD: kern_synch.c,v 1.101.2.16 2002/07/17 19:55:41 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.101.2.16 2002/07/17 19:55:41 nathanw Exp $");
82
83 #include "opt_ddb.h"
84 #include "opt_ktrace.h"
85 #include "opt_lockdebug.h"
86 #include "opt_multiprocessor.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/proc.h>
92 #include <sys/kernel.h>
93 #include <sys/buf.h>
94 #include <sys/signalvar.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sched.h>
97 #include <sys/sa.h>
98 #include <sys/savar.h>
99
100 #include <uvm/uvm_extern.h>
101
102 #ifdef KTRACE
103 #include <sys/ktrace.h>
104 #endif
105
106 #include <machine/cpu.h>
107
108 int lbolt; /* once a second sleep address */
109 int rrticks; /* number of hardclock ticks per roundrobin() */
110
111 /*
112 * The global scheduler state.
113 */
114 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
115 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
116 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
117
118 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
119
120 void schedcpu(void *);
121 void updatepri(struct lwp *);
122 void endtsleep(void *);
123
124 __inline void awaken(struct lwp *);
125
126 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
127
128
129
130 /*
131 * Force switch among equal priority processes every 100ms.
132 * Called from hardclock every hz/10 == rrticks hardclock ticks.
133 */
134 /* ARGSUSED */
135 void
136 roundrobin(struct cpu_info *ci)
137 {
138 struct schedstate_percpu *spc = &ci->ci_schedstate;
139
140 spc->spc_rrticks = rrticks;
141
142 if (curlwp != NULL) {
143 if (spc->spc_flags & SPCF_SEENRR) {
144 /*
145 * The process has already been through a roundrobin
146 * without switching and may be hogging the CPU.
147 * Indicate that the process should yield.
148 */
149 spc->spc_flags |= SPCF_SHOULDYIELD;
150 } else
151 spc->spc_flags |= SPCF_SEENRR;
152 }
153 need_resched(curcpu());
154 }
155
156 /*
157 * Constants for digital decay and forget:
158 * 90% of (p_estcpu) usage in 5 * loadav time
159 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
160 * Note that, as ps(1) mentions, this can let percentages
161 * total over 100% (I've seen 137.9% for 3 processes).
162 *
163 * Note that hardclock updates p_estcpu and p_cpticks independently.
164 *
165 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
166 * That is, the system wants to compute a value of decay such
167 * that the following for loop:
168 * for (i = 0; i < (5 * loadavg); i++)
169 * p_estcpu *= decay;
170 * will compute
171 * p_estcpu *= 0.1;
172 * for all values of loadavg:
173 *
174 * Mathematically this loop can be expressed by saying:
175 * decay ** (5 * loadavg) ~= .1
176 *
177 * The system computes decay as:
178 * decay = (2 * loadavg) / (2 * loadavg + 1)
179 *
180 * We wish to prove that the system's computation of decay
181 * will always fulfill the equation:
182 * decay ** (5 * loadavg) ~= .1
183 *
184 * If we compute b as:
185 * b = 2 * loadavg
186 * then
187 * decay = b / (b + 1)
188 *
189 * We now need to prove two things:
190 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
191 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
192 *
193 * Facts:
194 * For x close to zero, exp(x) =~ 1 + x, since
195 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
196 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
197 * For x close to zero, ln(1+x) =~ x, since
198 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
199 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
200 * ln(.1) =~ -2.30
201 *
202 * Proof of (1):
203 * Solve (factor)**(power) =~ .1 given power (5*loadav):
204 * solving for factor,
205 * ln(factor) =~ (-2.30/5*loadav), or
206 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
207 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
208 *
209 * Proof of (2):
210 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
211 * solving for power,
212 * power*ln(b/(b+1)) =~ -2.30, or
213 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
214 *
215 * Actual power values for the implemented algorithm are as follows:
216 * loadav: 1 2 3 4
217 * power: 5.68 10.32 14.94 19.55
218 */
219
220 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
221 #define loadfactor(loadav) (2 * (loadav))
222 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
223
224 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
225 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
226
227 /*
228 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
229 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
230 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
231 *
232 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
233 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
234 *
235 * If you dont want to bother with the faster/more-accurate formula, you
236 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
237 * (more general) method of calculating the %age of CPU used by a process.
238 */
239 #define CCPU_SHIFT 11
240
241 /*
242 * Recompute process priorities, every hz ticks.
