kern_synch.c revision 1.101.2.2 1 /* $NetBSD: kern_synch.c,v 1.101.2.2 2001/04/08 20:53:05 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_ktrace.h"
82 #include "opt_lockdebug.h"
83 #include "opt_multiprocessor.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/callout.h>
88 #include <sys/proc.h>
89 #include <sys/lwp.h>
90 #include <sys/kernel.h>
91 #include <sys/buf.h>
92 #include <sys/signalvar.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sa.h>
96 #include <sys/savar.h>
97
98 #include <uvm/uvm_extern.h>
99
100 #ifdef KTRACE
101 #include <sys/ktrace.h>
102 #endif
103
104 #include <machine/cpu.h>
105
106 int lbolt; /* once a second sleep address */
107 int rrticks; /* number of hardclock ticks per roundrobin() */
108
109 /*
110 * The global scheduler state.
111 */
112 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
113 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
114 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
115
116 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
117 #if defined(MULTIPROCESSOR)
118 struct lock kernel_lock;
119 #endif
120
121 void schedcpu(void *);
122 void updatepri(struct lwp *);
123 void endtsleep(void *);
124
125 __inline void awaken(struct lwp *);
126
127 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
128
129
130
131 /*
132 * Force switch among equal priority processes every 100ms.
133 * Called from hardclock every hz/10 == rrticks hardclock ticks.
134 */
135 /* ARGSUSED */
136 void
137 roundrobin(struct cpu_info *ci)
138 {
139 struct schedstate_percpu *spc = &ci->ci_schedstate;
140
141 spc->spc_rrticks = rrticks;
142
143 if (curproc != NULL) {
144 if (spc->spc_flags & SPCF_SEENRR) {
145 /*
146 * The process has already been through a roundrobin
147 * without switching and may be hogging the CPU.
148 * Indicate that the process should yield.
149 */
150 spc->spc_flags |= SPCF_SHOULDYIELD;
151 } else
152 spc->spc_flags |= SPCF_SEENRR;
153 }
154 need_resched(curcpu());
155 }
156
157 /*
158 * Constants for digital decay and forget:
159 * 90% of (p_estcpu) usage in 5 * loadav time
160 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
161 * Note that, as ps(1) mentions, this can let percentages
162 * total over 100% (I've seen 137.9% for 3 processes).
163 *
164 * Note that hardclock updates p_estcpu and p_cpticks independently.
165 *
166 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
167 * That is, the system wants to compute a value of decay such
168 * that the following for loop:
169 * for (i = 0; i < (5 * loadavg); i++)
170 * p_estcpu *= decay;
171 * will compute
172 * p_estcpu *= 0.1;
173 * for all values of loadavg:
174 *
175 * Mathematically this loop can be expressed by saying:
176 * decay ** (5 * loadavg) ~= .1
177 *
178 * The system computes decay as:
179 * decay = (2 * loadavg) / (2 * loadavg + 1)
180 *
181 * We wish to prove that the system's computation of decay
182 * will always fulfill the equation:
183 * decay ** (5 * loadavg) ~= .1
184 *
185 * If we compute b as:
186 * b = 2 * loadavg
187 * then
188 * decay = b / (b + 1)
189 *
190 * We now need to prove two things:
191 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
192 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
193 *
194 * Facts:
195 * For x close to zero, exp(x) =~ 1 + x, since
196 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
197 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
198 * For x close to zero, ln(1+x) =~ x, since
199 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
200 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
201 * ln(.1) =~ -2.30
202 *
203 * Proof of (1):
204 * Solve (factor)**(power) =~ .1 given power (5*loadav):
205 * solving for factor,
206 * ln(factor) =~ (-2.30/5*loadav), or
207 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
208 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
209 *
210 * Proof of (2):
211 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
212 * solving for power,
213 * power*ln(b/(b+1)) =~ -2.30, or
214 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
215 *
216 * Actual power values for the implemented algorithm are as follows:
217 * loadav: 1 2 3 4
218 * power: 5.68 10.32 14.94 19.55
219 */
220
221 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
222 #define loadfactor(loadav) (2 * (loadav))
223 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
224
225 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
226 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
227
228 /*
229 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
230 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
231 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
232 *
233 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
234 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
235 *
236 * If you dont want to bother with the faster/more-accurate formula, you
237 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
238 * (more general) method of calculating the %age of CPU used by a process.
