Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.101.2.16
      1 /*	$NetBSD: kern_synch.c,v 1.101.2.16 2002/07/17 19:55:41 nathanw Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.101.2.16 2002/07/17 19:55:41 nathanw Exp $");
     82 
     83 #include "opt_ddb.h"
     84 #include "opt_ktrace.h"
     85 #include "opt_lockdebug.h"
     86 #include "opt_multiprocessor.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/proc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/buf.h>
     94 #include <sys/signalvar.h>
     95 #include <sys/resourcevar.h>
     96 #include <sys/sched.h>
     97 #include <sys/sa.h>
     98 #include <sys/savar.h>
     99 
    100 #include <uvm/uvm_extern.h>
    101 
    102 #ifdef KTRACE
    103 #include <sys/ktrace.h>
    104 #endif
    105 
    106 #include <machine/cpu.h>
    107 
    108 int	lbolt;			/* once a second sleep address */
    109 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    110 
    111 /*
    112  * The global scheduler state.
    113  */
    114 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    115 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    116 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    117 
    118 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    119 
    120 void schedcpu(void *);
    121 void updatepri(struct lwp *);
    122 void endtsleep(void *);
    123 
    124 __inline void awaken(struct lwp *);
    125 
    126 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    127 
    128 
    129 
    130 /*
    131  * Force switch among equal priority processes every 100ms.
    132  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    133  */
    134 /* ARGSUSED */
    135 void
    136 roundrobin(struct cpu_info *ci)
    137 {
    138 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    139 
    140 	spc->spc_rrticks = rrticks;
    141 
    142 	if (curlwp != NULL) {
    143 		if (spc->spc_flags & SPCF_SEENRR) {
    144 			/*
    145 			 * The process has already been through a roundrobin
    146 			 * without switching and may be hogging the CPU.
    147 			 * Indicate that the process should yield.
    148 			 */
    149 			spc->spc_flags |= SPCF_SHOULDYIELD;
    150 		} else
    151 			spc->spc_flags |= SPCF_SEENRR;
    152 	}
    153 	need_resched(curcpu());
    154 }
    155 
    156 /*
    157  * Constants for digital decay and forget:
    158  *	90% of (p_estcpu) usage in 5 * loadav time
    159  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    160  *          Note that, as ps(1) mentions, this can let percentages
    161  *          total over 100% (I've seen 137.9% for 3 processes).
    162  *
    163  * Note that hardclock updates p_estcpu and p_cpticks independently.
    164  *
    165  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    166  * That is, the system wants to compute a value of decay such
    167  * that the following for loop:
    168  * 	for (i = 0; i < (5 * loadavg); i++)
    169  * 		p_estcpu *= decay;
    170  * will compute
    171  * 	p_estcpu *= 0.1;
    172  * for all values of loadavg:
    173  *
    174  * Mathematically this loop can be expressed by saying:
    175  * 	decay ** (5 * loadavg) ~= .1
    176  *
    177  * The system computes decay as:
    178  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    179  *
    180  * We wish to prove that the system's computation of decay
    181  * will always fulfill the equation:
    182  * 	decay ** (5 * loadavg) ~= .1
    183  *
    184  * If we compute b as:
    185  * 	b = 2 * loadavg
    186  * then
    187  * 	decay = b / (b + 1)
    188  *
    189  * We now need to prove two things:
    190  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    191  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    192  *
    193  * Facts:
    194  *         For x close to zero, exp(x) =~ 1 + x, since
    195  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    196  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    197  *         For x close to zero, ln(1+x) =~ x, since
    198  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    199  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    200  *         ln(.1) =~ -2.30
    201  *
    202  * Proof of (1):
    203  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    204  *	solving for factor,
    205  *      ln(factor) =~ (-2.30/5*loadav), or
    206  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    207  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    208  *
    209  * Proof of (2):
    210  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    211  *	solving for power,
    212  *      power*ln(b/(b+1)) =~ -2.30, or
    213  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    214  *
    215  * Actual power values for the implemented algorithm are as follows:
    216  *      loadav: 1       2       3       4
    217  *      power:  5.68    10.32   14.94   19.55
    218  */
    219 
    220 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    221 #define	loadfactor(loadav)	(2 * (loadav))
    222 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    223 
    224 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    225 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    226 
    227 /*
    228  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    229  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    230  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    231  *
    232  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    233  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    234  *
    235  * If you dont want to bother with the faster/more-accurate formula, you
    236  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    237  * (more general) method of calculating the %age of CPU used by a process.
