kern_synch.c revision 1.101.2.29 1 /* $NetBSD: kern_synch.c,v 1.101.2.29 2002/12/31 01:03:52 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.101.2.29 2002/12/31 01:03:52 thorpej Exp $");
82
83 #include "opt_ddb.h"
84 #include "opt_ktrace.h"
85 #include "opt_kstack.h"
86 #include "opt_lockdebug.h"
87 #include "opt_multiprocessor.h"
88 #include "opt_perfctrs.h"
89
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/callout.h>
93 #include <sys/proc.h>
94 #include <sys/kernel.h>
95 #include <sys/buf.h>
96 #if defined(PERFCTRS)
97 #include <sys/pmc.h>
98 #endif
99 #include <sys/signalvar.h>
100 #include <sys/resourcevar.h>
101 #include <sys/sched.h>
102 #include <sys/sa.h>
103 #include <sys/savar.h>
104
105 #include <uvm/uvm_extern.h>
106
107 #ifdef KTRACE
108 #include <sys/ktrace.h>
109 #endif
110
111 #include <machine/cpu.h>
112
113 int lbolt; /* once a second sleep address */
114 int rrticks; /* number of hardclock ticks per roundrobin() */
115
116 /*
117 * The global scheduler state.
118 */
119 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
120 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
121 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
122
123 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
124
125 void schedcpu(void *);
126 void updatepri(struct lwp *);
127 void endtsleep(void *);
128
129 __inline void awaken(struct lwp *);
130
131 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
132
133
134
135 /*
136 * Force switch among equal priority processes every 100ms.
137 * Called from hardclock every hz/10 == rrticks hardclock ticks.
138 */
139 /* ARGSUSED */
140 void
141 roundrobin(struct cpu_info *ci)
142 {
143 struct schedstate_percpu *spc = &ci->ci_schedstate;
144
145 spc->spc_rrticks = rrticks;
146
147 if (curlwp != NULL) {
148 if (spc->spc_flags & SPCF_SEENRR) {
149 /*
150 * The process has already been through a roundrobin
151 * without switching and may be hogging the CPU.
152 * Indicate that the process should yield.
153 */
154 spc->spc_flags |= SPCF_SHOULDYIELD;
155 } else
156 spc->spc_flags |= SPCF_SEENRR;
157 }
158 need_resched(curcpu());
159 }
160
161 /*
162 * Constants for digital decay and forget:
163 * 90% of (p_estcpu) usage in 5 * loadav time
164 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
165 * Note that, as ps(1) mentions, this can let percentages
166 * total over 100% (I've seen 137.9% for 3 processes).
167 *
168 * Note that hardclock updates p_estcpu and p_cpticks independently.
169 *
170 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
171 * That is, the system wants to compute a value of decay such
172 * that the following for loop:
173 * for (i = 0; i < (5 * loadavg); i++)
174 * p_estcpu *= decay;
175 * will compute
176 * p_estcpu *= 0.1;
177 * for all values of loadavg:
178 *
179 * Mathematically this loop can be expressed by saying:
180 * decay ** (5 * loadavg) ~= .1
181 *
182 * The system computes decay as:
183 * decay = (2 * loadavg) / (2 * loadavg + 1)
184 *
185 * We wish to prove that the system's computation of decay
186 * will always fulfill the equation:
187 * decay ** (5 * loadavg) ~= .1
188 *
189 * If we compute b as:
190 * b = 2 * loadavg
191 * then
192 * decay = b / (b + 1)
193 *
194 * We now need to prove two things:
195 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
196 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
197 *
198 * Facts:
199 * For x close to zero, exp(x) =~ 1 + x, since
200 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
201 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
202 * For x close to zero, ln(1+x) =~ x, since
203 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
204 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
205 * ln(.1) =~ -2.30
206 *
207 * Proof of (1):
208 * Solve (factor)**(power) =~ .1 given power (5*loadav):
209 * solving for factor,
210 * ln(factor) =~ (-2.30/5*loadav), or
211 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
212 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
213 *
214 * Proof of (2):
215 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
216 * solving for power,
217 * power*ln(b/(b+1)) =~ -2.30, or
218 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
219 *
220 * Actual power values for the implemented algorithm are as follows:
221 * loadav: 1 2 3 4
222 * power: 5.68 10.32 14.94 19.55
223 */
224
225 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
226 #define loadfactor(loadav) (2 * (loadav))
227 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
228
229 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
230 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
231
232 /*
233 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
234 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
235 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
236 *
237 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
238 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
239 *
240 * If you dont want to bother with the faster/more-accurate formula, you
241 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
242 * (more general) method of calculating the %age of CPU used by a process.
