kern_synch.c revision 1.101.2.3 1 /* $NetBSD: kern_synch.c,v 1.101.2.3 2001/06/21 20:06:55 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_ktrace.h"
82 #include "opt_lockdebug.h"
83 #include "opt_multiprocessor.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/callout.h>
88 #include <sys/proc.h>
89 #include <sys/lwp.h>
90 #include <sys/kernel.h>
91 #include <sys/buf.h>
92 #include <sys/signalvar.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sa.h>
96 #include <sys/savar.h>
97
98 #include <uvm/uvm_extern.h>
99
100 #ifdef KTRACE
101 #include <sys/ktrace.h>
102 #endif
103
104 #include <machine/cpu.h>
105
106 int lbolt; /* once a second sleep address */
107 int rrticks; /* number of hardclock ticks per roundrobin() */
108
109 /*
110 * The global scheduler state.
111 */
112 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
113 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
114 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
115
116 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
117 #if defined(MULTIPROCESSOR)
118 struct lock kernel_lock;
119 #endif
120
121 void schedcpu(void *);
122 void updatepri(struct lwp *);
123 void endtsleep(void *);
124
125 __inline void awaken(struct lwp *);
126
127 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
128
129
130
131 /*
132 * Force switch among equal priority processes every 100ms.
133 * Called from hardclock every hz/10 == rrticks hardclock ticks.
134 */
135 /* ARGSUSED */
136 void
137 roundrobin(struct cpu_info *ci)
138 {
139 struct schedstate_percpu *spc = &ci->ci_schedstate;
140
141 spc->spc_rrticks = rrticks;
142
143 if (curproc != NULL) {
144 if (spc->spc_flags & SPCF_SEENRR) {
145 /*
146 * The process has already been through a roundrobin
147 * without switching and may be hogging the CPU.
148 * Indicate that the process should yield.
149 */
150 spc->spc_flags |= SPCF_SHOULDYIELD;
151 } else
152 spc->spc_flags |= SPCF_SEENRR;
153 }
154 need_resched(curcpu());
155 }
156
157 /*
158 * Constants for digital decay and forget:
159 * 90% of (p_estcpu) usage in 5 * loadav time
160 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
161 * Note that, as ps(1) mentions, this can let percentages
162 * total over 100% (I've seen 137.9% for 3 processes).
163 *
164 * Note that hardclock updates p_estcpu and p_cpticks independently.
165 *
166 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
167 * That is, the system wants to compute a value of decay such
168 * that the following for loop:
169 * for (i = 0; i < (5 * loadavg); i++)
170 * p_estcpu *= decay;
171 * will compute
172 * p_estcpu *= 0.1;
173 * for all values of loadavg:
174 *
175 * Mathematically this loop can be expressed by saying:
176 * decay ** (5 * loadavg) ~= .1
177 *
178 * The system computes decay as:
179 * decay = (2 * loadavg) / (2 * loadavg + 1)
180 *
181 * We wish to prove that the system's computation of decay
182 * will always fulfill the equation:
183 * decay ** (5 * loadavg) ~= .1
184 *
185 * If we compute b as:
186 * b = 2 * loadavg
187 * then
188 * decay = b / (b + 1)
189 *
190 * We now need to prove two things:
191 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
192 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
193 *
194 * Facts:
195 * For x close to zero, exp(x) =~ 1 + x, since
196 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
197 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
198 * For x close to zero, ln(1+x) =~ x, since
199 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
200 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
201 * ln(.1) =~ -2.30
202 *
203 * Proof of (1):
204 * Solve (factor)**(power) =~ .1 given power (5*loadav):
205 * solving for factor,
206 * ln(factor) =~ (-2.30/5*loadav), or
207 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
208 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
209 *
210 * Proof of (2):
211 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
212 * solving for power,
213 * power*ln(b/(b+1)) =~ -2.30, or
214 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
215 *
216 * Actual power values for the implemented algorithm are as follows:
217 * loadav: 1 2 3 4
218 * power: 5.68 10.32 14.94 19.55
219 */
220
221 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
222 #define loadfactor(loadav) (2 * (loadav))
223 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
224
225 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
226 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
227
228 /*
229 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
230 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
231 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
232 *
233 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
234 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
235 *
236 * If you dont want to bother with the faster/more-accurate formula, you
237 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
238 * (more general) method of calculating the %age of CPU used by a process.
