Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.101.2.17
      1 /*	$NetBSD: kern_synch.c,v 1.101.2.17 2002/08/01 02:46:21 nathanw Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.101.2.17 2002/08/01 02:46:21 nathanw Exp $");
     82 
     83 #include "opt_ddb.h"
     84 #include "opt_ktrace.h"
     85 #include "opt_kstack.h"
     86 #include "opt_lockdebug.h"
     87 #include "opt_multiprocessor.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/callout.h>
     92 #include <sys/proc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/buf.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/resourcevar.h>
     97 #include <sys/sched.h>
     98 #include <sys/sa.h>
     99 #include <sys/savar.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 #ifdef KTRACE
    104 #include <sys/ktrace.h>
    105 #endif
    106 
    107 #include <machine/cpu.h>
    108 
    109 int	lbolt;			/* once a second sleep address */
    110 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    111 
    112 /*
    113  * The global scheduler state.
    114  */
    115 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    116 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    117 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    118 
    119 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    120 
    121 void schedcpu(void *);
    122 void updatepri(struct lwp *);
    123 void endtsleep(void *);
    124 
    125 __inline void awaken(struct lwp *);
    126 
    127 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    128 
    129 
    130 
    131 /*
    132  * Force switch among equal priority processes every 100ms.
    133  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    134  */
    135 /* ARGSUSED */
    136 void
    137 roundrobin(struct cpu_info *ci)
    138 {
    139 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    140 
    141 	spc->spc_rrticks = rrticks;
    142 
    143 	if (curlwp != NULL) {
    144 		if (spc->spc_flags & SPCF_SEENRR) {
    145 			/*
    146 			 * The process has already been through a roundrobin
    147 			 * without switching and may be hogging the CPU.
    148 			 * Indicate that the process should yield.
    149 			 */
    150 			spc->spc_flags |= SPCF_SHOULDYIELD;
    151 		} else
    152 			spc->spc_flags |= SPCF_SEENRR;
    153 	}
    154 	need_resched(curcpu());
    155 }
    156 
    157 /*
    158  * Constants for digital decay and forget:
    159  *	90% of (p_estcpu) usage in 5 * loadav time
    160  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    161  *          Note that, as ps(1) mentions, this can let percentages
    162  *          total over 100% (I've seen 137.9% for 3 processes).
    163  *
    164  * Note that hardclock updates p_estcpu and p_cpticks independently.
    165  *
    166  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    167  * That is, the system wants to compute a value of decay such
    168  * that the following for loop:
    169  * 	for (i = 0; i < (5 * loadavg); i++)
    170  * 		p_estcpu *= decay;
    171  * will compute
    172  * 	p_estcpu *= 0.1;
    173  * for all values of loadavg:
    174  *
    175  * Mathematically this loop can be expressed by saying:
    176  * 	decay ** (5 * loadavg) ~= .1
    177  *
    178  * The system computes decay as:
    179  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    180  *
    181  * We wish to prove that the system's computation of decay
    182  * will always fulfill the equation:
    183  * 	decay ** (5 * loadavg) ~= .1
    184  *
    185  * If we compute b as:
    186  * 	b = 2 * loadavg
    187  * then
    188  * 	decay = b / (b + 1)
    189  *
    190  * We now need to prove two things:
    191  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    192  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    193  *
    194  * Facts:
    195  *         For x close to zero, exp(x) =~ 1 + x, since
    196  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    197  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    198  *         For x close to zero, ln(1+x) =~ x, since
    199  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    200  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    201  *         ln(.1) =~ -2.30
    202  *
    203  * Proof of (1):
    204  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    205  *	solving for factor,
    206  *      ln(factor) =~ (-2.30/5*loadav), or
    207  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    208  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    209  *
    210  * Proof of (2):
    211  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    212  *	solving for power,
    213  *      power*ln(b/(b+1)) =~ -2.30, or
    214  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    215  *
    216  * Actual power values for the implemented algorithm are as follows:
    217  *      loadav: 1       2       3       4
    218  *      power:  5.68    10.32   14.94   19.55
    219  */
    220 
    221 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    222 #define	loadfactor(loadav)	(2 * (loadav))
    223 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    224 
    225 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    226 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    227 
    228 /*
    229  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    230  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    231  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    232  *
    233  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    234  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    235  *
    236  * If you dont want to bother with the faster/more-accurate formula, you
    237  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    238  * (more general) method of calculating the %age of CPU used by a process.