243 */
244 #define CCPU_SHIFT 11
245
246 /*
247 * Recompute process priorities, every hz ticks.
248 */
249 /* ARGSUSED */
250 void
251 schedcpu(void *arg)
252 {
253 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
254 struct lwp *l;
255 struct proc *p;
256 int s, s1;
257 unsigned int newcpu;
258 int clkhz;
259
260 proclist_lock_read();
261 LIST_FOREACH(l, &alllwp, l_list) {
262 /*
263 * Increment time in/out of memory and sleep time
264 * (if sleeping). We ignore overflow; with 16-bit int's
265 * (remember them?) overflow takes 45 days.
266 */
267 p = l->l_proc;
268 l->l_swtime++;
269 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
270 l->l_stat == LSSUSPENDED)
271 l->l_slptime++;
272 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
273 /*
274 * If the process has slept the entire second,
275 * stop recalculating its priority until it wakes up.
276 */
277 if (l->l_slptime > 1)
278 continue;
279 s = splstatclock(); /* prevent state changes */
280 /*
281 * p_pctcpu is only for ps.
282 */
283 clkhz = stathz != 0 ? stathz : hz;
284 #if (FSHIFT >= CCPU_SHIFT)
285 p->p_pctcpu += (clkhz == 100)?
286 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
287 100 * (((fixpt_t) p->p_cpticks)
288 << (FSHIFT - CCPU_SHIFT)) / clkhz;
289 #else
290 l->l_pctcpu += ((FSCALE - ccpu) *
291 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
292 #endif
293 p->p_cpticks = 0;
294 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
295 p->p_estcpu = newcpu;
296 SCHED_LOCK(s1);
297 resetpriority(l);
298 if (l->l_priority >= PUSER) {
299 if (l->l_stat == LSRUN &&
300 (l->l_flag & L_INMEM) &&
301 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
302 remrunqueue(l);
303 l->l_priority = l->l_usrpri;
304 setrunqueue(l);
305 } else
306 l->l_priority = l->l_usrpri;
307 }
308 SCHED_UNLOCK(s1);
309 splx(s);
310 }
311 proclist_unlock_read();
312 uvm_meter();
313 wakeup((caddr_t)&lbolt);
314 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
315 }
316
317 /*
318 * Recalculate the priority of a process after it has slept for a while.
319 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
320 * least six times the loadfactor will decay p_estcpu to zero.
321 */
322 void
323 updatepri(struct lwp *l)
324 {
325 struct proc *p = l->l_proc;
326 unsigned int newcpu;
327 fixpt_t loadfac;
328
329 SCHED_ASSERT_LOCKED();
330
331 newcpu = p->p_estcpu;
332 loadfac = loadfactor(averunnable.ldavg[0]);
333
334 if (l->l_slptime > 5 * loadfac)
335 p->p_estcpu = 0; /* XXX NJWLWP */
336 else {
337 l->l_slptime--; /* the first time was done in schedcpu */
338 while (newcpu && --l->l_slptime)
339 newcpu = (int) decay_cpu(loadfac, newcpu);
340 p->p_estcpu = newcpu;
341 }
342 resetpriority(l);
343 }
344
345 /*
346 * During autoconfiguration or after a panic, a sleep will simply
347 * lower the priority briefly to allow interrupts, then return.
348 * The priority to be used (safepri) is machine-dependent, thus this
349 * value is initialized and maintained in the machine-dependent layers.
350 * This priority will typically be 0, or the lowest priority
351 * that is safe for use on the interrupt stack; it can be made
352 * higher to block network software interrupts after panics.
353 */
354 int safepri;
355
356 /*
357 * General sleep call. Suspends the current process until a wakeup is
358 * performed on the specified identifier. The process will then be made
359 * runnable with the specified priority. Sleeps at most timo/hz seconds
360 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
361 * before and after sleeping, else signals are not checked. Returns 0 if
362 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
363 * signal needs to be delivered, ERESTART is returned if the current system
364 * call should be restarted if possible, and EINTR is returned if the system
365 * call should be interrupted by the signal (return EINTR).