    238  */
    239 #define	CCPU_SHIFT	11
    240 
    241 /*
    242  * Recompute process priorities, every hz ticks.
    243  */
    244 /* ARGSUSED */
    245 void
    246 schedcpu(void *arg)
    247 {
    248 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    249 	struct lwp *l;
    250 	struct proc *p;
    251 	int s, s1;
    252 	unsigned int newcpu;
    253 	int clkhz;
    254 
    255 	proclist_lock_read();
    256 	for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l,l_list)) {
    257 		/*
    258 		 * Increment time in/out of memory and sleep time
    259 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    260 		 * (remember them?) overflow takes 45 days.
    261 		 */
    262 		p = l->l_proc;
    263 		l->l_swtime++;
    264 		if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    265 		    l->l_stat == LSSUSPENDED)
    266 			l->l_slptime++;
    267 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    268 		/*
    269 		 * If the process has slept the entire second,
    270 		 * stop recalculating its priority until it wakes up.
    271 		 */
    272 		if (l->l_slptime > 1)
    273 			continue;
    274 		s = splstatclock();	/* prevent state changes */
    275 		/*
    276 		 * p_pctcpu is only for ps.
    277 		 */
    278 		clkhz = stathz != 0 ? stathz : hz;
    279 #if	(FSHIFT >= CCPU_SHIFT)
    280 		p->p_pctcpu += (clkhz == 100)?
    281 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    282                 	100 * (((fixpt_t) p->p_cpticks)
    283 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    284 #else
    285 		l->l_pctcpu += ((FSCALE - ccpu) *
    286 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    287 #endif
    288 		p->p_cpticks = 0;
    289 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    290 		p->p_estcpu = newcpu;
    291 		SCHED_LOCK(s1);
    292 		resetpriority(l);
    293 		if (l->l_priority >= PUSER) {
    294 			if (l->l_stat == LSRUN &&
    295 			    (l->l_flag & L_INMEM) &&
    296 			    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    297 				remrunqueue(l);
    298 				l->l_priority = l->l_usrpri;
    299 				setrunqueue(l);
    300 			} else
    301 				l->l_priority = l->l_usrpri;
    302 		}
    303 		SCHED_UNLOCK(s1);
    304 		splx(s);
    305 	}
    306 	proclist_unlock_read();
    307 	uvm_meter();
    308 	wakeup((caddr_t)&lbolt);
    309 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    310 }
    311 
    312 /*
    313  * Recalculate the priority of a process after it has slept for a while.
    314  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    315  * least six times the loadfactor will decay p_estcpu to zero.
    316  */
    317 void
    318 updatepri(struct lwp *l)
    319 {
    320 	struct proc *p = l->l_proc;
    321 	unsigned int newcpu;
    322 	fixpt_t loadfac;
    323 
    324 	SCHED_ASSERT_LOCKED();
    325 
    326 	newcpu = p->p_estcpu;
    327 	loadfac = loadfactor(averunnable.ldavg[0]);
    328 
    329 	if (l->l_slptime > 5 * loadfac)
    330 		p->p_estcpu = 0; /* XXX NJWLWP */
    331 	else {
    332 		l->l_slptime--;	/* the first time was done in schedcpu */
    333 		while (newcpu && --l->l_slptime)
    334 			newcpu = (int) decay_cpu(loadfac, newcpu);
    335 		p->p_estcpu = newcpu;
    336 	}
    337 	resetpriority(l);
    338 }
    339 
    340 /*
    341  * During autoconfiguration or after a panic, a sleep will simply
    342  * lower the priority briefly to allow interrupts, then return.
    343  * The priority to be used (safepri) is machine-dependent, thus this
    344  * value is initialized and maintained in the machine-dependent layers.
    345  * This priority will typically be 0, or the lowest priority
    346  * that is safe for use on the interrupt stack; it can be made
    347  * higher to block network software interrupts after panics.