    239  */
    240 #define	CCPU_SHIFT	11
    241 
    242 /*
    243  * Recompute process priorities, every hz ticks.
    244  */
    245 /* ARGSUSED */
    246 void
    247 schedcpu(void *arg)
    248 {
    249 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    250 	struct lwp *l;
    251 	struct proc *p;
    252 	int s, s1;
    253 	unsigned int newcpu;
    254 	int clkhz;
    255 
    256 	proclist_lock_read();
    257 	for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l,l_list)) {
    258 		/*
    259 		 * Increment time in/out of memory and sleep time
    260 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    261 		 * (remember them?) overflow takes 45 days.
    262 		 */
    263 		p = l->l_proc;
    264 		l->l_swtime++;
    265 		if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    266 		    l->l_stat == LSSUSPENDED)
    267 			l->l_slptime++;
    268 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    269 		/*
    270 		 * If the process has slept the entire second,
    271 		 * stop recalculating its priority until it wakes up.
    272 		 */
    273 		if (l->l_slptime > 1)
    274 			continue;
    275 		s = splstatclock();	/* prevent state changes */
    276 		/*
    277 		 * p_pctcpu is only for ps.
    278 		 */
    279 		clkhz = stathz != 0 ? stathz : hz;
    280 #if	(FSHIFT >= CCPU_SHIFT)
    281 		p->p_pctcpu += (clkhz == 100)?
    282 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    283                 	100 * (((fixpt_t) p->p_cpticks)
    284 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    285 #else
    286 		l->l_pctcpu += ((FSCALE - ccpu) *
    287 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    288 #endif
    289 		p->p_cpticks = 0;
    290 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    291 		p->p_estcpu = newcpu;
    292 		SCHED_LOCK(s1);
    293 		resetpriority(l);
    294 		if (l->l_priority >= PUSER) {
    295 			if (l->l_stat == LSRUN &&
    296 			    (l->l_flag & L_INMEM) &&
    297 			    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    298 				remrunqueue(l);
    299 				l->l_priority = l->l_usrpri;
    300 				setrunqueue(l);
    301 			} else
    302 				l->l_priority = l->l_usrpri;
    303 		}
    304 		SCHED_UNLOCK(s1);
    305 		splx(s);
    306 	}
    307 	proclist_unlock_read();
    308 	uvm_meter();
    309 	wakeup((caddr_t)&lbolt);
    310 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    311 }
    312 
    313 /*
    314  * Recalculate the priority of a process after it has slept for a while.
    315  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    316  * least six times the loadfactor will decay p_estcpu to zero.
    317  */
    318 void
    319 updatepri(struct lwp *l)
    320 {
    321 	struct proc *p = l->l_proc;
    322 	unsigned int newcpu;
    323 	fixpt_t loadfac;
    324 
    325 	SCHED_ASSERT_LOCKED();
    326 
    327 	newcpu = p->p_estcpu;
    328 	loadfac = loadfactor(averunnable.ldavg[0]);
    329 
    330 	if (l->l_slptime > 5 * loadfac)
    331 		p->p_estcpu = 0; /* XXX NJWLWP */
    332 	else {
    333 		l->l_slptime--;	/* the first time was done in schedcpu */
    334 		while (newcpu && --l->l_slptime)
    335 			newcpu = (int) decay_cpu(loadfac, newcpu);
    336 		p->p_estcpu = newcpu;
    337 	}
    338 	resetpriority(l);
    339 }
    340 
    341 /*
    342  * During autoconfiguration or after a panic, a sleep will simply
    343  * lower the priority briefly to allow interrupts, then return.
    344  * The priority to be used (safepri) is machine-dependent, thus this
    345  * value is initialized and maintained in the machine-dependent layers.
    346  * This priority will typically be 0, or the lowest priority
    347  * that is safe for use on the interrupt stack; it can be made
    348  * higher to block network software interrupts after panics.
    349  */
    350 int safepri;
    351 
    352 /*
    353  * General sleep call.  Suspends the current process until a wakeup is
    354  * performed on the specified identifier.  The process will then be made
    355  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    356  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    357  * before and after sleeping, else signals are not checked.  Returns 0 if
    358  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    359  * signal needs to be delivered, ERESTART is returned if the current system
    360  * call should be restarted if possible, and EINTR is returned if the system
    361  * call should be interrupted by the signal (return EINTR).