239 */
240 #define CCPU_SHIFT 11
241
242 /*
243 * Recompute process priorities, every hz ticks.
244 */
245 /* ARGSUSED */
246 void
247 schedcpu(void *arg)
248 {
249 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
250 struct lwp *l;
251 struct proc *p;
252 int s, s1;
253 unsigned int newcpu;
254 int clkhz;
255
256 proclist_lock_read();
257 for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l,l_list)) {
258 /*
259 * Increment time in/out of memory and sleep time
260 * (if sleeping). We ignore overflow; with 16-bit int's
261 * (remember them?) overflow takes 45 days.
262 */
263 p = l->l_proc;
264 l->l_swtime++;
265 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
266 l->l_stat == LSSUSPENDED)
267 l->l_slptime++;
268 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
269 /*
270 * If the process has slept the entire second,
271 * stop recalculating its priority until it wakes up.
272 */
273 if (l->l_slptime > 1)
274 continue;
275 s = splstatclock(); /* prevent state changes */
276 /*
277 * p_pctcpu is only for ps.
278 */
279 clkhz = stathz != 0 ? stathz : hz;
280 #if (FSHIFT >= CCPU_SHIFT)
281 p->p_pctcpu += (clkhz == 100)?
282 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
283 100 * (((fixpt_t) p->p_cpticks)
284 << (FSHIFT - CCPU_SHIFT)) / clkhz;
285 #else
286 l->l_pctcpu += ((FSCALE - ccpu) *
287 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
288 #endif
289 p->p_cpticks = 0;
290 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
291 p->p_estcpu = newcpu;
292 SCHED_LOCK(s1);
293 resetpriority(l);
294 if (l->l_priority >= PUSER) {
295 if (l->l_stat == LSRUN &&
296 (l->l_flag & L_INMEM) &&
297 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
298 remrunqueue(l);
299 l->l_priority = l->l_usrpri;
300 setrunqueue(l);
301 } else
302 l->l_priority = l->l_usrpri;
303 }
304 SCHED_UNLOCK(s1);
305 splx(s);
306 }
307 proclist_unlock_read();
308 uvm_meter();
309 wakeup((caddr_t)&lbolt);
310 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
311 }
312
313 /*
314 * Recalculate the priority of a process after it has slept for a while.
315 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
316 * least six times the loadfactor will decay p_estcpu to zero.
317 */
318 void
319 updatepri(struct lwp *l)
320 {
321 struct proc *p = l->l_proc;
322 unsigned int newcpu;
323 fixpt_t loadfac;
324
325 SCHED_ASSERT_LOCKED();
326
327 newcpu = p->p_estcpu;
328 loadfac = loadfactor(averunnable.ldavg[0]);
329
330 if (l->l_slptime > 5 * loadfac)
331 p->p_estcpu = 0; /* XXX NJWLWP */
332 else {
333 l->l_slptime--; /* the first time was done in schedcpu */
334 while (newcpu && --l->l_slptime)
335 newcpu = (int) decay_cpu(loadfac, newcpu);
336 p->p_estcpu = newcpu;
337 }
338 resetpriority(l);
339 }
340
341 /*
342 * During autoconfiguration or after a panic, a sleep will simply
343 * lower the priority briefly to allow interrupts, then return.
344 * The priority to be used (safepri) is machine-dependent, thus this
345 * value is initialized and maintained in the machine-dependent layers.
346 * This priority will typically be 0, or the lowest priority
347 * that is safe for use on the interrupt stack; it can be made
348 * higher to block network software interrupts after panics.
349 */
350 int safepri;
351
352 /*
353 * General sleep call. Suspends the current process until a wakeup is
354 * performed on the specified identifier. The process will then be made
355 * runnable with the specified priority. Sleeps at most timo/hz seconds
356 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
357 * before and after sleeping, else signals are not checked. Returns 0 if
358 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
359 * signal needs to be delivered, ERESTART is returned if the current system
360 * call should be restarted if possible, and EINTR is returned if the system
361 * call should be interrupted by the signal (return EINTR).
362 *
363 * The interlock is held until the scheduler_slock is held. The
364 * interlock will be locked before returning back to the caller
365 * unless the PNORELOCK flag is specified, in which case the
366 * interlock will always be unlocked upon return.