239 */
240 #define CCPU_SHIFT 11
241
242 /*
243 * Recompute process priorities, every hz ticks.
244 */
245 /* ARGSUSED */
246 void
247 schedcpu(void *arg)
248 {
249 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
250 struct lwp *l;
251 struct proc *p;
252 int s, s1;
253 unsigned int newcpu;
254 int clkhz;
255
256 proclist_lock_read();
257 for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l,l_list)) {
258 /*
259 * Increment time in/out of memory and sleep time
260 * (if sleeping). We ignore overflow; with 16-bit int's
261 * (remember them?) overflow takes 45 days.
262 */
263 p = l->l_proc;
264 l->l_swtime++;
265 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
266 l->l_stat == LSSUSPENDED)
267 l->l_slptime++;
268 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
269 /*
270 * If the process has slept the entire second,
271 * stop recalculating its priority until it wakes up.
272 */
273 if (l->l_slptime > 1)
274 continue;
275 s = splstatclock(); /* prevent state changes */
276 /*
277 * p_pctcpu is only for ps.
278 */
279 clkhz = stathz != 0 ? stathz : hz;
280 #if (FSHIFT >= CCPU_SHIFT)
281 p->p_pctcpu += (clkhz == 100)?
282 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
283 100 * (((fixpt_t) p->p_cpticks)
284 << (FSHIFT - CCPU_SHIFT)) / clkhz;
285 #else
286 l->l_pctcpu += ((FSCALE - ccpu) *
287 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
288 #endif
289 p->p_cpticks = 0;
290 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
291 p->p_estcpu = newcpu;
292 SCHED_LOCK(s1);
293 resetpriority(l);
294 if (l->l_priority >= PUSER) {
295 if (l->l_stat == LSRUN &&
296 (l->l_flag & L_INMEM) &&
297 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
298 remrunqueue(l);
299 l->l_priority = l->l_usrpri;
300 setrunqueue(l);
301 } else
302 l->l_priority = l->l_usrpri;
303 }
304 SCHED_UNLOCK(s1);
305 splx(s);
306 }
307 proclist_unlock_read();
308 uvm_meter();
309 wakeup((caddr_t)&lbolt);
310 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
311 }
312
313 /*
314 * Recalculate the priority of a process after it has slept for a while.
315 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
316 * least six times the loadfactor will decay p_estcpu to zero.
317 */
318 void
319 updatepri(struct lwp *l)
320 {
321 struct proc *p = l->l_proc;
322 unsigned int newcpu;
323 fixpt_t loadfac;
324
325 SCHED_ASSERT_LOCKED();
326
327 newcpu = p->p_estcpu;
328 loadfac = loadfactor(averunnable.ldavg[0]);
329
330 if (l->l_slptime > 5 * loadfac)
331 p->p_estcpu = 0; /* XXX NJWLWP */
332 else {
333 l->l_slptime--; /* the first time was done in schedcpu */
334 while (newcpu && --l->l_slptime)
335 newcpu = (int) decay_cpu(loadfac, newcpu);
336 p->p_estcpu = newcpu;
337 }
338 resetpriority(l);
339 }
340
341 /*
342 * During autoconfiguration or after a panic, a sleep will simply
343 * lower the priority briefly to allow interrupts, then return.
344 * The priority to be used (safepri) is machine-dependent, thus this
345 * value is initialized and maintained in the machine-dependent layers.
346 * This priority will typically be 0, or the lowest priority
347 * that is safe for use on the interrupt stack; it can be made
348 * higher to block network software interrupts after panics.
349 */
350 int safepri;
351
352 /*
353 * General sleep call. Suspends the current process until a wakeup is
354 * performed on the specified identifier. The process will then be made
355 * runnable with the specified priority. Sleeps at most timo/hz seconds
356 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
357 * before and after sleeping, else signals are not checked. Returns 0 if
358 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
359 * signal needs to be delivered, ERESTART is returned if the current system
360 * call should be restarted if possible, and EINTR is returned if the system
361 * call should be interrupted by the signal (return EINTR).
362 *
363 * The interlock is held until the scheduler_slock is acquired. The
364 * interlock will be locked before returning back to the caller
365 * unless the PNORELOCK flag is specified, in which case the
366 * interlock will always be unlocked upon return.