366 *
367 * The interlock is held until the scheduler_slock is acquired. The
368 * interlock will be locked before returning back to the caller
369 * unless the PNORELOCK flag is specified, in which case the
370 * interlock will always be unlocked upon return.
371 */
372 int
373 ltsleep(void *ident, int priority, const char *wmesg, int timo,
374 __volatile struct simplelock *interlock)
375 {
376 struct lwp *l = curlwp;
377 struct proc *p = l->l_proc;
378 struct slpque *qp;
379 int sig, s;
380 int catch = priority & PCATCH;
381 int relock = (priority & PNORELOCK) == 0;
382 int exiterr = (priority & PNOEXITERR) == 0;
383
384 /*
385 * XXXSMP
386 * This is probably bogus. Figure out what the right
387 * thing to do here really is.
388 * Note that not sleeping if ltsleep is called with curlwp == NULL
389 * in the shutdown case is disgusting but partly necessary given
390 * how shutdown (barely) works.
391 */
392 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
393 /*
394 * After a panic, or during autoconfiguration,
395 * just give interrupts a chance, then just return;
396 * don't run any other procs or panic below,
397 * in case this is the idle process and already asleep.
398 */
399 s = splhigh();
400 splx(safepri);
401 splx(s);
402 if (interlock != NULL && relock == 0)
403 simple_unlock(interlock);
404 return (0);
405 }
406
407 KASSERT(p != NULL);
408 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
409
410 #ifdef KTRACE
411 if (KTRPOINT(p, KTR_CSW))
412 ktrcsw(p, 1, 0);
413 #endif
414
415 SCHED_LOCK(s);
416
417 #ifdef DIAGNOSTIC
418 if (ident == NULL)
419 panic("ltsleep: ident == NULL");
420 if (l->l_stat != LSONPROC)
421 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
422 if (l->l_back != NULL)
423 panic("ltsleep: p_back != NULL");
424 #endif
425
426 l->l_wchan = ident;
427 l->l_wmesg = wmesg;
428 l->l_slptime = 0;
429 l->l_priority = priority & PRIMASK;
430
431 qp = SLPQUE(ident);
432 if (qp->sq_head == 0)
433 qp->sq_head = l;
434 else {
435 *qp->sq_tailp = l;
436 }
437 *(qp->sq_tailp = &l->l_forw) = 0;
438
439 if (timo)
440 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
441
442 /*
443 * We can now release the interlock; the scheduler_slock
444 * is held, so a thread can't get in to do wakeup() before
445 * we do the switch.
446 *
447 * XXX We leave the code block here, after inserting ourselves
448 * on the sleep queue, because we might want a more clever
449 * data structure for the sleep queues at some point.
450 */
451 if (interlock != NULL)
452 simple_unlock(interlock);
453
454 /*
455 * We put ourselves on the sleep queue and start our timeout
456 * before calling CURSIG, as we could stop there, and a wakeup
457 * or a SIGCONT (or both) could occur while we were stopped.
458 * A SIGCONT would cause us to be marked as SSLEEP
459 * without resuming us, thus we must be ready for sleep
460 * when CURSIG is called. If the wakeup happens while we're
461 * stopped, p->p_wchan will be 0 upon return from CURSIG.
462 */
463 if (catch) {
464 l->l_flag |= L_SINTR;
465 if ((sig = CURSIG(l)) != 0) {
466 if (l->l_wchan != NULL)
467 unsleep(l);
468 l->l_stat = LSONPROC;
469 SCHED_UNLOCK(s);
470 goto resume;
471 }
472 if (l->l_wchan == NULL) {
473 catch = 0;
474 SCHED_UNLOCK(s);
475 goto resume;
476 }
477 } else
478 sig = 0;
479 l->l_stat = LSSLEEP;
480 p->p_nrlwps--;
481 p->p_stats->p_ru.ru_nvcsw++;
482 SCHED_ASSERT_LOCKED();
483 if (l->l_flag & L_SA)
484 sa_switch(l, SA_UPCALL_BLOCKED);
485 else
486 mi_switch(l, NULL);
487
488 #if defined(DDB) && !defined(GPROF)
489 /* handy breakpoint location after process "wakes" */
490 __asm(".globl bpendtsleep ; bpendtsleep:");
491 #endif
492 /*
493 * p->p_nrlwps is incremented by whoever made us runnable again,
494 * either setrunnable() or awaken().