367 */
368 int
369 ltsleep(void *ident, int priority, const char *wmesg, int timo,
370 __volatile struct simplelock *interlock)
371 {
372 struct lwp *l = curproc;
373 struct proc *p = l->l_proc;
374 struct slpque *qp;
375 int sig, s;
376 int catch = priority & PCATCH;
377 int relock = (priority & PNORELOCK) == 0;
378 int exiterr = (priority & PNOEXITERR) == 0;
379
380 /*
381 * XXXSMP
382 * This is probably bogus. Figure out what the right
383 * thing to do here really is.
384 * Note that not sleeping if ltsleep is called with curproc == NULL
385 * in the shutdown case is disgusting but partly necessary given
386 * how shutdown (barely) works.
387 */
388 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
389 /*
390 * After a panic, or during autoconfiguration,
391 * just give interrupts a chance, then just return;
392 * don't run any other procs or panic below,
393 * in case this is the idle process and already asleep.
394 */
395 s = splhigh();
396 splx(safepri);
397 splx(s);
398 if (interlock != NULL && relock == 0)
399 simple_unlock(interlock);
400 return (0);
401 }
402
403
404 #ifdef KTRACE
405 if (KTRPOINT(p, KTR_CSW))
406 ktrcsw(p, 1, 0);
407 #endif
408
409 SCHED_LOCK(s);
410
411 #ifdef DIAGNOSTIC
412 if (ident == NULL)
413 panic("ltsleep: ident == NULL");
414 if (l->l_stat != LSONPROC)
415 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
416 if (l->l_back != NULL)
417 panic("ltsleep: p_back != NULL");
418 #endif
419
420 l->l_wchan = ident;
421 l->l_wmesg = wmesg;
422 l->l_slptime = 0;
423 l->l_priority = priority & PRIMASK;
424
425 qp = SLPQUE(ident);
426 if (qp->sq_head == 0)
427 qp->sq_head = l;
428 else {
429 *qp->sq_tailp = l;
430 }
431 *(qp->sq_tailp = &l->l_forw) = 0;
432
433 if (timo)
434 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
435
436 /*
437 * We can now release the interlock; the scheduler_slock
438 * is held, so a thread can't get in to do wakeup() before
439 * we do the switch.
440 *
441 * XXX We leave the code block here, after inserting ourselves
442 * on the sleep queue, because we might want a more clever
443 * data structure for the sleep queues at some point.
444 */
445 if (interlock != NULL)
446 simple_unlock(interlock);
447
448 /*
449 * We put ourselves on the sleep queue and start our timeout
450 * before calling CURSIG, as we could stop there, and a wakeup
451 * or a SIGCONT (or both) could occur while we were stopped.
452 * A SIGCONT would cause us to be marked as SSLEEP
453 * without resuming us, thus we must be ready for sleep
454 * when CURSIG is called. If the wakeup happens while we're
455 * stopped, p->p_wchan will be 0 upon return from CURSIG.
456 */
457 if (catch) {
458 l->l_flag |= L_SINTR;
459 if ((sig = CURSIG(l)) != 0) {
460 if (l->l_wchan != NULL)
461 unsleep(l);
462 l->l_stat = LSONPROC;
463 SCHED_UNLOCK(s);
464 goto resume;
465 }
466 if (l->l_wchan == NULL) {
467 catch = 0;
468 SCHED_UNLOCK(s);
469 goto resume;
470 }
471 } else
472 sig = 0;
473 l->l_stat = LSSLEEP;
474 p->p_nrlwps--;
475 p->p_stats->p_ru.ru_nvcsw++;
476 SCHED_ASSERT_LOCKED();
477 if (l->l_flag & L_SA)
478 sa_switch(l, SA_UPCALL_BLOCKED);
479 else
480 mi_switch(l, NULL);
481
482 #ifdef DDB
483 /* handy breakpoint location after process "wakes" */
484 asm(".globl bpendtsleep ; bpendtsleep:");
485 #endif
486
487 SCHED_ASSERT_UNLOCKED();
488 splx(s);
489
490 resume:
491 KDASSERT(l->l_cpu != NULL);
492 KDASSERT(l->l_cpu == curcpu());
493 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
494 p->p_nrlwps++;
495
496 l->l_flag &= ~L_SINTR;
497 if (l->l_flag & L_TIMEOUT) {
498 l->l_flag &= ~L_TIMEOUT;
499 if (sig == 0) {
500 #ifdef KTRACE
501 if (KTRPOINT(p, KTR_CSW))
502 ktrcsw(p, 0, 0);
503 #endif
504 if (relock && interlock != NULL)
505 simple_lock(interlock);
506 return (EWOULDBLOCK);
507 }
508 } else if (timo)
509 callout_stop(&l->l_tsleep_ch);
510 if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
511 #ifdef KTRACE
512 if (KTRPOINT(p, KTR_CSW))
513 ktrcsw(p, 0, 0);
514 #endif
515 if (relock && interlock != NULL)
516 simple_lock(interlock);
517 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
518 return (EINTR);
519 return (ERESTART);
520 }
521 /* XXXNJW this is very much a kluge.