    348  */
    349 int safepri;
    350 
    351 /*
    352  * General sleep call.  Suspends the current process until a wakeup is
    353  * performed on the specified identifier.  The process will then be made
    354  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    355  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    356  * before and after sleeping, else signals are not checked.  Returns 0 if
    357  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    358  * signal needs to be delivered, ERESTART is returned if the current system
    359  * call should be restarted if possible, and EINTR is returned if the system
    360  * call should be interrupted by the signal (return EINTR).
    361  *
    362  * The interlock is held until the scheduler_slock is acquired.  The
    363  * interlock will be locked before returning back to the caller
    364  * unless the PNORELOCK flag is specified, in which case the
    365  * interlock will always be unlocked upon return.
    366  */
    367 int
    368 ltsleep(void *ident, int priority, const char *wmesg, int timo,
    369     __volatile struct simplelock *interlock)
    370 {
    371 	struct lwp *l = curlwp;
    372 	struct proc *p = l->l_proc;
    373 	struct slpque *qp;
    374 	int sig, s;
    375 	int catch = priority & PCATCH;
    376 	int relock = (priority & PNORELOCK) == 0;
    377 	int exiterr = (priority & PNOEXITERR) == 0;
    378 
    379 	/*
    380 	 * XXXSMP
    381 	 * This is probably bogus.  Figure out what the right
    382 	 * thing to do here really is.
    383 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    384 	 * in the shutdown case is disgusting but partly necessary given
    385 	 * how shutdown (barely) works.
    386 	 */
    387 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    388 		/*
    389 		 * After a panic, or during autoconfiguration,
    390 		 * just give interrupts a chance, then just return;
    391 		 * don't run any other procs or panic below,
    392 		 * in case this is the idle process and already asleep.
    393 		 */
    394 		s = splhigh();
    395 		splx(safepri);
    396 		splx(s);
    397 		if (interlock != NULL && relock == 0)
    398 			simple_unlock(interlock);
    399 		return (0);
    400 	}
    401 
    402 	KASSERT(p != NULL);
    403 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    404 
    405 #ifdef KTRACE
    406 	if (KTRPOINT(p, KTR_CSW))
    407 		ktrcsw(p, 1, 0);
    408 #endif
    409 
    410 	SCHED_LOCK(s);
    411 
    412 #ifdef DIAGNOSTIC
    413 	if (ident == NULL)
    414 		panic("ltsleep: ident == NULL");
    415 	if (l->l_stat != LSONPROC)
    416 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    417 	if (l->l_back != NULL)
    418 		panic("ltsleep: p_back != NULL");
    419 #endif
    420 
    421 	l->l_wchan = ident;
    422 	l->l_wmesg = wmesg;
    423 	l->l_slptime = 0;
    424 	l->l_priority = priority & PRIMASK;
    425 
    426 	qp = SLPQUE(ident);
    427 	if (qp->sq_head == 0)
    428 		qp->sq_head = l;
    429 	else {
    430 		*qp->sq_tailp = l;
    431 	}
    432 	*(qp->sq_tailp = &l->l_forw) = 0;
    433 
    434 	if (timo)
    435 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    436 
    437 	/*
    438 	 * We can now release the interlock; the scheduler_slock
    439 	 * is held, so a thread can't get in to do wakeup() before
    440 	 * we do the switch.
    441 	 *
    442 	 * XXX We leave the code block here, after inserting ourselves
    443 	 * on the sleep queue, because we might want a more clever
    444 	 * data structure for the sleep queues at some point.
    445 	 */
    446 	if (interlock != NULL)
    447 		simple_unlock(interlock);
    448 
    449 	/*
    450 	 * We put ourselves on the sleep queue and start our timeout
    451 	 * before calling CURSIG, as we could stop there, and a wakeup
    452 	 * or a SIGCONT (or both) could occur while we were stopped.