367 */
368 int
369 ltsleep(void *ident, int priority, const char *wmesg, int timo,
370 __volatile struct simplelock *interlock)
371 {
372 struct lwp *l = curproc;
373 struct proc *p = l->l_proc;
374 struct slpque *qp;
375 int sig, s;
376 int catch = priority & PCATCH;
377 int relock = (priority & PNORELOCK) == 0;
378 int exiterr = (priority & PNOEXITERR) == 0;
379
380 /*
381 * XXXSMP
382 * This is probably bogus. Figure out what the right
383 * thing to do here really is.
384 * Note that not sleeping if ltsleep is called with curproc == NULL
385 * in the shutdown case is disgusting but partly necessary given
386 * how shutdown (barely) works.
387 */
388 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
389 /*
390 * After a panic, or during autoconfiguration,
391 * just give interrupts a chance, then just return;
392 * don't run any other procs or panic below,
393 * in case this is the idle process and already asleep.
394 */
395 s = splhigh();
396 splx(safepri);
397 splx(s);
398 if (interlock != NULL && relock == 0)
399 simple_unlock(interlock);
400 return (0);
401 }
402
403 KASSERT(p != NULL);
404
405 #ifdef KTRACE
406 if (KTRPOINT(p, KTR_CSW))
407 ktrcsw(p, 1, 0);
408 #endif
409
410 SCHED_LOCK(s);
411
412 #ifdef DIAGNOSTIC
413 if (ident == NULL)
414 panic("ltsleep: ident == NULL");
415 if (l->l_stat != LSONPROC)
416 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
417 if (l->l_back != NULL)
418 panic("ltsleep: p_back != NULL");
419 #endif
420
421 l->l_wchan = ident;
422 l->l_wmesg = wmesg;
423 l->l_slptime = 0;
424 l->l_priority = priority & PRIMASK;
425
426 qp = SLPQUE(ident);
427 if (qp->sq_head == 0)
428 qp->sq_head = l;
429 else {
430 *qp->sq_tailp = l;
431 }
432 *(qp->sq_tailp = &l->l_forw) = 0;
433
434 if (timo)
435 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
436
437 /*
438 * We can now release the interlock; the scheduler_slock
439 * is held, so a thread can't get in to do wakeup() before
440 * we do the switch.
441 *
442 * XXX We leave the code block here, after inserting ourselves
443 * on the sleep queue, because we might want a more clever
444 * data structure for the sleep queues at some point.
445 */
446 if (interlock != NULL)
447 simple_unlock(interlock);
448
449 /*
450 * We put ourselves on the sleep queue and start our timeout
451 * before calling CURSIG, as we could stop there, and a wakeup
452 * or a SIGCONT (or both) could occur while we were stopped.
453 * A SIGCONT would cause us to be marked as SSLEEP
454 * without resuming us, thus we must be ready for sleep
455 * when CURSIG is called. If the wakeup happens while we're
456 * stopped, p->p_wchan will be 0 upon return from CURSIG.
457 */
458 if (catch) {
459 l->l_flag |= L_SINTR;
460 if ((sig = CURSIG(l)) != 0) {
461 if (l->l_wchan != NULL)
462 unsleep(l);
463 l->l_stat = LSONPROC;
464 SCHED_UNLOCK(s);
465 goto resume;
466 }
467 if (l->l_wchan == NULL) {
468 catch = 0;
469 SCHED_UNLOCK(s);
470 goto resume;
471 }
472 } else
473 sig = 0;
474 l->l_stat = LSSLEEP;
475 p->p_nrlwps--;
476 p->p_stats->p_ru.ru_nvcsw++;
477 SCHED_ASSERT_LOCKED();
478 if (l->l_flag & L_SA)
479 sa_switch(l, SA_UPCALL_BLOCKED);
480 else
481 mi_switch(l, NULL);
482
483 #if defined(DDB) && !defined(GPROF)
484 /* handy breakpoint location after process "wakes" */
485 asm(".globl bpendtsleep ; bpendtsleep:");
486 #endif
487
488 SCHED_ASSERT_UNLOCKED();
489 splx(s);
490
491 resume:
492 KDASSERT(l->l_cpu != NULL);
493 KDASSERT(l->l_cpu == curcpu());
494 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
495 p->p_nrlwps++;
496
497 l->l_flag &= ~L_SINTR;
498 if (l->l_flag & L_TIMEOUT) {
499 l->l_flag &= ~L_TIMEOUT;
500 if (sig == 0) {
501 #ifdef KTRACE
502 if (KTRPOINT(p, KTR_CSW))
503 ktrcsw(p, 0, 0);
504 #endif
505 if (relock && interlock != NULL)
506 simple_lock(interlock);
507 return (EWOULDBLOCK);
508 }
509 } else if (timo)
510 callout_stop(&l->l_tsleep_ch);
511 if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
512 #ifdef KTRACE
513 if (KTRPOINT(p, KTR_CSW))
514 ktrcsw(p, 0, 0);
515 #endif
516 if (relock && interlock != NULL)
517 simple_lock(interlock);
518 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
519 return (EINTR);
520 return (ERESTART);
521 }
522 /* XXXNJW this is very much a kluge.