495 */
496
497 SCHED_ASSERT_UNLOCKED();
498 splx(s);
499
500 resume:
501 KDASSERT(l->l_cpu != NULL);
502 KDASSERT(l->l_cpu == curcpu());
503 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
504
505 l->l_flag &= ~L_SINTR;
506 if (l->l_flag & L_TIMEOUT) {
507 l->l_flag &= ~L_TIMEOUT;
508 if (sig == 0) {
509 #ifdef KTRACE
510 if (KTRPOINT(p, KTR_CSW))
511 ktrcsw(p, 0, 0);
512 #endif
513 if (relock && interlock != NULL)
514 simple_lock(interlock);
515 return (EWOULDBLOCK);
516 }
517 } else if (timo)
518 callout_stop(&l->l_tsleep_ch);
519 if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
520 #ifdef KTRACE
521 if (KTRPOINT(p, KTR_CSW))
522 ktrcsw(p, 0, 0);
523 #endif
524 if (relock && interlock != NULL)
525 simple_lock(interlock);
526 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
527 return (EINTR);
528 return (ERESTART);
529 }
530 /* XXXNJW this is very much a kluge.
531 * revisit. a better way of preventing looping/hanging syscalls like
532 * wait4() and _lwp_wait() from wedging an exiting process
533 * would be preferred.
534 */
535 if (catch && ((p->p_flag & P_WEXIT) && exiterr))
536 return (EINTR);
537 #ifdef KTRACE
538 if (KTRPOINT(p, KTR_CSW))
539 ktrcsw(p, 0, 0);
540 #endif
541 if (relock && interlock != NULL)
542 simple_lock(interlock);
543 return (0);
544 }
545
546 /*
547 * Implement timeout for tsleep.
548 * If process hasn't been awakened (wchan non-zero),
549 * set timeout flag and undo the sleep. If proc
550 * is stopped, just unsleep so it will remain stopped.
551 */
552 void
553 endtsleep(void *arg)
554 {
555 struct lwp *l;
556 int s;
557
558 l = (struct lwp *)arg;
559 SCHED_LOCK(s);
560 if (l->l_wchan) {
561 if (l->l_stat == LSSLEEP)
562 setrunnable(l);
563 else
564 unsleep(l);
565 l->l_flag |= L_TIMEOUT;
566 }
567 SCHED_UNLOCK(s);
568 }
569
570 /*
571 * Remove a process from its wait queue
572 */
573 void
574 unsleep(struct lwp *l)
575 {
576 struct slpque *qp;
577 struct lwp **hp;
578
579 SCHED_ASSERT_LOCKED();
580
581 if (l->l_wchan) {
582 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
583 while (*hp != l)
584 hp = &(*hp)->l_forw;
585 *hp = l->l_forw;
586 if (qp->sq_tailp == &l->l_forw)
587 qp->sq_tailp = hp;
588 l->l_wchan = 0;
589 }
590 }
591
592 /*
593 * Optimized-for-wakeup() version of setrunnable().
594 */
595 __inline void
596 awaken(struct lwp *l)
597 {
598
599 SCHED_ASSERT_LOCKED();
600
601 if (l->l_slptime > 1)
602 updatepri(l);
603 l->l_slptime = 0;
604 l->l_stat = LSRUN;
605 l->l_proc->p_nrlwps++;
606 /*
607 * Since curpriority is a user priority, p->p_priority
608 * is always better than curpriority on the last CPU on
609 * which it ran.
610 *
611 * XXXSMP See affinity comment in resched_proc().
612 */
613 if (l->l_flag & L_INMEM) {
614 setrunqueue(l);
615 if (l->l_flag & L_SA)
616 l->l_proc->p_sa->sa_woken = l;
617 KASSERT(l->l_cpu != NULL);
618 need_resched(l->l_cpu);
619 } else
620 sched_wakeup(&proc0);
621 }
622
623 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
624 void
625 sched_unlock_idle(void)
626 {
627
628 simple_unlock(&sched_lock);
629 }
630
631 void
632 sched_lock_idle(void)
633 {
634
635 simple_lock(&sched_lock);
636 }
637 #endif /* MULTIPROCESSOR || LOCKDEBUG */
638
639 /*
640 * Make all processes sleeping on the specified identifier runnable.