243 */
244 /* ARGSUSED */
245 void
246 schedcpu(void *arg)
247 {
248 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
249 struct lwp *l;
250 struct proc *p;
251 int s, s1;
252 unsigned int newcpu;
253 int clkhz;
254
255 proclist_lock_read();
256 for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l,l_list)) {
257 /*
258 * Increment time in/out of memory and sleep time
259 * (if sleeping). We ignore overflow; with 16-bit int's
260 * (remember them?) overflow takes 45 days.
261 */
262 p = l->l_proc;
263 l->l_swtime++;
264 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
265 l->l_stat == LSSUSPENDED)
266 l->l_slptime++;
267 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
268 /*
269 * If the process has slept the entire second,
270 * stop recalculating its priority until it wakes up.
271 */
272 if (l->l_slptime > 1)
273 continue;
274 s = splstatclock(); /* prevent state changes */
275 /*
276 * p_pctcpu is only for ps.
277 */
278 clkhz = stathz != 0 ? stathz : hz;
279 #if (FSHIFT >= CCPU_SHIFT)
280 p->p_pctcpu += (clkhz == 100)?
281 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
282 100 * (((fixpt_t) p->p_cpticks)
283 << (FSHIFT - CCPU_SHIFT)) / clkhz;
284 #else
285 l->l_pctcpu += ((FSCALE - ccpu) *
286 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
287 #endif
288 p->p_cpticks = 0;
289 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
290 p->p_estcpu = newcpu;
291 SCHED_LOCK(s1);
292 resetpriority(l);
293 if (l->l_priority >= PUSER) {
294 if (l->l_stat == LSRUN &&
295 (l->l_flag & L_INMEM) &&
296 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
297 remrunqueue(l);
298 l->l_priority = l->l_usrpri;
299 setrunqueue(l);
300 } else
301 l->l_priority = l->l_usrpri;
302 }
303 SCHED_UNLOCK(s1);
304 splx(s);
305 }
306 proclist_unlock_read();
307 uvm_meter();
308 wakeup((caddr_t)&lbolt);
309 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
310 }
311
312 /*
313 * Recalculate the priority of a process after it has slept for a while.
314 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
315 * least six times the loadfactor will decay p_estcpu to zero.
316 */
317 void
318 updatepri(struct lwp *l)
319 {
320 struct proc *p = l->l_proc;
321 unsigned int newcpu;
322 fixpt_t loadfac;
323
324 SCHED_ASSERT_LOCKED();
325
326 newcpu = p->p_estcpu;
327 loadfac = loadfactor(averunnable.ldavg[0]);
328
329 if (l->l_slptime > 5 * loadfac)
330 p->p_estcpu = 0; /* XXX NJWLWP */
331 else {
332 l->l_slptime--; /* the first time was done in schedcpu */
333 while (newcpu && --l->l_slptime)
334 newcpu = (int) decay_cpu(loadfac, newcpu);
335 p->p_estcpu = newcpu;
336 }
337 resetpriority(l);
338 }
339
340 /*
341 * During autoconfiguration or after a panic, a sleep will simply
342 * lower the priority briefly to allow interrupts, then return.
343 * The priority to be used (safepri) is machine-dependent, thus this
344 * value is initialized and maintained in the machine-dependent layers.
345 * This priority will typically be 0, or the lowest priority
346 * that is safe for use on the interrupt stack; it can be made
347 * higher to block network software interrupts after panics.
348 */
349 int safepri;
350
351 /*
352 * General sleep call. Suspends the current process until a wakeup is
353 * performed on the specified identifier. The process will then be made
354 * runnable with the specified priority. Sleeps at most timo/hz seconds
355 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
356 * before and after sleeping, else signals are not checked. Returns 0 if
357 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
358 * signal needs to be delivered, ERESTART is returned if the current system
359 * call should be restarted if possible, and EINTR is returned if the system
360 * call should be interrupted by the signal (return EINTR).
361 *
362 * The interlock is held until the scheduler_slock is acquired. The
363 * interlock will be locked before returning back to the caller
364 * unless the PNORELOCK flag is specified, in which case the
365 * interlock will always be unlocked upon return.