    453 	 * A SIGCONT would cause us to be marked as SSLEEP
    454 	 * without resuming us, thus we must be ready for sleep
    455 	 * when CURSIG is called.  If the wakeup happens while we're
    456 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    457 	 */
    458 	if (catch) {
    459 		l->l_flag |= L_SINTR;
    460 		if ((sig = CURSIG(l)) != 0) {
    461 			if (l->l_wchan != NULL)
    462 				unsleep(l);
    463 			l->l_stat = LSONPROC;
    464 			SCHED_UNLOCK(s);
    465 			goto resume;
    466 		}
    467 		if (l->l_wchan == NULL) {
    468 			catch = 0;
    469 			SCHED_UNLOCK(s);
    470 			goto resume;
    471 		}
    472 	} else
    473 		sig = 0;
    474 	l->l_stat = LSSLEEP;
    475 	p->p_nrlwps--;
    476 	p->p_stats->p_ru.ru_nvcsw++;
    477 	SCHED_ASSERT_LOCKED();
    478 	if (l->l_flag & L_SA)
    479 		sa_switch(l, SA_UPCALL_BLOCKED);
    480 	else
    481 		mi_switch(l, NULL);
    482 
    483 #if	defined(DDB) && !defined(GPROF)
    484 	/* handy breakpoint location after process "wakes" */
    485 	__asm(".globl bpendtsleep ; bpendtsleep:");
    486 #endif
    487 	/*
    488 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    489 	 * either setrunnable() or awaken().
    490 	 */
    491 
    492 	SCHED_ASSERT_UNLOCKED();
    493 	splx(s);
    494 
    495  resume:
    496 	KDASSERT(l->l_cpu != NULL);
    497 	KDASSERT(l->l_cpu == curcpu());
    498 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    499 
    500 	l->l_flag &= ~L_SINTR;
    501 	if (l->l_flag & L_TIMEOUT) {
    502 		l->l_flag &= ~L_TIMEOUT;
    503 		if (sig == 0) {
    504 #ifdef KTRACE
    505 			if (KTRPOINT(p, KTR_CSW))
    506 				ktrcsw(p, 0, 0);
    507 #endif
    508 			if (relock && interlock != NULL)
    509 				simple_lock(interlock);
    510 			return (EWOULDBLOCK);
    511 		}
    512 	} else if (timo)
    513 		callout_stop(&l->l_tsleep_ch);
    514 	if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
    515 #ifdef KTRACE
    516 		if (KTRPOINT(p, KTR_CSW))
    517 			ktrcsw(p, 0, 0);
    518 #endif
    519 		if (relock && interlock != NULL)
    520 			simple_lock(interlock);
    521 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    522 			return (EINTR);
    523 		return (ERESTART);
    524 	}
    525 	/* XXXNJW this is very much a kluge.
    526 	 * revisit. a better way of preventing looping/hanging syscalls like
    527 	 * wait4() and _lwp_wait() from wedging an exiting process
    528 	 * would be preferred.
    529 	 */
    530 	if (catch && ((p->p_flag & P_WEXIT) && exiterr))
    531 		return (EINTR);
    532 #ifdef KTRACE
    533 	if (KTRPOINT(p, KTR_CSW))
    534 		ktrcsw(p, 0, 0);
    535 #endif
    536 	if (relock && interlock != NULL)
    537 		simple_lock(interlock);
    538 	return (0);
    539 }
    540 
    541 /*
    542  * Implement timeout for tsleep.
    543  * If process hasn't been awakened (wchan non-zero),
    544  * set timeout flag and undo the sleep.  If proc
    545  * is stopped, just unsleep so it will remain stopped.
    546  */
    547 void
    548 endtsleep(void *arg)
    549 {
    550 	struct lwp *l;
    551 	int s;
    552 
    553 	l = (struct lwp *)arg;
    554 	SCHED_LOCK(s);
    555 	if (l->l_wchan) {
    556 		if (l->l_stat == LSSLEEP)
    557 			setrunnable(l);
    558 		else
    559 			unsleep(l);
    560 		l->l_flag |= L_TIMEOUT;
    561 	}
    562 	SCHED_UNLOCK(s);
    563 }
    564 
    565 /*
    566  * Remove a process from its wait queue
    567  */
    568 void
    569 unsleep(struct lwp *l)
    570 {
    571 	struct slpque *qp;
    572 	struct lwp **hp;
    573 
    574 	SCHED_ASSERT_LOCKED();
    575 
    576 	if (l->l_wchan) {
    577 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    578 		while (*hp != l)
    579 			hp = &(*hp)->l_forw;
    580 		*hp = l->l_forw;
    581 		if (qp->sq_tailp == &l->l_forw)
    582 			qp->sq_tailp = hp;
    583 		l->l_wchan = 0;
    584 	}
    585 }
    586 
    587 /*
    588  * Optimized-for-wakeup() version of setrunnable().