641 */
642
643 void
644 wakeup(void *ident)
645 {
646 int s;
647
648 SCHED_ASSERT_UNLOCKED();
649
650 SCHED_LOCK(s);
651 sched_wakeup(ident);
652 SCHED_UNLOCK(s);
653 }
654
655 void
656 sched_wakeup(void *ident)
657 {
658 struct slpque *qp;
659 struct lwp *l, **q;
660
661 SCHED_ASSERT_LOCKED();
662
663 qp = SLPQUE(ident);
664 restart:
665 for (q = &qp->sq_head; (l = *q) != NULL; ) {
666 #ifdef DIAGNOSTIC
667 if (l->l_back || (l->l_stat != LSSLEEP &&
668 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
669 panic("wakeup");
670 #endif
671 if (l->l_wchan == ident) {
672 l->l_wchan = 0;
673 *q = l->l_forw;
674 if (qp->sq_tailp == &l->l_forw)
675 qp->sq_tailp = q;
676 if (l->l_stat == LSSLEEP) {
677 awaken(l);
678 goto restart;
679 }
680 } else
681 q = &l->l_forw;
682 }
683 }
684
685 /*
686 * Make the highest priority process first in line on the specified
687 * identifier runnable.
688 */
689 void
690 wakeup_one(void *ident)
691 {
692 struct slpque *qp;
693 struct lwp *l, **q;
694 struct lwp *best_sleepp, **best_sleepq;
695 struct lwp *best_stopp, **best_stopq;
696 int s;
697
698 best_sleepp = best_stopp = NULL;
699 best_sleepq = best_stopq = NULL;
700
701 SCHED_LOCK(s);
702
703 qp = SLPQUE(ident);
704
705 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
706 #ifdef DIAGNOSTIC
707 if (l->l_back || (l->l_stat != LSSLEEP &&
708 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
709 panic("wakeup_one");
710 #endif
711 if (l->l_wchan == ident) {
712 if (l->l_stat == LSSLEEP) {
713 if (best_sleepp == NULL ||
714 l->l_priority < best_sleepp->l_priority) {
715 best_sleepp = l;
716 best_sleepq = q;
717 }
718 } else {
719 if (best_stopp == NULL ||
720 l->l_priority < best_stopp->l_priority) {
721 best_stopp = l;
722 best_stopq = q;
723 }
724 }
725 }
726 }
727
728 /*
729 * Consider any SSLEEP process higher than the highest priority SSTOP
730 * process.
731 */
732 if (best_sleepp != NULL) {
733 l = best_sleepp;
734 q = best_sleepq;
735 } else {
736 l = best_stopp;
737 q = best_stopq;
738 }
739
740 if (l != NULL) {
741 l->l_wchan = NULL;
742 *q = l->l_forw;
743 if (qp->sq_tailp == &l->l_forw)
744 qp->sq_tailp = q;
745 if (l->l_stat == LSSLEEP)
746 awaken(l);
747 }
748 SCHED_UNLOCK(s);
749 }
750
751 /*
752 * General yield call. Puts the current process back on its run queue and
753 * performs a voluntary context switch. Should only be called when the
754 * current process explicitly requests it (eg sched_yield(2) in compat code).
755 */
756 void
757 yield(void)
758 {
759 struct lwp *l = curlwp;
760 int s;
761
762 SCHED_LOCK(s);
763 l->l_priority = l->l_usrpri;
764 l->l_stat = LSRUN;
765 setrunqueue(l);
766 l->l_proc->p_stats->p_ru.ru_nvcsw++;
767 mi_switch(l, NULL);
768 SCHED_ASSERT_UNLOCKED();
769 splx(s);
770 }
771
772 /*
773 * General preemption call. Puts the current process back on its run queue
774 * and performs an involuntary context switch. If a process is supplied,
775 * we switch to that process. Otherwise, we use the normal process selection
776 * criteria.