523 * revisit. a better way of preventing looping/hanging syscalls like
524 * wait4() and _lwp_wait() from wedging an exiting process
525 * would be preferred.
526 */
527 if (catch && ((p->p_flag & P_WEXIT) && exiterr))
528 return (EINTR);
529 #ifdef KTRACE
530 if (KTRPOINT(p, KTR_CSW))
531 ktrcsw(p, 0, 0);
532 #endif
533 if (relock && interlock != NULL)
534 simple_lock(interlock);
535 return (0);
536 }
537
538 /*
539 * Implement timeout for tsleep.
540 * If process hasn't been awakened (wchan non-zero),
541 * set timeout flag and undo the sleep. If proc
542 * is stopped, just unsleep so it will remain stopped.
543 */
544 void
545 endtsleep(void *arg)
546 {
547 struct lwp *l;
548 int s;
549
550 l = (struct lwp *)arg;
551 SCHED_LOCK(s);
552 if (l->l_wchan) {
553 if (l->l_stat == LSSLEEP)
554 setrunnable(l);
555 else
556 unsleep(l);
557 l->l_flag |= L_TIMEOUT;
558 }
559 SCHED_UNLOCK(s);
560 }
561
562 /*
563 * Remove a process from its wait queue
564 */
565 void
566 unsleep(struct lwp *l)
567 {
568 struct slpque *qp;
569 struct lwp **hp;
570
571 SCHED_ASSERT_LOCKED();
572
573 if (l->l_wchan) {
574 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
575 while (*hp != l)
576 hp = &(*hp)->l_forw;
577 *hp = l->l_forw;
578 if (qp->sq_tailp == &l->l_forw)
579 qp->sq_tailp = hp;
580 l->l_wchan = 0;
581 }
582 }
583
584 /*
585 * Optimized-for-wakeup() version of setrunnable().
586 */
587 __inline void
588 awaken(struct lwp *l)
589 {
590
591 SCHED_ASSERT_LOCKED();
592
593 if (l->l_slptime > 1)
594 updatepri(l);
595 l->l_slptime = 0;
596 l->l_stat = LSRUN;
597
598 /*
599 * Since curpriority is a user priority, p->p_priority
600 * is always better than curpriority.
601 */
602 if (l->l_flag & L_INMEM) {
603 setrunqueue(l);
604 KASSERT(l->l_cpu != NULL);
605 need_resched(l->l_cpu);
606 } else
607 sched_wakeup(&proc0);
608 }
609
610 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
611 void
612 sched_unlock_idle(void)
613 {
614
615 simple_unlock(&sched_lock);
616 }
617
618 void
619 sched_lock_idle(void)
620 {
621
622 simple_lock(&sched_lock);
623 }
624 #endif /* MULTIPROCESSOR || LOCKDEBUG */
625
626 /*
627 * Make all processes sleeping on the specified identifier runnable.