366 */
367 int
368 ltsleep(void *ident, int priority, const char *wmesg, int timo,
369 __volatile struct simplelock *interlock)
370 {
371 struct lwp *l = curlwp;
372 struct proc *p = l->l_proc;
373 struct slpque *qp;
374 int sig, s;
375 int catch = priority & PCATCH;
376 int relock = (priority & PNORELOCK) == 0;
377 int exiterr = (priority & PNOEXITERR) == 0;
378
379 /*
380 * XXXSMP
381 * This is probably bogus. Figure out what the right
382 * thing to do here really is.
383 * Note that not sleeping if ltsleep is called with curlwp == NULL
384 * in the shutdown case is disgusting but partly necessary given
385 * how shutdown (barely) works.
386 */
387 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
388 /*
389 * After a panic, or during autoconfiguration,
390 * just give interrupts a chance, then just return;
391 * don't run any other procs or panic below,
392 * in case this is the idle process and already asleep.
393 */
394 s = splhigh();
395 splx(safepri);
396 splx(s);
397 if (interlock != NULL && relock == 0)
398 simple_unlock(interlock);
399 return (0);
400 }
401
402 KASSERT(p != NULL);
403 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
404
405 #ifdef KTRACE
406 if (KTRPOINT(p, KTR_CSW))
407 ktrcsw(p, 1, 0);
408 #endif
409
410 SCHED_LOCK(s);
411
412 #ifdef DIAGNOSTIC
413 if (ident == NULL)
414 panic("ltsleep: ident == NULL");
415 if (l->l_stat != LSONPROC)
416 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
417 if (l->l_back != NULL)
418 panic("ltsleep: p_back != NULL");
419 #endif
420
421 l->l_wchan = ident;
422 l->l_wmesg = wmesg;
423 l->l_slptime = 0;
424 l->l_priority = priority & PRIMASK;
425
426 qp = SLPQUE(ident);
427 if (qp->sq_head == 0)
428 qp->sq_head = l;
429 else {
430 *qp->sq_tailp = l;
431 }
432 *(qp->sq_tailp = &l->l_forw) = 0;
433
434 if (timo)
435 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
436
437 /*
438 * We can now release the interlock; the scheduler_slock
439 * is held, so a thread can't get in to do wakeup() before
440 * we do the switch.
441 *
442 * XXX We leave the code block here, after inserting ourselves
443 * on the sleep queue, because we might want a more clever
444 * data structure for the sleep queues at some point.
445 */
446 if (interlock != NULL)
447 simple_unlock(interlock);
448
449 /*
450 * We put ourselves on the sleep queue and start our timeout
451 * before calling CURSIG, as we could stop there, and a wakeup
452 * or a SIGCONT (or both) could occur while we were stopped.
453 * A SIGCONT would cause us to be marked as SSLEEP
454 * without resuming us, thus we must be ready for sleep
455 * when CURSIG is called. If the wakeup happens while we're
456 * stopped, p->p_wchan will be 0 upon return from CURSIG.
457 */
458 if (catch) {
459 l->l_flag |= L_SINTR;
460 if ((sig = CURSIG(l)) != 0) {
461 if (l->l_wchan != NULL)
462 unsleep(l);
463 l->l_stat = LSONPROC;
464 SCHED_UNLOCK(s);
465 goto resume;
466 }
467 if (l->l_wchan == NULL) {
468 catch = 0;
469 SCHED_UNLOCK(s);
470 goto resume;
471 }
472 } else
473 sig = 0;
474 l->l_stat = LSSLEEP;
475 p->p_nrlwps--;
476 p->p_stats->p_ru.ru_nvcsw++;
477 SCHED_ASSERT_LOCKED();
478 if (l->l_flag & L_SA)
479 sa_switch(l, SA_UPCALL_BLOCKED);
480 else
481 mi_switch(l, NULL);
482
483 #if defined(DDB) && !defined(GPROF)
484 /* handy breakpoint location after process "wakes" */
485 __asm(".globl bpendtsleep ; bpendtsleep:");
486 #endif
487 /*
488 * p->p_nrlwps is incremented by whoever made us runnable again,
489 * either setrunnable() or awaken().