777 */
778
779 void
780 preempt(struct lwp *newl)
781 {
782 struct lwp *l = curlwp;
783 int r, s;
784
785 if (l->l_flag & L_SA) {
786 SCHED_LOCK(s);
787 l->l_priority = l->l_usrpri;
788 l->l_stat = LSRUN;
789 setrunqueue(l);
790 l->l_proc->p_stats->p_ru.ru_nivcsw++;
791 r = mi_switch(l, newl);
792 SCHED_ASSERT_UNLOCKED();
793 splx(s);
794 if (r != 0)
795 sa_preempt(l);
796 } else {
797 SCHED_LOCK(s);
798 l->l_priority = l->l_usrpri;
799 l->l_stat = LSRUN;
800 setrunqueue(l);
801 l->l_proc->p_stats->p_ru.ru_nivcsw++;
802 mi_switch(l, newl);
803 SCHED_ASSERT_UNLOCKED();
804 splx(s);
805 }
806
807 }
808
809 /*
810 * The machine independent parts of context switch.
811 * Must be called at splsched() (no higher!) and with
812 * the sched_lock held.
813 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
814 * the next lwp.
815 *
816 * Returns 1 if another process was actually run.
817 */
818 int
819 mi_switch(struct lwp *l, struct lwp *newl)
820 {
821 struct schedstate_percpu *spc;
822 struct rlimit *rlim;
823 long s, u;
824 struct timeval tv;
825 #if defined(MULTIPROCESSOR)
826 int hold_count;
827 #endif
828 struct proc *p = l->l_proc;
829 int retval;
830
831 SCHED_ASSERT_LOCKED();
832
833 #if defined(MULTIPROCESSOR)
834 /*
835 * Release the kernel_lock, as we are about to yield the CPU.
836 * The scheduler lock is still held until cpu_switch()
837 * selects a new process and removes it from the run queue.
838 */
839 if (l->l_flag & L_BIGLOCK)
840 hold_count = spinlock_release_all(&kernel_lock);
841 #endif
842
843 KDASSERT(l->l_cpu != NULL);
844 KDASSERT(l->l_cpu == curcpu());
845
846 spc = &l->l_cpu->ci_schedstate;
847
848 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
849 spinlock_switchcheck();
850 #endif
851 #ifdef LOCKDEBUG
852 simple_lock_switchcheck();
853 #endif
854
855 /*
856 * Compute the amount of time during which the current
857 * process was running.
858 */
859 microtime(&tv);
860 u = p->p_rtime.tv_usec +
861 (tv.tv_usec - spc->spc_runtime.tv_usec);
862 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
863 if (u < 0) {
864 u += 1000000;
865 s--;
866 } else if (u >= 1000000) {
867 u -= 1000000;
868 s++;
869 }
870 p->p_rtime.tv_usec = u;
871 p->p_rtime.tv_sec = s;
872
873 /*
874 * Check if the process exceeds its cpu resource allocation.
875 * If over max, kill it. In any case, if it has run for more
876 * than 10 minutes, reduce priority to give others a chance.
877 */
878 rlim = &p->p_rlimit[RLIMIT_CPU];
879 if (s >= rlim->rlim_cur) {
880 /*
881 * XXXSMP: we're inside the scheduler lock perimeter;
882 * use sched_psignal.
883 */
884 if (s >= rlim->rlim_max)
885 sched_psignal(p, SIGKILL);
886 else {
887 sched_psignal(p, SIGXCPU);
888 if (rlim->rlim_cur < rlim->rlim_max)
889 rlim->rlim_cur += 5;
890 }
891 }
892 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
893 p->p_nice == NZERO) {
894 p->p_nice = autoniceval + NZERO;
895 resetpriority(l);
896 }
897
898 /*
899 * Process is about to yield the CPU; clear the appropriate
900 * scheduling flags.
901 */
902 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
903
904 #ifdef KSTACK_CHECK_MAGIC
905 kstack_check_magic(p);
906 #endif
907
908 /*
909 * If we are using h/w performance counters, save context.
910 */
911 #if PERFCTRS
912 if (PMC_ENABLED(p))
913 pmc_save_context(p);
914 #endif
915
916 /*
917 * Switch to the new current process. When we
918 * run again, we'll return back here.
919 */
920 uvmexp.swtch++;
921 if (newl == NULL) {
922 retval = cpu_switch(l, NULL);
923 } else {
924 remrunqueue(newl);
925 cpu_switchto(l, newl);
926 retval = 0;
927 }
928
929 /*
930 * If we are using h/w performance counters, restore context.