    589  */
    590 __inline void
    591 awaken(struct lwp *l)
    592 {
    593 
    594 	SCHED_ASSERT_LOCKED();
    595 
    596 	if (l->l_slptime > 1)
    597 		updatepri(l);
    598 	l->l_slptime = 0;
    599 	l->l_stat = LSRUN;
    600 	l->l_proc->p_nrlwps++;
    601 	/*
    602 	 * Since curpriority is a user priority, p->p_priority
    603 	 * is always better than curpriority.
    604 	 */
    605 	if (l->l_flag & L_INMEM) {
    606 		setrunqueue(l);
    607 		KASSERT(l->l_cpu != NULL);
    608 		need_resched(l->l_cpu);
    609 	} else
    610 		sched_wakeup(&proc0);
    611 }
    612 
    613 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    614 void
    615 sched_unlock_idle(void)
    616 {
    617 
    618 	simple_unlock(&sched_lock);
    619 }
    620 
    621 void
    622 sched_lock_idle(void)
    623 {
    624 
    625 	simple_lock(&sched_lock);
    626 }
    627 #endif /* MULTIPROCESSOR || LOCKDEBUG */
    628 
    629 /*
    630  * Make all processes sleeping on the specified identifier runnable.
    631  */
    632 
    633 void
    634 wakeup(void *ident)
    635 {
    636 	int s;
    637 
    638 	SCHED_ASSERT_UNLOCKED();
    639 
    640 	SCHED_LOCK(s);
    641 	sched_wakeup(ident);
    642 	SCHED_UNLOCK(s);
    643 }
    644 
    645 void
    646 sched_wakeup(void *ident)
    647 {
    648 	struct slpque *qp;
    649 	struct lwp *l, **q;
    650 
    651 	SCHED_ASSERT_LOCKED();
    652 
    653 	qp = SLPQUE(ident);
    654  restart:
    655 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    656 #ifdef DIAGNOSTIC
    657 		if (l->l_back || (l->l_stat != LSSLEEP &&
    658 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    659 			panic("wakeup");
    660 #endif
    661 		if (l->l_wchan == ident) {
    662 			l->l_wchan = 0;
    663 			*q = l->l_forw;
    664 			if (qp->sq_tailp == &l->l_forw)
    665 				qp->sq_tailp = q;
    666 			if (l->l_stat == LSSLEEP) {
    667 				awaken(l);
    668 				goto restart;
    669 			}
    670 		} else
    671 			q = &l->l_forw;
    672 	}
    673 }
    674 
    675 /*
    676  * Make the highest priority process first in line on the specified
    677  * identifier runnable.
    678  */
    679 void
    680 wakeup_one(void *ident)
    681 {
    682 	struct slpque *qp;
    683 	struct lwp *l, **q;
    684 	struct lwp *best_sleepp, **best_sleepq;
    685 	struct lwp *best_stopp, **best_stopq;
    686 	int s;
    687 
    688 	best_sleepp = best_stopp = NULL;
    689 	best_sleepq = best_stopq = NULL;
    690 
    691 	SCHED_LOCK(s);
    692 
    693 	qp = SLPQUE(ident);
    694 
    695 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    696 #ifdef DIAGNOSTIC
    697 		if (l->l_back || (l->l_stat != LSSLEEP &&
    698 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    699 			panic("wakeup_one");
    700 #endif
    701 		if (l->l_wchan == ident) {
    702 			if (l->l_stat == LSSLEEP) {
    703 				if (best_sleepp == NULL ||
    704 				    l->l_priority < best_sleepp->l_priority) {
    705 					best_sleepp = l;
    706 					best_sleepq = q;
    707 				}
    708 			} else {
    709 				if (best_stopp == NULL ||
    710 				    l->l_priority < best_stopp->l_priority) {
    711 				    	best_stopp = l;
    712 					best_stopq = q;
    713 				}
    714 			}
    715 		}
    716 	}
    717 
    718 	/*
    719 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    720 	 * process.