522 * revisit. a better way of preventing looping/hanging syscalls like
523 * wait4() and _lwp_wait() from wedging an exiting process
524 * would be preferred.
525 */
526 if (catch && ((p->p_flag & P_WEXIT) && exiterr))
527 return (EINTR);
528 #ifdef KTRACE
529 if (KTRPOINT(p, KTR_CSW))
530 ktrcsw(p, 0, 0);
531 #endif
532 if (relock && interlock != NULL)
533 simple_lock(interlock);
534 return (0);
535 }
536
537 /*
538 * Implement timeout for tsleep.
539 * If process hasn't been awakened (wchan non-zero),
540 * set timeout flag and undo the sleep. If proc
541 * is stopped, just unsleep so it will remain stopped.
542 */
543 void
544 endtsleep(void *arg)
545 {
546 struct lwp *l;
547 int s;
548
549 l = (struct lwp *)arg;
550 SCHED_LOCK(s);
551 if (l->l_wchan) {
552 if (l->l_stat == LSSLEEP)
553 setrunnable(l);
554 else
555 unsleep(l);
556 l->l_flag |= L_TIMEOUT;
557 }
558 SCHED_UNLOCK(s);
559 }
560
561 /*
562 * Remove a process from its wait queue
563 */
564 void
565 unsleep(struct lwp *l)
566 {
567 struct slpque *qp;
568 struct lwp **hp;
569
570 SCHED_ASSERT_LOCKED();
571
572 if (l->l_wchan) {
573 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
574 while (*hp != l)
575 hp = &(*hp)->l_forw;
576 *hp = l->l_forw;
577 if (qp->sq_tailp == &l->l_forw)
578 qp->sq_tailp = hp;
579 l->l_wchan = 0;
580 }
581 }
582
583 /*
584 * Optimized-for-wakeup() version of setrunnable().
585 */
586 __inline void
587 awaken(struct lwp *l)
588 {
589
590 SCHED_ASSERT_LOCKED();
591
592 if (l->l_slptime > 1)
593 updatepri(l);
594 l->l_slptime = 0;
595 l->l_stat = LSRUN;
596
597 /*
598 * Since curpriority is a user priority, p->p_priority
599 * is always better than curpriority.
600 */
601 if (l->l_flag & L_INMEM) {
602 setrunqueue(l);
603 KASSERT(l->l_cpu != NULL);
604 need_resched(l->l_cpu);
605 } else
606 sched_wakeup(&proc0);
607 }
608
609 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
610 void
611 sched_unlock_idle(void)
612 {
613
614 simple_unlock(&sched_lock);
615 }
616
617 void
618 sched_lock_idle(void)
619 {
620
621 simple_lock(&sched_lock);
622 }
623 #endif /* MULTIPROCESSOR || LOCKDEBUG */
624
625 /*
626 * Make all processes sleeping on the specified identifier runnable.