    362  *
    363  * The interlock is held until the scheduler_slock is acquired.  The
    364  * interlock will be locked before returning back to the caller
    365  * unless the PNORELOCK flag is specified, in which case the
    366  * interlock will always be unlocked upon return.
    367  */
    368 int
    369 ltsleep(void *ident, int priority, const char *wmesg, int timo,
    370     __volatile struct simplelock *interlock)
    371 {
    372 	struct lwp *l = curlwp;
    373 	struct proc *p = l->l_proc;
    374 	struct slpque *qp;
    375 	int sig, s;
    376 	int catch = priority & PCATCH;
    377 	int relock = (priority & PNORELOCK) == 0;
    378 	int exiterr = (priority & PNOEXITERR) == 0;
    379 
    380 	/*
    381 	 * XXXSMP
    382 	 * This is probably bogus.  Figure out what the right
    383 	 * thing to do here really is.
    384 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    385 	 * in the shutdown case is disgusting but partly necessary given
    386 	 * how shutdown (barely) works.
    387 	 */
    388 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    389 		/*
    390 		 * After a panic, or during autoconfiguration,
    391 		 * just give interrupts a chance, then just return;
    392 		 * don't run any other procs or panic below,
    393 		 * in case this is the idle process and already asleep.
    394 		 */
    395 		s = splhigh();
    396 		splx(safepri);
    397 		splx(s);
    398 		if (interlock != NULL && relock == 0)
    399 			simple_unlock(interlock);
    400 		return (0);
    401 	}
    402 
    403 	KASSERT(p != NULL);
    404 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    405 
    406 #ifdef KTRACE
    407 	if (KTRPOINT(p, KTR_CSW))
    408 		ktrcsw(p, 1, 0);
    409 #endif
    410 
    411 	SCHED_LOCK(s);
    412 
    413 #ifdef DIAGNOSTIC
    414 	if (ident == NULL)
    415 		panic("ltsleep: ident == NULL");
    416 	if (l->l_stat != LSONPROC)
    417 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    418 	if (l->l_back != NULL)
    419 		panic("ltsleep: p_back != NULL");
    420 #endif
    421 
    422 	l->l_wchan = ident;
    423 	l->l_wmesg = wmesg;
    424 	l->l_slptime = 0;
    425 	l->l_priority = priority & PRIMASK;
    426 
    427 	qp = SLPQUE(ident);
    428 	if (qp->sq_head == 0)
    429 		qp->sq_head = l;
    430 	else {
    431 		*qp->sq_tailp = l;
    432 	}
    433 	*(qp->sq_tailp = &l->l_forw) = 0;
    434 
    435 	if (timo)
    436 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    437 
    438 	/*
    439 	 * We can now release the interlock; the scheduler_slock
    440 	 * is held, so a thread can't get in to do wakeup() before
    441 	 * we do the switch.
    442 	 *
    443 	 * XXX We leave the code block here, after inserting ourselves
    444 	 * on the sleep queue, because we might want a more clever
    445 	 * data structure for the sleep queues at some point.
    446 	 */
    447 	if (interlock != NULL)
    448 		simple_unlock(interlock);
    449 
    450 	/*
    451 	 * We put ourselves on the sleep queue and start our timeout
    452 	 * before calling CURSIG, as we could stop there, and a wakeup
    453 	 * or a SIGCONT (or both) could occur while we were stopped.