490 */
491
492 SCHED_ASSERT_UNLOCKED();
493 splx(s);
494
495 resume:
496 KDASSERT(l->l_cpu != NULL);
497 KDASSERT(l->l_cpu == curcpu());
498 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
499
500 l->l_flag &= ~L_SINTR;
501 if (l->l_flag & L_TIMEOUT) {
502 l->l_flag &= ~L_TIMEOUT;
503 if (sig == 0) {
504 #ifdef KTRACE
505 if (KTRPOINT(p, KTR_CSW))
506 ktrcsw(p, 0, 0);
507 #endif
508 if (relock && interlock != NULL)
509 simple_lock(interlock);
510 return (EWOULDBLOCK);
511 }
512 } else if (timo)
513 callout_stop(&l->l_tsleep_ch);
514 if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
515 #ifdef KTRACE
516 if (KTRPOINT(p, KTR_CSW))
517 ktrcsw(p, 0, 0);
518 #endif
519 if (relock && interlock != NULL)
520 simple_lock(interlock);
521 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
522 return (EINTR);
523 return (ERESTART);
524 }
525 /* XXXNJW this is very much a kluge.
526 * revisit. a better way of preventing looping/hanging syscalls like
527 * wait4() and _lwp_wait() from wedging an exiting process
528 * would be preferred.
529 */
530 if (catch && ((p->p_flag & P_WEXIT) && exiterr))
531 return (EINTR);
532 #ifdef KTRACE
533 if (KTRPOINT(p, KTR_CSW))
534 ktrcsw(p, 0, 0);
535 #endif
536 if (relock && interlock != NULL)
537 simple_lock(interlock);
538 return (0);
539 }
540
541 /*
542 * Implement timeout for tsleep.
543 * If process hasn't been awakened (wchan non-zero),
544 * set timeout flag and undo the sleep. If proc
545 * is stopped, just unsleep so it will remain stopped.
546 */
547 void
548 endtsleep(void *arg)
549 {
550 struct lwp *l;
551 int s;
552
553 l = (struct lwp *)arg;
554 SCHED_LOCK(s);
555 if (l->l_wchan) {
556 if (l->l_stat == LSSLEEP)
557 setrunnable(l);
558 else
559 unsleep(l);
560 l->l_flag |= L_TIMEOUT;
561 }
562 SCHED_UNLOCK(s);
563 }
564
565 /*
566 * Remove a process from its wait queue
567 */
568 void
569 unsleep(struct lwp *l)
570 {
571 struct slpque *qp;
572 struct lwp **hp;
573
574 SCHED_ASSERT_LOCKED();
575
576 if (l->l_wchan) {
577 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
578 while (*hp != l)
579 hp = &(*hp)->l_forw;
580 *hp = l->l_forw;
581 if (qp->sq_tailp == &l->l_forw)
582 qp->sq_tailp = hp;
583 l->l_wchan = 0;
584 }
585 }
586
587 /*
588 * Optimized-for-wakeup() version of setrunnable().
589 */
590 __inline void
591 awaken(struct lwp *l)
592 {
593
594 SCHED_ASSERT_LOCKED();
595
596 if (l->l_slptime > 1)
597 updatepri(l);
598 l->l_slptime = 0;
599 l->l_stat = LSRUN;
600 l->l_proc->p_nrlwps++;
601 /*
602 * Since curpriority is a user priority, p->p_priority
603 * is always better than curpriority.
604 */
605 if (l->l_flag & L_INMEM) {
606 setrunqueue(l);
607 KASSERT(l->l_cpu != NULL);
608 need_resched(l->l_cpu);
609 } else
610 sched_wakeup(&proc0);
611 }
612
613 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
614 void
615 sched_unlock_idle(void)
616 {
617
618 simple_unlock(&sched_lock);
619 }
620
621 void
622 sched_lock_idle(void)
623 {
624
625 simple_lock(&sched_lock);
626 }
627 #endif /* MULTIPROCESSOR || LOCKDEBUG */
628
629 /*
630 * Make all processes sleeping on the specified identifier runnable.
631 */
632
633 void
634 wakeup(void *ident)
635 {
636 int s;
637
638 SCHED_ASSERT_UNLOCKED();
639
640 SCHED_LOCK(s);
641 sched_wakeup(ident);
642 SCHED_UNLOCK(s);
643 }
644
645 void
646 sched_wakeup(void *ident)
647 {
648 struct slpque *qp;
649 struct lwp *l, **q;
650
651 SCHED_ASSERT_LOCKED();
652
653 qp = SLPQUE(ident);
654 restart:
655 for (q = &qp->sq_head; (l = *q) != NULL; ) {
656 #ifdef DIAGNOSTIC
657 if (l->l_back || (l->l_stat != LSSLEEP &&
658 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
659 panic("wakeup");
660 #endif
661 if (l->l_wchan == ident) {
662 l->l_wchan = 0;
663 *q = l->l_forw;
664 if (qp->sq_tailp == &l->l_forw)
665 qp->sq_tailp = q;
666 if (l->l_stat == LSSLEEP) {
667 awaken(l);
668 goto restart;
669 }
670 } else
671 q = &l->l_forw;
672 }
673 }
674
675 /*
676 * Make the highest priority process first in line on the specified
677 * identifier runnable.