628 */
629
630 void
631 wakeup(void *ident)
632 {
633 int s;
634
635 SCHED_ASSERT_UNLOCKED();
636
637 SCHED_LOCK(s);
638 sched_wakeup(ident);
639 SCHED_UNLOCK(s);
640 }
641
642 void
643 sched_wakeup(void *ident)
644 {
645 struct slpque *qp;
646 struct lwp *l, **q;
647
648 SCHED_ASSERT_LOCKED();
649
650 qp = SLPQUE(ident);
651 restart:
652 for (q = &qp->sq_head; (l = *q) != NULL; ) {
653 #ifdef DIAGNOSTIC
654 if (l->l_back || (l->l_stat != LSSLEEP &&
655 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
656 panic("wakeup");
657 #endif
658 if (l->l_wchan == ident) {
659 l->l_wchan = 0;
660 *q = l->l_forw;
661 if (qp->sq_tailp == &l->l_forw)
662 qp->sq_tailp = q;
663 if (l->l_stat == LSSLEEP) {
664 awaken(l);
665 goto restart;
666 }
667 } else
668 q = &l->l_forw;
669 }
670 }
671
672 /*
673 * Make the highest priority process first in line on the specified
674 * identifier runnable.
675 */
676 void
677 wakeup_one(void *ident)
678 {
679 struct slpque *qp;
680 struct lwp *l, **q;
681 struct lwp *best_sleepp, **best_sleepq;
682 struct lwp *best_stopp, **best_stopq;
683 int s;
684
685 best_sleepp = best_stopp = NULL;
686 best_sleepq = best_stopq = NULL;
687
688 SCHED_LOCK(s);
689
690 qp = SLPQUE(ident);
691
692 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
693 #ifdef DIAGNOSTIC
694 if (l->l_back || (l->l_stat != LSSLEEP &&
695 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
696 panic("wakeup_one");
697 #endif
698 if (l->l_wchan == ident) {
699 if (l->l_stat == LSSLEEP) {
700 if (best_sleepp == NULL ||
701 l->l_priority < best_sleepp->l_priority) {
702 best_sleepp = l;
703 best_sleepq = q;
704 }
705 } else {
706 if (best_stopp == NULL ||
707 l->l_priority < best_stopp->l_priority) {
708 best_stopp = l;
709 best_stopq = q;
710 }
711 }
712 }
713 }
714
715 /*
716 * Consider any SSLEEP process higher than the highest priority SSTOP
717 * process.
718 */
719 if (best_sleepp != NULL) {
720 l = best_sleepp;
721 q = best_sleepq;
722 } else {
723 l = best_stopp;
724 q = best_stopq;
725 }
726
727 if (l != NULL) {
728 l->l_wchan = NULL;
729 *q = l->l_forw;
730 if (qp->sq_tailp == &l->l_forw)
731 qp->sq_tailp = q;
732 if (l->l_stat == LSSLEEP)
733 awaken(l);
734 }
735 SCHED_UNLOCK(s);
736 }
737
738 /*
739 * General yield call. Puts the current process back on its run queue and
740 * performs a voluntary context switch.
741 */
742 void
743 yield(void)
744 {
745 struct lwp *l = curproc;
746 int s;
747
748 SCHED_LOCK(s);
749 l->l_priority = l->l_usrpri;
750 l->l_stat = LSRUN;
751 setrunqueue(l);
752 l->l_proc->p_stats->p_ru.ru_nvcsw++;
753 mi_switch(l, NULL);
754 SCHED_ASSERT_UNLOCKED();
755 splx(s);
756 }
757
758 /*
759 * General preemption call. Puts the current process back on its run queue
760 * and performs an involuntary context switch. If a process is supplied,
761 * we switch to that process. Otherwise, we use the normal process selection
762 * criteria.
763 */
764
765 void
766 preempt(struct lwp *newl)
767 {
768 struct lwp *l = curproc;
769 int r, s;
770
771 SCHED_LOCK(s);
772 l->l_priority = l->l_usrpri;
773 l->l_stat = LSRUN;
774 setrunqueue(l);
775 l->l_proc->p_stats->p_ru.ru_nivcsw++;
776 r = mi_switch(l, newl);
777 if (r && (l->l_flag & L_SA))
778 sa_upcall(l, SA_UPCALL_PREEMPTED, l, NULL, 0, 0);
779 SCHED_ASSERT_UNLOCKED();
780 splx(s);
781 }
782
783 /*
784 * The machine independent parts of context switch.
785 * Must be called at splsched() (no higher!) and with
786 * the sched_lock held.
787 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
788 * the next lwp.
789 *
790 * Returns 1 if another process was actually run.