    454 	 * A SIGCONT would cause us to be marked as SSLEEP
    455 	 * without resuming us, thus we must be ready for sleep
    456 	 * when CURSIG is called.  If the wakeup happens while we're
    457 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    458 	 */
    459 	if (catch) {
    460 		l->l_flag |= L_SINTR;
    461 		if ((sig = CURSIG(l)) != 0) {
    462 			if (l->l_wchan != NULL)
    463 				unsleep(l);
    464 			l->l_stat = LSONPROC;
    465 			SCHED_UNLOCK(s);
    466 			goto resume;
    467 		}
    468 		if (l->l_wchan == NULL) {
    469 			catch = 0;
    470 			SCHED_UNLOCK(s);
    471 			goto resume;
    472 		}
    473 	} else
    474 		sig = 0;
    475 	l->l_stat = LSSLEEP;
    476 	p->p_nrlwps--;
    477 	p->p_stats->p_ru.ru_nvcsw++;
    478 	SCHED_ASSERT_LOCKED();
    479 	if (l->l_flag & L_SA)
    480 		sa_switch(l, SA_UPCALL_BLOCKED);
    481 	else
    482 		mi_switch(l, NULL);
    483 
    484 #if	defined(DDB) && !defined(GPROF)
    485 	/* handy breakpoint location after process "wakes" */
    486 	__asm(".globl bpendtsleep ; bpendtsleep:");
    487 #endif
    488 	/*
    489 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    490 	 * either setrunnable() or awaken().
    491 	 */
    492 
    493 	SCHED_ASSERT_UNLOCKED();
    494 	splx(s);
    495 
    496  resume:
    497 	KDASSERT(l->l_cpu != NULL);
    498 	KDASSERT(l->l_cpu == curcpu());
    499 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    500 
    501 	l->l_flag &= ~L_SINTR;
    502 	if (l->l_flag & L_TIMEOUT) {
    503 		l->l_flag &= ~L_TIMEOUT;
    504 		if (sig == 0) {
    505 #ifdef KTRACE
    506 			if (KTRPOINT(p, KTR_CSW))
    507 				ktrcsw(p, 0, 0);
    508 #endif
    509 			if (relock && interlock != NULL)
    510 				simple_lock(interlock);
    511 			return (EWOULDBLOCK);
    512 		}
    513 	} else if (timo)
    514 		callout_stop(&l->l_tsleep_ch);
    515 	if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
    516 #ifdef KTRACE
    517 		if (KTRPOINT(p, KTR_CSW))
    518 			ktrcsw(p, 0, 0);
    519 #endif
    520 		if (relock && interlock != NULL)
    521 			simple_lock(interlock);
    522 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    523 			return (EINTR);
    524 		return (ERESTART);
    525 	}
    526 	/* XXXNJW this is very much a kluge.
    527 	 * revisit. a better way of preventing looping/hanging syscalls like
    528 	 * wait4() and _lwp_wait() from wedging an exiting process
    529 	 * would be preferred.
    530 	 */
    531 	if (catch && ((p->p_flag & P_WEXIT) && exiterr))
    532 		return (EINTR);
    533 #ifdef KTRACE
    534 	if (KTRPOINT(p, KTR_CSW))
    535 		ktrcsw(p, 0, 0);
    536 #endif
    537 	if (relock && interlock != NULL)
    538 		simple_lock(interlock);
    539 	return (0);
    540 }
    541 
    542 /*
    543  * Implement timeout for tsleep.
    544  * If process hasn't been awakened (wchan non-zero),
    545  * set timeout flag and undo the sleep.  If proc
    546  * is stopped, just unsleep so it will remain stopped.
    547  */
    548 void
    549 endtsleep(void *arg)
    550 {
    551 	struct lwp *l;
    552 	int s;
    553 
    554 	l = (struct lwp *)arg;
    555 	SCHED_LOCK(s);
    556 	if (l->l_wchan) {
    557 		if (l->l_stat == LSSLEEP)
    558 			setrunnable(l);
    559 		else
    560 			unsleep(l);
    561 		l->l_flag |= L_TIMEOUT;
    562 	}
    563 	SCHED_UNLOCK(s);
    564 }
    565 
    566 /*
    567  * Remove a process from its wait queue
    568  */
    569 void
    570 unsleep(struct lwp *l)
    571 {
    572 	struct slpque *qp;
    573 	struct lwp **hp;
    574 
    575 	SCHED_ASSERT_LOCKED();
    576 
    577 	if (l->l_wchan) {
    578 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    579 		while (*hp != l)
    580 			hp = &(*hp)->l_forw;
    581 		*hp = l->l_forw;
    582 		if (qp->sq_tailp == &l->l_forw)
    583 			qp->sq_tailp = hp;
    584 		l->l_wchan = 0;
    585 	}
    586 }
    587 
    588 /*
    589  * Optimized-for-wakeup() version of setrunnable().