    721 	 */
    722 	if (best_sleepp != NULL) {
    723 		l = best_sleepp;
    724 		q = best_sleepq;
    725 	} else {
    726 		l = best_stopp;
    727 		q = best_stopq;
    728 	}
    729 
    730 	if (l != NULL) {
    731 		l->l_wchan = NULL;
    732 		*q = l->l_forw;
    733 		if (qp->sq_tailp == &l->l_forw)
    734 			qp->sq_tailp = q;
    735 		if (l->l_stat == LSSLEEP)
    736 			awaken(l);
    737 	}
    738 	SCHED_UNLOCK(s);
    739 }
    740 
    741 /*
    742  * General yield call.  Puts the current process back on its run queue and
    743  * performs a voluntary context switch.
    744  */
    745 void
    746 yield(void)
    747 {
    748 	struct lwp *l = curlwp;
    749 	int s;
    750 
    751 	SCHED_LOCK(s);
    752 	l->l_priority = l->l_usrpri;
    753 	l->l_stat = LSRUN;
    754 	setrunqueue(l);
    755 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    756 	mi_switch(l, NULL);
    757 	SCHED_ASSERT_UNLOCKED();
    758 	splx(s);
    759 }
    760 
    761 /*
    762  * General preemption call.  Puts the current process back on its run queue
    763  * and performs an involuntary context switch.  If a process is supplied,
    764  * we switch to that process.  Otherwise, we use the normal process selection
    765  * criteria.
    766  */
    767 
    768 void
    769 preempt(struct lwp *newl)
    770 {
    771 	struct lwp *l = curlwp;
    772 	int r, s;
    773 
    774 	if (l->l_flag & L_SA) {
    775 		SCHED_LOCK(s);
    776 		l->l_priority = l->l_usrpri;
    777 		l->l_stat = LSRUN;
    778 		setrunqueue(l);
    779 		l->l_proc->p_stats->p_ru.ru_nivcsw++;
    780 		r = mi_switch(l, newl);
    781 		SCHED_ASSERT_UNLOCKED();
    782 		splx(s);
    783 		if (r != 0)
    784 			sa_preempt(l);
    785 	} else {
    786 		SCHED_LOCK(s);
    787 		l->l_priority = l->l_usrpri;
    788 		l->l_stat = LSRUN;
    789 		setrunqueue(l);
    790 		l->l_proc->p_stats->p_ru.ru_nivcsw++;
    791 		mi_switch(l, newl);
    792 		SCHED_ASSERT_UNLOCKED();
    793 		splx(s);
    794 	}
    795 
    796 }
    797 
    798 /*
    799  * The machine independent parts of context switch.
    800  * Must be called at splsched() (no higher!) and with
    801  * the sched_lock held.
    802  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    803  * the next lwp.
    804  *
    805  * Returns 1 if another process was actually run.
    806  */
    807 int
    808 mi_switch(struct lwp *l, struct lwp *new)
    809 {
    810 	struct schedstate_percpu *spc;
    811 	struct rlimit *rlim;
    812 	long s, u;
    813 	struct timeval tv;
    814 #if defined(MULTIPROCESSOR)
    815 	int hold_count;
    816 #endif
    817 	struct proc *p = l->l_proc;
    818 	int retval;
    819 
    820 	SCHED_ASSERT_LOCKED();
    821 
    822 #if defined(MULTIPROCESSOR)
    823 	/*
    824 	 * Release the kernel_lock, as we are about to yield the CPU.
    825 	 * The scheduler lock is still held until cpu_switch()
    826 	 * selects a new process and removes it from the run queue.
    827 	 */
    828 	if (p->p_flag & P_BIGLOCK)
    829 		hold_count = spinlock_release_all(&kernel_lock);
    830 #endif
    831 
    832 	KDASSERT(l->l_cpu != NULL);
    833 	KDASSERT(l->l_cpu == curcpu());
    834 
    835 	spc = &l->l_cpu->ci_schedstate;
    836 
    837 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    838 	spinlock_switchcheck();
    839 #endif
    840 #ifdef LOCKDEBUG
    841 	simple_lock_switchcheck();
    842 #endif
    843 
    844 	/*
    845 	 * Compute the amount of time during which the current
    846 	 * process was running, and add that to its total so far.
    847 	 */
    848 	microtime(&tv);
    849 	u = p->p_rtime.tv_usec +
    850 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    851 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    852 	if (u < 0) {
    853 		u += 1000000;
    854 		s--;
    855 	} else if (u >= 1000000) {
    856 		u -= 1000000;
    857 		s++;
    858 	}
    859 	p->p_rtime.tv_usec = u;
    860 	p->p_rtime.tv_sec = s;
    861 
    862 	/*
    863 	 * Check if the process exceeds its cpu resource allocation.