678 */
679 void
680 wakeup_one(void *ident)
681 {
682 struct slpque *qp;
683 struct lwp *l, **q;
684 struct lwp *best_sleepp, **best_sleepq;
685 struct lwp *best_stopp, **best_stopq;
686 int s;
687
688 best_sleepp = best_stopp = NULL;
689 best_sleepq = best_stopq = NULL;
690
691 SCHED_LOCK(s);
692
693 qp = SLPQUE(ident);
694
695 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
696 #ifdef DIAGNOSTIC
697 if (l->l_back || (l->l_stat != LSSLEEP &&
698 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
699 panic("wakeup_one");
700 #endif
701 if (l->l_wchan == ident) {
702 if (l->l_stat == LSSLEEP) {
703 if (best_sleepp == NULL ||
704 l->l_priority < best_sleepp->l_priority) {
705 best_sleepp = l;
706 best_sleepq = q;
707 }
708 } else {
709 if (best_stopp == NULL ||
710 l->l_priority < best_stopp->l_priority) {
711 best_stopp = l;
712 best_stopq = q;
713 }
714 }
715 }
716 }
717
718 /*
719 * Consider any SSLEEP process higher than the highest priority SSTOP
720 * process.
721 */
722 if (best_sleepp != NULL) {
723 l = best_sleepp;
724 q = best_sleepq;
725 } else {
726 l = best_stopp;
727 q = best_stopq;
728 }
729
730 if (l != NULL) {
731 l->l_wchan = NULL;
732 *q = l->l_forw;
733 if (qp->sq_tailp == &l->l_forw)
734 qp->sq_tailp = q;
735 if (l->l_stat == LSSLEEP)
736 awaken(l);
737 }
738 SCHED_UNLOCK(s);
739 }
740
741 /*
742 * General yield call. Puts the current process back on its run queue and
743 * performs a voluntary context switch.
744 */
745 void
746 yield(void)
747 {
748 struct lwp *l = curlwp;
749 int s;
750
751 SCHED_LOCK(s);
752 l->l_priority = l->l_usrpri;
753 l->l_stat = LSRUN;
754 setrunqueue(l);
755 l->l_proc->p_stats->p_ru.ru_nvcsw++;
756 mi_switch(l, NULL);
757 SCHED_ASSERT_UNLOCKED();
758 splx(s);
759 }
760
761 /*
762 * General preemption call. Puts the current process back on its run queue
763 * and performs an involuntary context switch. If a process is supplied,
764 * we switch to that process. Otherwise, we use the normal process selection
765 * criteria.
766 */
767
768 void
769 preempt(struct lwp *newl)
770 {
771 struct lwp *l = curlwp;
772 int r, s;
773
774 if (l->l_flag & L_SA) {
775 SCHED_LOCK(s);
776 l->l_priority = l->l_usrpri;
777 l->l_stat = LSRUN;
778 setrunqueue(l);
779 l->l_proc->p_stats->p_ru.ru_nivcsw++;
780 r = mi_switch(l, newl);
781 SCHED_ASSERT_UNLOCKED();
782 splx(s);
783 if (r != 0)
784 sa_preempt(l);
785 } else {
786 SCHED_LOCK(s);
787 l->l_priority = l->l_usrpri;
788 l->l_stat = LSRUN;
789 setrunqueue(l);
790 l->l_proc->p_stats->p_ru.ru_nivcsw++;
791 mi_switch(l, newl);
792 SCHED_ASSERT_UNLOCKED();
793 splx(s);
794 }
795
796 }
797
798 /*
799 * The machine independent parts of context switch.
800 * Must be called at splsched() (no higher!) and with
801 * the sched_lock held.
802 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
803 * the next lwp.
804 *
805 * Returns 1 if another process was actually run.