    590  */
    591 __inline void
    592 awaken(struct lwp *l)
    593 {
    594 
    595 	SCHED_ASSERT_LOCKED();
    596 
    597 	if (l->l_slptime > 1)
    598 		updatepri(l);
    599 	l->l_slptime = 0;
    600 	l->l_stat = LSRUN;
    601 	l->l_proc->p_nrlwps++;
    602 	/*
    603 	 * Since curpriority is a user priority, p->p_priority
    604 	 * is always better than curpriority.
    605 	 */
    606 	if (l->l_flag & L_INMEM) {
    607 		setrunqueue(l);
    608 		KASSERT(l->l_cpu != NULL);
    609 		need_resched(l->l_cpu);
    610 	} else
    611 		sched_wakeup(&proc0);
    612 }
    613 
    614 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    615 void
    616 sched_unlock_idle(void)
    617 {
    618 
    619 	simple_unlock(&sched_lock);
    620 }
    621 
    622 void
    623 sched_lock_idle(void)
    624 {
    625 
    626 	simple_lock(&sched_lock);
    627 }
    628 #endif /* MULTIPROCESSOR || LOCKDEBUG */
    629 
    630 /*
    631  * Make all processes sleeping on the specified identifier runnable.
    632  */
    633 
    634 void
    635 wakeup(void *ident)
    636 {
    637 	int s;
    638 
    639 	SCHED_ASSERT_UNLOCKED();
    640 
    641 	SCHED_LOCK(s);
    642 	sched_wakeup(ident);
    643 	SCHED_UNLOCK(s);
    644 }
    645 
    646 void
    647 sched_wakeup(void *ident)
    648 {
    649 	struct slpque *qp;
    650 	struct lwp *l, **q;
    651 
    652 	SCHED_ASSERT_LOCKED();
    653 
    654 	qp = SLPQUE(ident);
    655  restart:
    656 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    657 #ifdef DIAGNOSTIC
    658 		if (l->l_back || (l->l_stat != LSSLEEP &&
    659 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    660 			panic("wakeup");
    661 #endif
    662 		if (l->l_wchan == ident) {
    663 			l->l_wchan = 0;
    664 			*q = l->l_forw;
    665 			if (qp->sq_tailp == &l->l_forw)
    666 				qp->sq_tailp = q;
    667 			if (l->l_stat == LSSLEEP) {
    668 				awaken(l);
    669 				goto restart;
    670 			}
    671 		} else
    672 			q = &l->l_forw;
    673 	}
    674 }
    675 
    676 /*
    677  * Make the highest priority process first in line on the specified
    678  * identifier runnable.
    679  */
    680 void
    681 wakeup_one(void *ident)
    682 {
    683 	struct slpque *qp;
    684 	struct lwp *l, **q;
    685 	struct lwp *best_sleepp, **best_sleepq;
    686 	struct lwp *best_stopp, **best_stopq;
    687 	int s;
    688 
    689 	best_sleepp = best_stopp = NULL;
    690 	best_sleepq = best_stopq = NULL;
    691 
    692 	SCHED_LOCK(s);
    693 
    694 	qp = SLPQUE(ident);
    695 
    696 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    697 #ifdef DIAGNOSTIC
    698 		if (l->l_back || (l->l_stat != LSSLEEP &&
    699 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    700 			panic("wakeup_one");
    701 #endif
    702 		if (l->l_wchan == ident) {
    703 			if (l->l_stat == LSSLEEP) {
    704 				if (best_sleepp == NULL ||
    705 				    l->l_priority < best_sleepp->l_priority) {
    706 					best_sleepp = l;
    707 					best_sleepq = q;
    708 				}
    709 			} else {
    710 				if (best_stopp == NULL ||
    711 				    l->l_priority < best_stopp->l_priority) {
    712 				    	best_stopp = l;
    713 					best_stopq = q;
    714 				}
    715 			}
    716 		}
    717 	}
    718 
    719 	/*
    720 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    721 	 * process.
    722 	 */
    723 	if (best_sleepp != NULL) {
    724 		l = best_sleepp;
    725 		q = best_sleepq;
    726 	} else {
    727 		l = best_stopp;
    728 		q = best_stopq;
    729 	}
    730 
    731 	if (l != NULL) {
    732 		l->l_wchan = NULL;
    733 		*q = l->l_forw;
    734 		if (qp->sq_tailp == &l->l_forw)
    735 			qp->sq_tailp = q;
    736 		if (l->l_stat == LSSLEEP)
    737 			awaken(l);
    738 	}
    739 	SCHED_UNLOCK(s);
    740 }
    741 
    742 /*
    743  * General yield call.  Puts the current process back on its run queue and
    744  * performs a voluntary context switch.