    864 	 * If over max, kill it.  In any case, if it has run for more
    865 	 * than 10 minutes, reduce priority to give others a chance.
    866 	 */
    867 	rlim = &p->p_rlimit[RLIMIT_CPU];
    868 	if (s >= rlim->rlim_cur) {
    869 		/*
    870 		 * XXXSMP: we're inside the scheduler lock perimeter;
    871 		 * use sched_psignal.
    872 		 */
    873 		if (s >= rlim->rlim_max)
    874 			sched_psignal(p, SIGKILL);
    875 		else {
    876 			sched_psignal(p, SIGXCPU);
    877 			if (rlim->rlim_cur < rlim->rlim_max)
    878 				rlim->rlim_cur += 5;
    879 		}
    880 	}
    881 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    882 	    p->p_nice == NZERO) {
    883 		p->p_nice = autoniceval + NZERO;
    884 		resetpriority(l);
    885 	}
    886 
    887 	/*
    888 	 * Process is about to yield the CPU; clear the appropriate
    889 	 * scheduling flags.
    890 	 */
    891 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    892 
    893 	/*
    894 	 * Pick a new current process and switch to it.  When we
    895 	 * run again, we'll return back here.
    896 	 */
    897 	uvmexp.swtch++;
    898 	if (new == NULL) {
    899 		retval = cpu_switch(l);
    900 	} else {
    901 		cpu_preempt(l, new);
    902 		retval = 0;
    903 	}
    904 
    905 	/*
    906 	 * Make sure that MD code released the scheduler lock before
    907 	 * resuming us.
    908 	 */
    909 	SCHED_ASSERT_UNLOCKED();
    910 
    911 	/*
    912 	 * We're running again; record our new start time.  We might
    913 	 * be running on a new CPU now, so don't use the cache'd
    914 	 * schedstate_percpu pointer.
    915 	 */
    916 	KDASSERT(l->l_cpu != NULL);
    917 	KDASSERT(l->l_cpu == curcpu());
    918 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    919 
    920 #if defined(MULTIPROCESSOR)
    921 	/*
    922 	 * Reacquire the kernel_lock now.  We do this after we've
    923 	 * released the scheduler lock to avoid deadlock, and before
    924 	 * we reacquire the interlock.
    925 	 */
    926 	if (p->p_flag & P_BIGLOCK)
    927 		spinlock_acquire_count(&kernel_lock, hold_count);
    928 #endif
    929 
    930 	return retval;
    931 }
    932 
    933 /*
    934  * Initialize the (doubly-linked) run queues
    935  * to be empty.
    936  */
    937 void
    938 rqinit()
    939 {
    940 	int i;
    941 
    942 	for (i = 0; i < RUNQUE_NQS; i++)
    943 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    944 		    (struct lwp *)&sched_qs[i];
    945 }
    946 
    947 /*
    948  * Change process state to be runnable,
    949  * placing it on the run queue if it is in memory,
    950  * and awakening the swapper if it isn't in memory.
    951  */
    952 void
    953 setrunnable(struct lwp *l)
    954 {
    955 	struct proc *p = l->l_proc;
    956 
    957 	SCHED_ASSERT_LOCKED();
    958 
    959 	switch (l->l_stat) {
    960 	case 0:
    961 	case LSRUN:
    962 	case LSONPROC:
    963 	case LSZOMB:
    964 	case LSDEAD:
    965 	default:
    966 		panic("setrunnable");
    967 	case LSSTOP:
    968 		/*
    969 		 * If we're being traced (possibly because someone attached us
    970 		 * while we were stopped), check for a signal from the debugger.