931 */
932 #if PERFCTRS
933 if (PMC_ENABLED(p))
934 pmc_restore_context(p);
935 #endif
936
937 /*
938 * Make sure that MD code released the scheduler lock before
939 * resuming us.
940 */
941 SCHED_ASSERT_UNLOCKED();
942
943 /*
944 * We're running again; record our new start time. We might
945 * be running on a new CPU now, so don't use the cache'd
946 * schedstate_percpu pointer.
947 */
948 KDASSERT(l->l_cpu != NULL);
949 KDASSERT(l->l_cpu == curcpu());
950 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
951
952 #if defined(MULTIPROCESSOR)
953 /*
954 * Reacquire the kernel_lock now. We do this after we've
955 * released the scheduler lock to avoid deadlock, and before
956 * we reacquire the interlock.
957 */
958 if (l->l_flag & L_BIGLOCK)
959 spinlock_acquire_count(&kernel_lock, hold_count);
960 #endif
961
962 return retval;
963 }
964
965 /*
966 * Initialize the (doubly-linked) run queues
967 * to be empty.
968 */
969 void
970 rqinit()
971 {
972 int i;
973
974 for (i = 0; i < RUNQUE_NQS; i++)
975 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
976 (struct lwp *)&sched_qs[i];
977 }
978
979 static __inline void
980 resched_proc(struct lwp *l)
981 {
982 struct cpu_info *ci;
983
984 /*
985 * XXXSMP
986 * Since l->l_cpu persists across a context switch,
987 * this gives us *very weak* processor affinity, in
988 * that we notify the CPU on which the process last
989 * ran that it should try to switch.
990 *
991 * This does not guarantee that the process will run on
992 * that processor next, because another processor might
993 * grab it the next time it performs a context switch.
994 *
995 * This also does not handle the case where its last
996 * CPU is running a higher-priority process, but every
997 * other CPU is running a lower-priority process. There
998 * are ways to handle this situation, but they're not
999 * currently very pretty, and we also need to weigh the
1000 * cost of moving a process from one CPU to another.
1001 *
1002 * XXXSMP
1003 * There is also the issue of locking the other CPU's
1004 * sched state, which we currently do not do.
1005 */
1006 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1007 if (l->l_priority < ci->ci_schedstate.spc_curpriority)
1008 need_resched(ci);
1009 }
1010
1011 /*
1012 * Change process state to be runnable,
1013 * placing it on the run queue if it is in memory,
1014 * and awakening the swapper if it isn't in memory.
1015 */
1016 void
1017 setrunnable(struct lwp *l)
1018 {
1019 struct proc *p = l->l_proc;
1020
1021 SCHED_ASSERT_LOCKED();
1022
1023 switch (l->l_stat) {
1024 case 0:
1025 case LSRUN:
1026 case LSONPROC:
1027 case LSZOMB:
1028 case LSDEAD:
1029 default:
1030 panic("setrunnable");
1031 case LSSTOP:
1032 /*
1033 * If we're being traced (possibly because someone attached us
1034 * while we were stopped), check for a signal from the debugger.
1035 */
1036 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1037 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1038 CHECKSIGS(p);
1039 }
1040 case LSSLEEP:
1041 unsleep(l); /* e.g. when sending signals */
1042 break;
1043
1044 case LSIDL:
1045 break;
1046 case LSSUSPENDED:
1047 break;
1048 }
1049 l->l_stat = LSRUN;
1050 p->p_nrlwps++;
1051
1052 if (l->l_flag & L_INMEM)
1053 setrunqueue(l);
1054
1055 if (l->l_slptime > 1)
1056 updatepri(l);
1057 l->l_slptime = 0;
1058 if ((l->l_flag & L_INMEM) == 0)
1059 sched_wakeup((caddr_t)&proc0);
1060 else
1061 resched_proc(l);
1062 }
1063
1064 /*
1065 * Compute the priority of a process when running in user mode.
1066 * Arrange to reschedule if the resulting priority is better
1067 * than that of the current process.
1068 */
1069 void
1070 resetpriority(struct lwp *l)
1071 {
1072 unsigned int newpriority;
1073 struct proc *p = l->l_proc;
1074
1075 SCHED_ASSERT_LOCKED();
1076
1077 newpriority = PUSER + p->p_estcpu +
1078 NICE_WEIGHT * (p->p_nice - NZERO);
1079 newpriority = min(newpriority, MAXPRI);
1080 l->l_usrpri = newpriority;
1081 resched_proc(l);
1082 }
1083
1084 /*
1085 * Recompute priority for all LWPs in a process.