    745  */
    746 void
    747 yield(void)
    748 {
    749 	struct lwp *l = curlwp;
    750 	int s;
    751 
    752 	SCHED_LOCK(s);
    753 	l->l_priority = l->l_usrpri;
    754 	l->l_stat = LSRUN;
    755 	setrunqueue(l);
    756 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    757 	mi_switch(l, NULL);
    758 	SCHED_ASSERT_UNLOCKED();
    759 	splx(s);
    760 }
    761 
    762 /*
    763  * General preemption call.  Puts the current process back on its run queue
    764  * and performs an involuntary context switch.  If a process is supplied,
    765  * we switch to that process.  Otherwise, we use the normal process selection
    766  * criteria.
    767  */
    768 
    769 void
    770 preempt(struct lwp *newl)
    771 {
    772 	struct lwp *l = curlwp;
    773 	int r, s;
    774 
    775 	if (l->l_flag & L_SA) {
    776 		SCHED_LOCK(s);
    777 		l->l_priority = l->l_usrpri;
    778 		l->l_stat = LSRUN;
    779 		setrunqueue(l);
    780 		l->l_proc->p_stats->p_ru.ru_nivcsw++;
    781 		r = mi_switch(l, newl);
    782 		SCHED_ASSERT_UNLOCKED();
    783 		splx(s);
    784 		if (r != 0)
    785 			sa_preempt(l);
    786 	} else {
    787 		SCHED_LOCK(s);
    788 		l->l_priority = l->l_usrpri;
    789 		l->l_stat = LSRUN;
    790 		setrunqueue(l);
    791 		l->l_proc->p_stats->p_ru.ru_nivcsw++;
    792 		mi_switch(l, newl);
    793 		SCHED_ASSERT_UNLOCKED();
    794 		splx(s);
    795 	}
    796 
    797 }
    798 
    799 /*
    800  * The machine independent parts of context switch.
    801  * Must be called at splsched() (no higher!) and with
    802  * the sched_lock held.
    803  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    804  * the next lwp.
    805  *
    806  * Returns 1 if another process was actually run.
    807  */
    808 int
    809 mi_switch(struct lwp *l, struct lwp *new)
    810 {
    811 	struct schedstate_percpu *spc;
    812 	struct rlimit *rlim;
    813 	long s, u;
    814 	struct timeval tv;
    815 #if defined(MULTIPROCESSOR)
    816 	int hold_count;
    817 #endif
    818 	struct proc *p = l->l_proc;
    819 	int retval;
    820 
    821 	SCHED_ASSERT_LOCKED();
    822 
    823 #if defined(MULTIPROCESSOR)
    824 	/*
    825 	 * Release the kernel_lock, as we are about to yield the CPU.
    826 	 * The scheduler lock is still held until cpu_switch()
    827 	 * selects a new process and removes it from the run queue.
    828 	 */
    829 	if (p->p_flag & P_BIGLOCK)
    830 		hold_count = spinlock_release_all(&kernel_lock);
    831 #endif
    832 
    833 	KDASSERT(l->l_cpu != NULL);
    834 	KDASSERT(l->l_cpu == curcpu());
    835 
    836 	spc = &l->l_cpu->ci_schedstate;
    837 
    838 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    839 	spinlock_switchcheck();
    840 #endif
    841 #ifdef LOCKDEBUG
    842 	simple_lock_switchcheck();
    843 #endif
    844 
    845 	/*
    846 	 * Compute the amount of time during which the current
    847 	 * process was running, and add that to its total so far.
    848 	 */
    849 	microtime(&tv);
    850 	u = p->p_rtime.tv_usec +
    851 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    852 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    853 	if (u < 0) {
    854 		u += 1000000;
    855 		s--;
    856 	} else if (u >= 1000000) {
    857 		u -= 1000000;
    858 		s++;
    859 	}
    860 	p->p_rtime.tv_usec = u;
    861 	p->p_rtime.tv_sec = s;
    862 
    863 	/*
    864 	 * Check if the process exceeds its cpu resource allocation.