    971 		 */
    972 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    973 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
    974 			CHECKSIGS(p);
    975 		}
    976 	case LSSLEEP:
    977 		unsleep(l);		/* e.g. when sending signals */
    978 		break;
    979 
    980 	case LSIDL:
    981 		break;
    982 	case LSSUSPENDED:
    983 		break;
    984 	}
    985 	l->l_stat = LSRUN;
    986 	p->p_nrlwps++;
    987 
    988 	if (l->l_flag & L_INMEM)
    989 		setrunqueue(l);
    990 
    991 	if (l->l_slptime > 1)
    992 		updatepri(l);
    993 	l->l_slptime = 0;
    994 	if ((l->l_flag & L_INMEM) == 0)
    995 		wakeup((caddr_t)&proc0);
    996 	else if (l->l_priority < curcpu()->ci_schedstate.spc_curpriority) {
    997 		/*
    998 		 * XXXSMP
    999 		 * This is not exactly right.  Since p->p_cpu persists
   1000 		 * across a context switch, this gives us some sort
   1001 		 * of processor affinity.  But we need to figure out
   1002 		 * at what point it's better to reschedule on a different
   1003 		 * CPU than the last one.
   1004 		 */
   1005 		need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
   1006 	}
   1007 }
   1008 
   1009 /*
   1010  * Compute the priority of a process when running in user mode.
   1011  * Arrange to reschedule if the resulting priority is better
   1012  * than that of the current process.
   1013  */
   1014 void
   1015 resetpriority(struct lwp *l)
   1016 {
   1017 	unsigned int newpriority;
   1018 	struct proc *p = l->l_proc;
   1019 
   1020 	SCHED_ASSERT_LOCKED();
   1021 
   1022 	newpriority = PUSER + p->p_estcpu +
   1023 			NICE_WEIGHT * (p->p_nice - NZERO);
   1024 	newpriority = min(newpriority, MAXPRI);
   1025 	l->l_usrpri = newpriority;
   1026 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
   1027 		/*
   1028 		 * XXXSMP
   1029 		 * Same applies as in setrunnable() above.
   1030 		 */
   1031 		need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
   1032 	}
   1033 }
   1034 
   1035 /*
   1036  * Recompute priority for all LWPs in a process.
   1037  */
   1038 void
   1039 resetprocpriority(struct proc *p)
   1040 {
   1041 	struct lwp *l;
   1042 
   1043 	LIST_FOREACH(l, &p->p_lwps, l_list)
   1044 	    resetpriority(l);
   1045 }
   1046 
   1047 /*
   1048  * We adjust the priority of the current process.  The priority of a process
   1049  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
   1050  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1051  * will compute a different value each time p_estcpu increases. This can
   1052  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1053  * queue will not change.  The cpu usage estimator ramps up quite quickly
   1054  * when the process is running (linearly), and decays away exponentially, at
   1055  * a rate which is proportionally slower when the system is busy.  The basic
   1056  * principle is that the system will 90% forget that the process used a lot
   1057  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1058  * processes which haven't run much recently, and to round-robin among other
   1059  * processes.
   1060  */
   1061 
   1062 void
   1063 schedclock(struct lwp *l)
   1064 {
   1065 	struct proc *p = l->l_proc;
   1066 	int s;
   1067 
   1068 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1069 	SCHED_LOCK(s);
   1070 	resetpriority(l);
   1071 	SCHED_UNLOCK(s);
   1072 
   1073 	if (l->l_priority >= PUSER)
   1074 		l->l_priority = l->l_usrpri;
   1075 }
   1076 
   1077 void
   1078 suspendsched()
   1079 {
   1080 	struct lwp *l;
   1081 	int s;
   1082 
   1083 	/*
   1084 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1085 	 * LSSUSPENDED.
   1086 	 */
   1087 	proclist_lock_read();
   1088 	SCHED_LOCK(s);
   1089 	for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l, l_list)) {
   1090 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1091 			continue;
   1092 
   1093 		switch (l->l_stat) {
   1094 		case LSRUN:
   1095 			l->l_proc->p_nrlwps--;
   1096 			if ((l->l_flag & L_INMEM) != 0)
   1097 				remrunqueue(l);
   1098 			/* FALLTHROUGH */
   1099 		case LSSLEEP:
   1100 			l->l_stat = LSSUSPENDED;
   1101 			break;
   1102 		case LSONPROC:
   1103 			/*
   1104 			 * XXX SMP: we need to deal with processes on
   1105 			 * others CPU !
   1106 			 */
   1107 			break;
   1108 		default:
   1109 			break;
   1110 		}
   1111 	}
   1112 	SCHED_UNLOCK(s);
   1113 	proclist_unlock_read();
   1114 }
   1115 
   1116 
   1117