627 */
628
629 void
630 wakeup(void *ident)
631 {
632 int s;
633
634 SCHED_ASSERT_UNLOCKED();
635
636 SCHED_LOCK(s);
637 sched_wakeup(ident);
638 SCHED_UNLOCK(s);
639 }
640
641 void
642 sched_wakeup(void *ident)
643 {
644 struct slpque *qp;
645 struct lwp *l, **q;
646
647 SCHED_ASSERT_LOCKED();
648
649 qp = SLPQUE(ident);
650 restart:
651 for (q = &qp->sq_head; (l = *q) != NULL; ) {
652 #ifdef DIAGNOSTIC
653 if (l->l_back || (l->l_stat != LSSLEEP &&
654 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
655 panic("wakeup");
656 #endif
657 if (l->l_wchan == ident) {
658 l->l_wchan = 0;
659 *q = l->l_forw;
660 if (qp->sq_tailp == &l->l_forw)
661 qp->sq_tailp = q;
662 if (l->l_stat == LSSLEEP) {
663 awaken(l);
664 goto restart;
665 }
666 } else
667 q = &l->l_forw;
668 }
669 }
670
671 /*
672 * Make the highest priority process first in line on the specified
673 * identifier runnable.
674 */
675 void
676 wakeup_one(void *ident)
677 {
678 struct slpque *qp;
679 struct lwp *l, **q;
680 struct lwp *best_sleepp, **best_sleepq;
681 struct lwp *best_stopp, **best_stopq;
682 int s;
683
684 best_sleepp = best_stopp = NULL;
685 best_sleepq = best_stopq = NULL;
686
687 SCHED_LOCK(s);
688
689 qp = SLPQUE(ident);
690
691 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
692 #ifdef DIAGNOSTIC
693 if (l->l_back || (l->l_stat != LSSLEEP &&
694 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
695 panic("wakeup_one");
696 #endif
697 if (l->l_wchan == ident) {
698 if (l->l_stat == LSSLEEP) {
699 if (best_sleepp == NULL ||
700 l->l_priority < best_sleepp->l_priority) {
701 best_sleepp = l;
702 best_sleepq = q;
703 }
704 } else {
705 if (best_stopp == NULL ||
706 l->l_priority < best_stopp->l_priority) {
707 best_stopp = l;
708 best_stopq = q;
709 }
710 }
711 }
712 }
713
714 /*
715 * Consider any SSLEEP process higher than the highest priority SSTOP
716 * process.
717 */
718 if (best_sleepp != NULL) {
719 l = best_sleepp;
720 q = best_sleepq;
721 } else {
722 l = best_stopp;
723 q = best_stopq;
724 }
725
726 if (l != NULL) {
727 l->l_wchan = NULL;
728 *q = l->l_forw;
729 if (qp->sq_tailp == &l->l_forw)
730 qp->sq_tailp = q;
731 if (l->l_stat == LSSLEEP)
732 awaken(l);
733 }
734 SCHED_UNLOCK(s);
735 }
736
737 /*
738 * General yield call. Puts the current process back on its run queue and
739 * performs a voluntary context switch.
740 */
741 void
742 yield(void)
743 {
744 struct lwp *l = curproc;
745 int s;
746
747 SCHED_LOCK(s);
748 l->l_priority = l->l_usrpri;
749 l->l_stat = LSRUN;
750 setrunqueue(l);
751 l->l_proc->p_stats->p_ru.ru_nvcsw++;
752 mi_switch(l, NULL);
753 SCHED_ASSERT_UNLOCKED();
754 splx(s);
755 }
756
757 /*
758 * General preemption call. Puts the current process back on its run queue
759 * and performs an involuntary context switch. If a process is supplied,
760 * we switch to that process. Otherwise, we use the normal process selection
761 * criteria.
762 */
763
764 void
765 preempt(struct lwp *newl)
766 {
767 struct lwp *l = curproc;
768 int r, s;
769
770 SCHED_LOCK(s);
771 l->l_priority = l->l_usrpri;
772 l->l_stat = LSRUN;
773 setrunqueue(l);
774 l->l_proc->p_stats->p_ru.ru_nivcsw++;
775 r = mi_switch(l, newl);
776 if (r && (l->l_flag & L_SA))
777 sa_upcall(l, SA_UPCALL_PREEMPTED, l, NULL, 0, 0);
778 SCHED_ASSERT_UNLOCKED();
779 splx(s);
780 }
781
782 /*
783 * The machine independent parts of context switch.
784 * Must be called at splsched() (no higher!) and with
785 * the sched_lock held.
786 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
787 * the next lwp.
788 *
789 * Returns 1 if another process was actually run.