    865 	 * If over max, kill it.  In any case, if it has run for more
    866 	 * than 10 minutes, reduce priority to give others a chance.
    867 	 */
    868 	rlim = &p->p_rlimit[RLIMIT_CPU];
    869 	if (s >= rlim->rlim_cur) {
    870 		/*
    871 		 * XXXSMP: we're inside the scheduler lock perimeter;
    872 		 * use sched_psignal.
    873 		 */
    874 		if (s >= rlim->rlim_max)
    875 			sched_psignal(p, SIGKILL);
    876 		else {
    877 			sched_psignal(p, SIGXCPU);
    878 			if (rlim->rlim_cur < rlim->rlim_max)
    879 				rlim->rlim_cur += 5;
    880 		}
    881 	}
    882 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    883 	    p->p_nice == NZERO) {
    884 		p->p_nice = autoniceval + NZERO;
    885 		resetpriority(l);
    886 	}
    887 
    888 	/*
    889 	 * Process is about to yield the CPU; clear the appropriate
    890 	 * scheduling flags.
    891 	 */
    892 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    893 
    894 #ifdef KSTACK_CHECK_MAGIC
    895 	kstack_check_magic(p);
    896 #endif
    897 
    898 	/*
    899 	 * Pick a new current process and switch to it.  When we
    900 	 * run again, we'll return back here.
    901 	 */
    902 	uvmexp.swtch++;
    903 	if (new == NULL) {
    904 		retval = cpu_switch(l);
    905 	} else {
    906 		cpu_preempt(l, new);
    907 		retval = 0;
    908 	}
    909 
    910 	/*
    911 	 * Make sure that MD code released the scheduler lock before
    912 	 * resuming us.
    913 	 */
    914 	SCHED_ASSERT_UNLOCKED();
    915 
    916 	/*
    917 	 * We're running again; record our new start time.  We might
    918 	 * be running on a new CPU now, so don't use the cache'd
    919 	 * schedstate_percpu pointer.
    920 	 */
    921 	KDASSERT(l->l_cpu != NULL);
    922 	KDASSERT(l->l_cpu == curcpu());
    923 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    924 
    925 #if defined(MULTIPROCESSOR)
    926 	/*
    927 	 * Reacquire the kernel_lock now.  We do this after we've
    928 	 * released the scheduler lock to avoid deadlock, and before
    929 	 * we reacquire the interlock.
    930 	 */
    931 	if (p->p_flag & P_BIGLOCK)
    932 		spinlock_acquire_count(&kernel_lock, hold_count);
    933 #endif
    934 
    935 	return retval;
    936 }
    937 
    938 /*
    939  * Initialize the (doubly-linked) run queues
    940  * to be empty.
    941  */
    942 void
    943 rqinit()
    944 {
    945 	int i;
    946 
    947 	for (i = 0; i < RUNQUE_NQS; i++)
    948 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    949 		    (struct lwp *)&sched_qs[i];
    950 }
    951 
    952 /*
    953  * Change process state to be runnable,
    954  * placing it on the run queue if it is in memory,
    955  * and awakening the swapper if it isn't in memory.
    956  */
    957 void
    958 setrunnable(struct lwp *l)
    959 {
    960 	struct proc *p = l->l_proc;
    961 
    962 	SCHED_ASSERT_LOCKED();
    963 
    964 	switch (l->l_stat) {
    965 	case 0:
    966 	case LSRUN:
    967 	case LSONPROC:
    968 	case LSZOMB:
    969 	case LSDEAD:
    970 	default:
    971 		panic("setrunnable");
    972 	case LSSTOP:
    973 		/*
    974 		 * If we're being traced (possibly because someone attached us
    975 		 * while we were stopped), check for a signal from the debugger.