791 */
792 int
793 mi_switch(struct lwp *l, struct lwp *new)
794 {
795 struct schedstate_percpu *spc;
796 struct rlimit *rlim;
797 long s, u;
798 struct timeval tv;
799 #if defined(MULTIPROCESSOR)
800 int hold_count;
801 #endif
802 struct proc *p = l->l_proc;
803 int retval;
804
805 SCHED_ASSERT_LOCKED();
806
807 #if defined(MULTIPROCESSOR)
808 /*
809 * Release the kernel_lock, as we are about to yield the CPU.
810 * The scheduler lock is still held until cpu_switch()
811 * selects a new process and removes it from the run queue.
812 */
813 if (p->p_flag & P_BIGLOCK)
814 hold_count = spinlock_release_all(&kernel_lock);
815 #endif
816
817 KDASSERT(l->l_cpu != NULL);
818 KDASSERT(l->l_cpu == curcpu());
819
820 spc = &l->l_cpu->ci_schedstate;
821
822 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
823 spinlock_switchcheck();
824 #endif
825 #ifdef LOCKDEBUG
826 simple_lock_switchcheck();
827 #endif
828
829 /*
830 * Compute the amount of time during which the current
831 * process was running, and add that to its total so far.
832 */
833 microtime(&tv);
834 u = p->p_rtime.tv_usec +
835 (tv.tv_usec - spc->spc_runtime.tv_usec);
836 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
837 if (u < 0) {
838 u += 1000000;
839 s--;
840 } else if (u >= 1000000) {
841 u -= 1000000;
842 s++;
843 }
844 p->p_rtime.tv_usec = u;
845 p->p_rtime.tv_sec = s;
846
847 /*
848 * Check if the process exceeds its cpu resource allocation.
849 * If over max, kill it. In any case, if it has run for more
850 * than 10 minutes, reduce priority to give others a chance.
851 */
852 rlim = &p->p_rlimit[RLIMIT_CPU];
853 if (s >= rlim->rlim_cur) {
854 /*
855 * XXXSMP: we're inside the scheduler lock perimeter;
856 * use sched_psignal.
857 */
858 if (s >= rlim->rlim_max)
859 sched_psignal(p, SIGKILL);
860 else {
861 sched_psignal(p, SIGXCPU);
862 if (rlim->rlim_cur < rlim->rlim_max)
863 rlim->rlim_cur += 5;
864 }
865 }
866 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
867 p->p_nice == NZERO) {
868 p->p_nice = autoniceval + NZERO;
869 resetpriority(l);
870 }
871
872 /*
873 * Process is about to yield the CPU; clear the appropriate
874 * scheduling flags.
875 */
876 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
877
878 /*
879 * Pick a new current process and switch to it. When we
880 * run again, we'll return back here.
881 */
882 uvmexp.swtch++;
883 if (new == NULL) {
884 retval = cpu_switch(l);
885 } else {
886 cpu_preempt(l, new);
887 retval = 0;
888 }
889
890 /*
891 * Make sure that MD code released the scheduler lock before
892 * resuming us.
893 */
894 SCHED_ASSERT_UNLOCKED();
895
896 /*
897 * We're running again; record our new start time. We might
898 * be running on a new CPU now, so don't use the cache'd
899 * schedstate_percpu pointer.
900 */
901 KDASSERT(l->l_cpu != NULL);
902 KDASSERT(l->l_cpu == curcpu());
903 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
904
905 #if defined(MULTIPROCESSOR)
906 /*
907 * Reacquire the kernel_lock now. We do this after we've
908 * released the scheduler lock to avoid deadlock, and before
909 * we reacquire the interlock.
910 */
911 if (p->p_flag & P_BIGLOCK)
912 spinlock_acquire_count(&kernel_lock, hold_count);
913 #endif
914
915 return retval;
916 }
917
918 /*
919 * Initialize the (doubly-linked) run queues
920 * to be empty.
921 */
922 void
923 rqinit()
924 {
925 int i;
926
927 for (i = 0; i < RUNQUE_NQS; i++)
928 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
929 (struct lwp *)&sched_qs[i];
930 }
931
932 /*
933 * Change process state to be runnable,
934 * placing it on the run queue if it is in memory,
935 * and awakening the swapper if it isn't in memory.
936 */
937 void
938 setrunnable(struct lwp *l)
939 {
940 struct proc *p = l->l_proc;
941
942 SCHED_ASSERT_LOCKED();
943
944 switch (l->l_stat) {
945 case 0:
946 case LSRUN:
947 case LSONPROC:
948 case LSZOMB:
949 case LSDEAD:
950 default:
951 panic("setrunnable");
952 case LSSTOP:
953 /*
954 * If we're being traced (possibly because someone attached us
955 * while we were stopped), check for a signal from the debugger.