806 */
807 int
808 mi_switch(struct lwp *l, struct lwp *new)
809 {
810 struct schedstate_percpu *spc;
811 struct rlimit *rlim;
812 long s, u;
813 struct timeval tv;
814 #if defined(MULTIPROCESSOR)
815 int hold_count;
816 #endif
817 struct proc *p = l->l_proc;
818 int retval;
819
820 SCHED_ASSERT_LOCKED();
821
822 #if defined(MULTIPROCESSOR)
823 /*
824 * Release the kernel_lock, as we are about to yield the CPU.
825 * The scheduler lock is still held until cpu_switch()
826 * selects a new process and removes it from the run queue.
827 */
828 if (p->p_flag & P_BIGLOCK)
829 hold_count = spinlock_release_all(&kernel_lock);
830 #endif
831
832 KDASSERT(l->l_cpu != NULL);
833 KDASSERT(l->l_cpu == curcpu());
834
835 spc = &l->l_cpu->ci_schedstate;
836
837 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
838 spinlock_switchcheck();
839 #endif
840 #ifdef LOCKDEBUG
841 simple_lock_switchcheck();
842 #endif
843
844 /*
845 * Compute the amount of time during which the current
846 * process was running, and add that to its total so far.
847 */
848 microtime(&tv);
849 u = p->p_rtime.tv_usec +
850 (tv.tv_usec - spc->spc_runtime.tv_usec);
851 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
852 if (u < 0) {
853 u += 1000000;
854 s--;
855 } else if (u >= 1000000) {
856 u -= 1000000;
857 s++;
858 }
859 p->p_rtime.tv_usec = u;
860 p->p_rtime.tv_sec = s;
861
862 /*
863 * Check if the process exceeds its cpu resource allocation.
864 * If over max, kill it. In any case, if it has run for more
865 * than 10 minutes, reduce priority to give others a chance.
866 */
867 rlim = &p->p_rlimit[RLIMIT_CPU];
868 if (s >= rlim->rlim_cur) {
869 /*
870 * XXXSMP: we're inside the scheduler lock perimeter;
871 * use sched_psignal.
872 */
873 if (s >= rlim->rlim_max)
874 sched_psignal(p, SIGKILL);
875 else {
876 sched_psignal(p, SIGXCPU);
877 if (rlim->rlim_cur < rlim->rlim_max)
878 rlim->rlim_cur += 5;
879 }
880 }
881 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
882 p->p_nice == NZERO) {
883 p->p_nice = autoniceval + NZERO;
884 resetpriority(l);
885 }
886
887 /*
888 * Process is about to yield the CPU; clear the appropriate
889 * scheduling flags.
890 */
891 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
892
893 /*
894 * Pick a new current process and switch to it. When we
895 * run again, we'll return back here.
896 */
897 uvmexp.swtch++;
898 if (new == NULL) {
899 retval = cpu_switch(l);
900 } else {
901 cpu_preempt(l, new);
902 retval = 0;
903 }
904
905 /*
906 * Make sure that MD code released the scheduler lock before
907 * resuming us.
908 */
909 SCHED_ASSERT_UNLOCKED();
910
911 /*
912 * We're running again; record our new start time. We might
913 * be running on a new CPU now, so don't use the cache'd
914 * schedstate_percpu pointer.
915 */
916 KDASSERT(l->l_cpu != NULL);
917 KDASSERT(l->l_cpu == curcpu());
918 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
919
920 #if defined(MULTIPROCESSOR)
921 /*
922 * Reacquire the kernel_lock now. We do this after we've
923 * released the scheduler lock to avoid deadlock, and before
924 * we reacquire the interlock.
925 */
926 if (p->p_flag & P_BIGLOCK)
927 spinlock_acquire_count(&kernel_lock, hold_count);
928 #endif
929
930 return retval;
931 }
932
933 /*
934 * Initialize the (doubly-linked) run queues
935 * to be empty.
936 */
937 void
938 rqinit()
939 {
940 int i;
941
942 for (i = 0; i < RUNQUE_NQS; i++)
943 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
944 (struct lwp *)&sched_qs[i];
945 }
946
947 /*
948 * Change process state to be runnable,
949 * placing it on the run queue if it is in memory,
950 * and awakening the swapper if it isn't in memory.
951 */
952 void
953 setrunnable(struct lwp *l)
954 {
955 struct proc *p = l->l_proc;
956
957 SCHED_ASSERT_LOCKED();
958
959 switch (l->l_stat) {
960 case 0:
961 case LSRUN:
962 case LSONPROC:
963 case LSZOMB:
964 case LSDEAD:
965 default:
966 panic("setrunnable");
967 case LSSTOP:
968 /*
969 * If we're being traced (possibly because someone attached us
970 * while we were stopped), check for a signal from the debugger.