    976 		 */
    977 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    978 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
    979 			CHECKSIGS(p);
    980 		}
    981 	case LSSLEEP:
    982 		unsleep(l);		/* e.g. when sending signals */
    983 		break;
    984 
    985 	case LSIDL:
    986 		break;
    987 	case LSSUSPENDED:
    988 		break;
    989 	}
    990 	l->l_stat = LSRUN;
    991 	p->p_nrlwps++;
    992 
    993 	if (l->l_flag & L_INMEM)
    994 		setrunqueue(l);
    995 
    996 	if (l->l_slptime > 1)
    997 		updatepri(l);
    998 	l->l_slptime = 0;
    999 	if ((l->l_flag & L_INMEM) == 0)
   1000 		wakeup((caddr_t)&proc0);
   1001 	else if (l->l_priority < curcpu()->ci_schedstate.spc_curpriority) {
   1002 		/*
   1003 		 * XXXSMP
   1004 		 * This is not exactly right.  Since p->p_cpu persists
   1005 		 * across a context switch, this gives us some sort
   1006 		 * of processor affinity.  But we need to figure out
   1007 		 * at what point it's better to reschedule on a different
   1008 		 * CPU than the last one.
   1009 		 */
   1010 		need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
   1011 	}
   1012 }
   1013 
   1014 /*
   1015  * Compute the priority of a process when running in user mode.
   1016  * Arrange to reschedule if the resulting priority is better
   1017  * than that of the current process.
   1018  */
   1019 void
   1020 resetpriority(struct lwp *l)
   1021 {
   1022 	unsigned int newpriority;
   1023 	struct proc *p = l->l_proc;
   1024 
   1025 	SCHED_ASSERT_LOCKED();
   1026 
   1027 	newpriority = PUSER + p->p_estcpu +
   1028 			NICE_WEIGHT * (p->p_nice - NZERO);
   1029 	newpriority = min(newpriority, MAXPRI);
   1030 	l->l_usrpri = newpriority;
   1031 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
   1032 		/*
   1033 		 * XXXSMP
   1034 		 * Same applies as in setrunnable() above.
   1035 		 */
   1036 		need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
   1037 	}
   1038 }
   1039 
   1040 /*
   1041  * Recompute priority for all LWPs in a process.
   1042  */
   1043 void
   1044 resetprocpriority(struct proc *p)
   1045 {
   1046 	struct lwp *l;
   1047 
   1048 	LIST_FOREACH(l, &p->p_lwps, l_list)
   1049 	    resetpriority(l);
   1050 }
   1051 
   1052 /*
   1053  * We adjust the priority of the current process.  The priority of a process
   1054  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
   1055  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1056  * will compute a different value each time p_estcpu increases. This can
   1057  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1058  * queue will not change.  The cpu usage estimator ramps up quite quickly
   1059  * when the process is running (linearly), and decays away exponentially, at
   1060  * a rate which is proportionally slower when the system is busy.  The basic
   1061  * principle is that the system will 90% forget that the process used a lot
   1062  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1063  * processes which haven't run much recently, and to round-robin among other
   1064  * processes.
   1065  */
   1066 
   1067 void
   1068 schedclock(struct lwp *l)
   1069 {
   1070 	struct proc *p = l->l_proc;
   1071 	int s;
   1072 
   1073 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1074 	SCHED_LOCK(s);
   1075 	resetpriority(l);
   1076 	SCHED_UNLOCK(s);
   1077 
   1078 	if (l->l_priority >= PUSER)
   1079 		l->l_priority = l->l_usrpri;
   1080 }
   1081 
   1082 void
   1083 suspendsched()
   1084 {
   1085 	struct lwp *l;
   1086 	int s;
   1087 
   1088 	/*
   1089 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1090 	 * LSSUSPENDED.
   1091 	 */
   1092 	proclist_lock_read();
   1093 	SCHED_LOCK(s);
   1094 	for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l, l_list)) {
   1095 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1096 			continue;
   1097 
   1098 		switch (l->l_stat) {
   1099 		case LSRUN:
   1100 			l->l_proc->p_nrlwps--;
   1101 			if ((l->l_flag & L_INMEM) != 0)
   1102 				remrunqueue(l);
   1103 			/* FALLTHROUGH */
   1104 		case LSSLEEP:
   1105 			l->l_stat = LSSUSPENDED;
   1106 			break;
   1107 		case LSONPROC:
   1108 			/*
   1109 			 * XXX SMP: we need to deal with processes on
   1110 			 * others CPU !
   1111 			 */
   1112 			break;
   1113 		default:
   1114 			break;
   1115 		}
   1116 	}
   1117 	SCHED_UNLOCK(s);
   1118 	proclist_unlock_read();
   1119 }
   1120 
   1121 
   1122