956 */
957 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
958 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
959 CHECKSIGS(p);
960 }
961 case LSSLEEP:
962 unsleep(l); /* e.g. when sending signals */
963 break;
964
965 case LSIDL:
966 break;
967 case LSSUSPENDED:
968 break;
969 }
970 l->l_stat = LSRUN;
971 if (l->l_flag & L_INMEM)
972 setrunqueue(l);
973
974 if (l->l_slptime > 1)
975 updatepri(l);
976 l->l_slptime = 0;
977 if ((l->l_flag & L_INMEM) == 0)
978 wakeup((caddr_t)&proc0);
979 else if (l->l_priority < curcpu()->ci_schedstate.spc_curpriority) {
980 /*
981 * XXXSMP
982 * This is not exactly right. Since p->p_cpu persists
983 * across a context switch, this gives us some sort
984 * of processor affinity. But we need to figure out
985 * at what point it's better to reschedule on a different
986 * CPU than the last one.
987 */
988 need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
989 }
990 }
991
992 /*
993 * Compute the priority of a process when running in user mode.
994 * Arrange to reschedule if the resulting priority is better
995 * than that of the current process.
996 */
997 void
998 resetpriority(struct lwp *l)
999 {
1000 unsigned int newpriority;
1001 struct proc *p = l->l_proc;
1002
1003 SCHED_ASSERT_LOCKED();
1004
1005 newpriority = PUSER + p->p_estcpu +
1006 NICE_WEIGHT * (p->p_nice - NZERO);
1007 newpriority = min(newpriority, MAXPRI);
1008 l->l_usrpri = newpriority;
1009 if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
1010 /*
1011 * XXXSMP
1012 * Same applies as in setrunnable() above.
1013 */
1014 need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
1015 }
1016 }
1017
1018 /*
1019 * Recompute priority for all LWPs in a process.
1020 */
1021 void
1022 resetprocpriority(struct proc *p)
1023 {
1024 struct lwp *l;
1025
1026 LIST_FOREACH(l, &p->p_lwps, l_list)
1027 resetpriority(l);
1028 }
1029
1030 /*
1031 * We adjust the priority of the current process. The priority of a process
1032 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1033 * is increased here. The formula for computing priorities (in kern_synch.c)
1034 * will compute a different value each time p_estcpu increases. This can
1035 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1036 * queue will not change. The cpu usage estimator ramps up quite quickly
1037 * when the process is running (linearly), and decays away exponentially, at
1038 * a rate which is proportionally slower when the system is busy. The basic
1039 * principle is that the system will 90% forget that the process used a lot
1040 * of CPU time in 5 * loadav seconds. This causes the system to favor
1041 * processes which haven't run much recently, and to round-robin among other
1042 * processes.
1043 */
1044
1045 void
1046 schedclock(struct lwp *l)
1047 {
1048 struct proc *p = l->l_proc;
1049 int s;
1050
1051 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1052 SCHED_LOCK(s);
1053 resetpriority(l);
1054 SCHED_UNLOCK(s);
1055
1056 if (l->l_priority >= PUSER)
1057 l->l_priority = l->l_usrpri;
1058 }
1059
1060 void
1061 suspendsched()
1062 {
1063 struct lwp *l;
1064 int s;
1065
1066 /*
1067 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1068 * LSSUSPENDED.
1069 */
1070 proclist_lock_read();
1071 SCHED_LOCK(s);
1072 for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l, l_list)) {
1073 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1074 continue;
1075
1076 switch (l->l_stat) {
1077 case LSRUN:
1078 if ((l->l_flag & L_INMEM) != 0)
1079 remrunqueue(l);
1080 /* FALLTHROUGH */
1081 case LSSLEEP:
1082 l->l_stat = LSSUSPENDED;
1083 break;
1084 case LSONPROC:
1085 /*
1086 * XXX SMP: we need to deal with processes on
1087 * others CPU !
1088 */
1089 break;
1090 default:
1091 break;
1092 }
1093 }
1094 SCHED_UNLOCK(s);
1095 proclist_unlock_read();
1096 }
1097
1098
1099