790 */
791 int
792 mi_switch(struct lwp *l, struct lwp *new)
793 {
794 struct schedstate_percpu *spc;
795 struct rlimit *rlim;
796 long s, u;
797 struct timeval tv;
798 #if defined(MULTIPROCESSOR)
799 int hold_count;
800 #endif
801 struct proc *p = l->l_proc;
802 int retval;
803
804 SCHED_ASSERT_LOCKED();
805
806 #if defined(MULTIPROCESSOR)
807 /*
808 * Release the kernel_lock, as we are about to yield the CPU.
809 * The scheduler lock is still held until cpu_switch()
810 * selects a new process and removes it from the run queue.
811 */
812 if (p->p_flag & P_BIGLOCK)
813 hold_count = spinlock_release_all(&kernel_lock);
814 #endif
815
816 KDASSERT(l->l_cpu != NULL);
817 KDASSERT(l->l_cpu == curcpu());
818
819 spc = &l->l_cpu->ci_schedstate;
820
821 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
822 spinlock_switchcheck();
823 #endif
824 #ifdef LOCKDEBUG
825 simple_lock_switchcheck();
826 #endif
827
828 /*
829 * Compute the amount of time during which the current
830 * process was running, and add that to its total so far.
831 */
832 microtime(&tv);
833 u = p->p_rtime.tv_usec +
834 (tv.tv_usec - spc->spc_runtime.tv_usec);
835 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
836 if (u < 0) {
837 u += 1000000;
838 s--;
839 } else if (u >= 1000000) {
840 u -= 1000000;
841 s++;
842 }
843 p->p_rtime.tv_usec = u;
844 p->p_rtime.tv_sec = s;
845
846 /*
847 * Check if the process exceeds its cpu resource allocation.
848 * If over max, kill it. In any case, if it has run for more
849 * than 10 minutes, reduce priority to give others a chance.
850 */
851 rlim = &p->p_rlimit[RLIMIT_CPU];
852 if (s >= rlim->rlim_cur) {
853 /*
854 * XXXSMP: we're inside the scheduler lock perimeter;
855 * use sched_psignal.
856 */
857 if (s >= rlim->rlim_max)
858 sched_psignal(p, SIGKILL);
859 else {
860 sched_psignal(p, SIGXCPU);
861 if (rlim->rlim_cur < rlim->rlim_max)
862 rlim->rlim_cur += 5;
863 }
864 }
865 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
866 p->p_nice == NZERO) {
867 p->p_nice = autoniceval + NZERO;
868 resetpriority(l);
869 }
870
871 /*
872 * Process is about to yield the CPU; clear the appropriate
873 * scheduling flags.
874 */
875 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
876
877 /*
878 * Pick a new current process and switch to it. When we
879 * run again, we'll return back here.
880 */
881 uvmexp.swtch++;
882 if (new == NULL) {
883 retval = cpu_switch(l);
884 } else {
885 cpu_preempt(l, new);
886 retval = 0;
887 }
888
889 /*
890 * Make sure that MD code released the scheduler lock before
891 * resuming us.
892 */
893 SCHED_ASSERT_UNLOCKED();
894
895 /*
896 * We're running again; record our new start time. We might
897 * be running on a new CPU now, so don't use the cache'd
898 * schedstate_percpu pointer.
899 */
900 KDASSERT(l->l_cpu != NULL);
901 KDASSERT(l->l_cpu == curcpu());
902 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
903
904 #if defined(MULTIPROCESSOR)
905 /*
906 * Reacquire the kernel_lock now. We do this after we've
907 * released the scheduler lock to avoid deadlock, and before
908 * we reacquire the interlock.
909 */
910 if (p->p_flag & P_BIGLOCK)
911 spinlock_acquire_count(&kernel_lock, hold_count);
912 #endif
913
914 return retval;
915 }
916
917 /*
918 * Initialize the (doubly-linked) run queues
919 * to be empty.
920 */
921 void
922 rqinit()
923 {
924 int i;
925
926 for (i = 0; i < RUNQUE_NQS; i++)
927 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
928 (struct lwp *)&sched_qs[i];
929 }
930
931 /*
932 * Change process state to be runnable,
933 * placing it on the run queue if it is in memory,
934 * and awakening the swapper if it isn't in memory.
935 */
936 void
937 setrunnable(struct lwp *l)
938 {
939 struct proc *p = l->l_proc;
940
941 SCHED_ASSERT_LOCKED();
942
943 switch (l->l_stat) {
944 case 0:
945 case LSRUN:
946 case LSONPROC:
947 case LSZOMB:
948 case LSDEAD:
949 default:
950 panic("setrunnable");
951 case LSSTOP:
952 /*
953 * If we're being traced (possibly because someone attached us
954 * while we were stopped), check for a signal from the debugger.