1086 */
1087 void
1088 resetprocpriority(struct proc *p)
1089 {
1090 struct lwp *l;
1091
1092 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1093 resetpriority(l);
1094 }
1095
1096 /*
1097 * We adjust the priority of the current process. The priority of a process
1098 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1099 * is increased here. The formula for computing priorities (in kern_synch.c)
1100 * will compute a different value each time p_estcpu increases. This can
1101 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1102 * queue will not change. The cpu usage estimator ramps up quite quickly
1103 * when the process is running (linearly), and decays away exponentially, at
1104 * a rate which is proportionally slower when the system is busy. The basic
1105 * principle is that the system will 90% forget that the process used a lot
1106 * of CPU time in 5 * loadav seconds. This causes the system to favor
1107 * processes which haven't run much recently, and to round-robin among other
1108 * processes.
1109 */
1110
1111 void
1112 schedclock(struct lwp *l)
1113 {
1114 struct proc *p = l->l_proc;
1115 int s;
1116
1117 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1118 SCHED_LOCK(s);
1119 resetpriority(l);
1120 SCHED_UNLOCK(s);
1121
1122 if (l->l_priority >= PUSER)
1123 l->l_priority = l->l_usrpri;
1124 }
1125
1126 void
1127 suspendsched()
1128 {
1129 struct lwp *l;
1130 int s;
1131
1132 /*
1133 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1134 * LSSUSPENDED.
1135 */
1136 proclist_lock_read();
1137 SCHED_LOCK(s);
1138 LIST_FOREACH(l, &alllwp, l_list) {
1139 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1140 continue;
1141
1142 switch (l->l_stat) {
1143 case LSRUN:
1144 l->l_proc->p_nrlwps--;
1145 if ((l->l_flag & L_INMEM) != 0)
1146 remrunqueue(l);
1147 /* FALLTHROUGH */
1148 case LSSLEEP:
1149 l->l_stat = LSSUSPENDED;
1150 break;
1151 case LSONPROC:
1152 /*
1153 * XXX SMP: we need to deal with processes on
1154 * others CPU !
1155 */
1156 break;
1157 default:
1158 break;
1159 }
1160 }
1161 SCHED_UNLOCK(s);
1162 proclist_unlock_read();
1163 }
1164
1165 /*
1166 * Low-level routines to access the run queue. Optimised assembler
1167 * routines can override these.
1168 */
1169
1170 #ifndef __HAVE_MD_RUNQUEUE
1171
1172 /*
1173 * The primitives that manipulate the run queues. whichqs tells which
1174 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1175 * into queues, remrunqueue removes them from queues. The running process is
1176 * on no queue, other processes are on a queue related to p->p_priority,
1177 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1178 * available queues.
1179 */
1180
1181 void
1182 setrunqueue(struct lwp *l)
1183 {
1184 struct prochd *rq;
1185 struct lwp *prev;
1186 int whichq;
1187
1188 #ifdef DIAGNOSTIC
1189 if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1190 panic("setrunqueue");
1191 #endif
1192 whichq = l->l_priority / 4;
1193 sched_whichqs |= (1<<whichq);
1194 rq = &sched_qs[whichq];
1195 prev = rq->ph_rlink;
1196 l->l_forw = (struct lwp *)rq;
1197 rq->ph_rlink = l;
1198 prev->l_forw = l;
1199 l->l_back = prev;
1200 }
1201
1202 void
1203 remrunqueue(struct lwp *l)
1204 {
1205 struct lwp *prev, *next;
1206 int whichq;
1207
1208 whichq = l->l_priority / 4;
1209 #ifdef DIAGNOSTIC
1210 if (((sched_whichqs & (1<<whichq)) == 0))
1211 panic("remrunqueue");
1212 #endif
1213 prev = l->l_back;
1214 l->l_back = NULL;
1215 next = l->l_forw;
1216 prev->l_forw = next;
1217 next->l_back = prev;
1218 if (prev == next)
1219 sched_whichqs &= ~(1<<whichq);
1220 }
1221
1222 #endif
1223