971 */
972 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
973 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
974 CHECKSIGS(p);
975 }
976 case LSSLEEP:
977 unsleep(l); /* e.g. when sending signals */
978 break;
979
980 case LSIDL:
981 break;
982 case LSSUSPENDED:
983 break;
984 }
985 l->l_stat = LSRUN;
986 p->p_nrlwps++;
987
988 if (l->l_flag & L_INMEM)
989 setrunqueue(l);
990
991 if (l->l_slptime > 1)
992 updatepri(l);
993 l->l_slptime = 0;
994 if ((l->l_flag & L_INMEM) == 0)
995 wakeup((caddr_t)&proc0);
996 else if (l->l_priority < curcpu()->ci_schedstate.spc_curpriority) {
997 /*
998 * XXXSMP
999 * This is not exactly right. Since p->p_cpu persists
1000 * across a context switch, this gives us some sort
1001 * of processor affinity. But we need to figure out
1002 * at what point it's better to reschedule on a different
1003 * CPU than the last one.
1004 */
1005 need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
1006 }
1007 }
1008
1009 /*
1010 * Compute the priority of a process when running in user mode.
1011 * Arrange to reschedule if the resulting priority is better
1012 * than that of the current process.
1013 */
1014 void
1015 resetpriority(struct lwp *l)
1016 {
1017 unsigned int newpriority;
1018 struct proc *p = l->l_proc;
1019
1020 SCHED_ASSERT_LOCKED();
1021
1022 newpriority = PUSER + p->p_estcpu +
1023 NICE_WEIGHT * (p->p_nice - NZERO);
1024 newpriority = min(newpriority, MAXPRI);
1025 l->l_usrpri = newpriority;
1026 if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
1027 /*
1028 * XXXSMP
1029 * Same applies as in setrunnable() above.
1030 */
1031 need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
1032 }
1033 }
1034
1035 /*
1036 * Recompute priority for all LWPs in a process.
1037 */
1038 void
1039 resetprocpriority(struct proc *p)
1040 {
1041 struct lwp *l;
1042
1043 LIST_FOREACH(l, &p->p_lwps, l_list)
1044 resetpriority(l);
1045 }
1046
1047 /*
1048 * We adjust the priority of the current process. The priority of a process
1049 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1050 * is increased here. The formula for computing priorities (in kern_synch.c)
1051 * will compute a different value each time p_estcpu increases. This can
1052 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1053 * queue will not change. The cpu usage estimator ramps up quite quickly
1054 * when the process is running (linearly), and decays away exponentially, at
1055 * a rate which is proportionally slower when the system is busy. The basic
1056 * principle is that the system will 90% forget that the process used a lot
1057 * of CPU time in 5 * loadav seconds. This causes the system to favor
1058 * processes which haven't run much recently, and to round-robin among other
1059 * processes.
1060 */
1061
1062 void
1063 schedclock(struct lwp *l)
1064 {
1065 struct proc *p = l->l_proc;
1066 int s;
1067
1068 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1069 SCHED_LOCK(s);
1070 resetpriority(l);
1071 SCHED_UNLOCK(s);
1072
1073 if (l->l_priority >= PUSER)
1074 l->l_priority = l->l_usrpri;
1075 }
1076
1077 void
1078 suspendsched()
1079 {
1080 struct lwp *l;
1081 int s;
1082
1083 /*
1084 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1085 * LSSUSPENDED.
1086 */
1087 proclist_lock_read();
1088 SCHED_LOCK(s);
1089 for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l, l_list)) {
1090 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1091 continue;
1092
1093 switch (l->l_stat) {
1094 case LSRUN:
1095 l->l_proc->p_nrlwps--;
1096 if ((l->l_flag & L_INMEM) != 0)
1097 remrunqueue(l);
1098 /* FALLTHROUGH */
1099 case LSSLEEP:
1100 l->l_stat = LSSUSPENDED;
1101 break;
1102 case LSONPROC:
1103 /*
1104 * XXX SMP: we need to deal with processes on
1105 * others CPU !
1106 */
1107 break;
1108 default:
1109 break;
1110 }
1111 }
1112 SCHED_UNLOCK(s);
1113 proclist_unlock_read();
1114 }
1115
1116
1117