955 */
956 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
957 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
958 CHECKSIGS(p);
959 }
960 case LSSLEEP:
961 unsleep(l); /* e.g. when sending signals */
962 break;
963
964 case LSIDL:
965 break;
966 case LSSUSPENDED:
967 break;
968 }
969 l->l_stat = LSRUN;
970 if (l->l_flag & L_INMEM)
971 setrunqueue(l);
972
973 if (l->l_slptime > 1)
974 updatepri(l);
975 l->l_slptime = 0;
976 if ((l->l_flag & L_INMEM) == 0)
977 wakeup((caddr_t)&proc0);
978 else if (l->l_priority < curcpu()->ci_schedstate.spc_curpriority) {
979 /*
980 * XXXSMP
981 * This is not exactly right. Since p->p_cpu persists
982 * across a context switch, this gives us some sort
983 * of processor affinity. But we need to figure out
984 * at what point it's better to reschedule on a different
985 * CPU than the last one.
986 */
987 need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
988 }
989 }
990
991 /*
992 * Compute the priority of a process when running in user mode.
993 * Arrange to reschedule if the resulting priority is better
994 * than that of the current process.
995 */
996 void
997 resetpriority(struct lwp *l)
998 {
999 unsigned int newpriority;
1000 struct proc *p = l->l_proc;
1001
1002 SCHED_ASSERT_LOCKED();
1003
1004 newpriority = PUSER + p->p_estcpu +
1005 NICE_WEIGHT * (p->p_nice - NZERO);
1006 newpriority = min(newpriority, MAXPRI);
1007 l->l_usrpri = newpriority;
1008 if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
1009 /*
1010 * XXXSMP
1011 * Same applies as in setrunnable() above.
1012 */
1013 need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
1014 }
1015 }
1016
1017 /*
1018 * Recompute priority for all LWPs in a process.
1019 */
1020 void
1021 resetprocpriority(struct proc *p)
1022 {
1023 struct lwp *l;
1024
1025 LIST_FOREACH(l, &p->p_lwps, l_list)
1026 resetpriority(l);
1027 }
1028
1029 /*
1030 * We adjust the priority of the current process. The priority of a process
1031 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1032 * is increased here. The formula for computing priorities (in kern_synch.c)
1033 * will compute a different value each time p_estcpu increases. This can
1034 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1035 * queue will not change. The cpu usage estimator ramps up quite quickly
1036 * when the process is running (linearly), and decays away exponentially, at
1037 * a rate which is proportionally slower when the system is busy. The basic
1038 * principle is that the system will 90% forget that the process used a lot
1039 * of CPU time in 5 * loadav seconds. This causes the system to favor
1040 * processes which haven't run much recently, and to round-robin among other
1041 * processes.
1042 */
1043
1044 void
1045 schedclock(struct lwp *l)
1046 {
1047 struct proc *p = l->l_proc;
1048 int s;
1049
1050 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1051 SCHED_LOCK(s);
1052 resetpriority(l);
1053 SCHED_UNLOCK(s);
1054
1055 if (l->l_priority >= PUSER)
1056 l->l_priority = l->l_usrpri;
1057 }
1058
1059 void
1060 suspendsched()
1061 {
1062 struct lwp *l;
1063 int s;
1064
1065 /*
1066 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1067 * LSSUSPENDED.
1068 */
1069 proclist_lock_read();
1070 SCHED_LOCK(s);
1071 for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l, l_list)) {
1072 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1073 continue;
1074
1075 switch (l->l_stat) {
1076 case LSRUN:
1077 if ((l->l_flag & L_INMEM) != 0)
1078 remrunqueue(l);
1079 /* FALLTHROUGH */
1080 case LSSLEEP:
1081 l->l_stat = LSSUSPENDED;
1082 break;
1083 case LSONPROC:
1084 /*
1085 * XXX SMP: we need to deal with processes on
1086 * others CPU !
1087 */
1088 break;
1089 default:
1090 break;
1091 }
1092 }
1093 SCHED_UNLOCK(s);
1094 proclist_unlock_read();
1095 }
1096
1097
1098