kern_synch.c revision 1.101.2.30 1 /* $NetBSD: kern_synch.c,v 1.101.2.30 2003/01/06 17:29:47 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.101.2.30 2003/01/06 17:29:47 nathanw Exp $");
82
83 #include "opt_ddb.h"
84 #include "opt_ktrace.h"
85 #include "opt_kstack.h"
86 #include "opt_lockdebug.h"
87 #include "opt_multiprocessor.h"
88 #include "opt_perfctrs.h"
89
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/callout.h>
93 #include <sys/proc.h>
94 #include <sys/kernel.h>
95 #include <sys/buf.h>
96 #if defined(PERFCTRS)
97 #include <sys/pmc.h>
98 #endif
99 #include <sys/signalvar.h>
100 #include <sys/resourcevar.h>
101 #include <sys/sched.h>
102 #include <sys/sa.h>
103 #include <sys/savar.h>
104
105 #include <uvm/uvm_extern.h>
106
107 #ifdef KTRACE
108 #include <sys/ktrace.h>
109 #endif
110
111 #include <machine/cpu.h>
112
113 int lbolt; /* once a second sleep address */
114 int rrticks; /* number of hardclock ticks per roundrobin() */
115
116 /*
117 * The global scheduler state.
118 */
119 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
120 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
121 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
122
123 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
124
125 void schedcpu(void *);
126 void updatepri(struct lwp *);
127 void endtsleep(void *);
128
129 __inline void awaken(struct lwp *);
130
131 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
132
133
134
135 /*
136 * Force switch among equal priority processes every 100ms.
137 * Called from hardclock every hz/10 == rrticks hardclock ticks.
138 */
139 /* ARGSUSED */
140 void
141 roundrobin(struct cpu_info *ci)
142 {
143 struct schedstate_percpu *spc = &ci->ci_schedstate;
144
145 spc->spc_rrticks = rrticks;
146
147 if (curlwp != NULL) {
148 if (spc->spc_flags & SPCF_SEENRR) {
149 /*
150 * The process has already been through a roundrobin
151 * without switching and may be hogging the CPU.
152 * Indicate that the process should yield.
153 */
154 spc->spc_flags |= SPCF_SHOULDYIELD;
155 } else
156 spc->spc_flags |= SPCF_SEENRR;
157 }
158 need_resched(curcpu());
159 }
160
161 /*
162 * Constants for digital decay and forget:
163 * 90% of (p_estcpu) usage in 5 * loadav time
164 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
165 * Note that, as ps(1) mentions, this can let percentages
166 * total over 100% (I've seen 137.9% for 3 processes).
167 *
168 * Note that hardclock updates p_estcpu and p_cpticks independently.
169 *
170 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
171 * That is, the system wants to compute a value of decay such
172 * that the following for loop:
173 * for (i = 0; i < (5 * loadavg); i++)
174 * p_estcpu *= decay;
175 * will compute
176 * p_estcpu *= 0.1;
177 * for all values of loadavg:
178 *
179 * Mathematically this loop can be expressed by saying:
180 * decay ** (5 * loadavg) ~= .1
181 *
182 * The system computes decay as:
183 * decay = (2 * loadavg) / (2 * loadavg + 1)
184 *
185 * We wish to prove that the system's computation of decay
186 * will always fulfill the equation:
187 * decay ** (5 * loadavg) ~= .1
188 *
189 * If we compute b as:
190 * b = 2 * loadavg
191 * then
192 * decay = b / (b + 1)
193 *
194 * We now need to prove two things:
195 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
196 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
197 *
198 * Facts:
199 * For x close to zero, exp(x) =~ 1 + x, since
200 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
201 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
202 * For x close to zero, ln(1+x) =~ x, since
203 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
204 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
205 * ln(.1) =~ -2.30
206 *
207 * Proof of (1):
208 * Solve (factor)**(power) =~ .1 given power (5*loadav):
209 * solving for factor,
210 * ln(factor) =~ (-2.30/5*loadav), or
211 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
212 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
213 *
214 * Proof of (2):
215 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
216 * solving for power,
217 * power*ln(b/(b+1)) =~ -2.30, or
218 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
219 *
220 * Actual power values for the implemented algorithm are as follows:
221 * loadav: 1 2 3 4
222 * power: 5.68 10.32 14.94 19.55
223 */
224
225 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
226 #define loadfactor(loadav) (2 * (loadav))
227 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
228
229 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
230 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
231
232 /*
233 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
234 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
235 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
236 *
237 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
238 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
239 *
240 * If you dont want to bother with the faster/more-accurate formula, you
241 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
242 * (more general) method of calculating the %age of CPU used by a process.
243 */
244 #define CCPU_SHIFT 11
245
246 /*
247 * Recompute process priorities, every hz ticks.
248 */
249 /* ARGSUSED */
250 void
251 schedcpu(void *arg)
252 {
253 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
254 struct lwp *l;
255 struct proc *p;
256 int s, s1, minslp;
257 unsigned int newcpu;
258 int clkhz;
259
260 proclist_lock_read();
261 LIST_FOREACH(p, &allproc, p_list) {
262 /*
263 * Increment time in/out of memory and sleep time
264 * (if sleeping). We ignore overflow; with 16-bit int's
265 * (remember them?) overflow takes 45 days.
266 */
267 minslp = 2;
268 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
269 l->l_swtime++;
270 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
271 l->l_stat == LSSUSPENDED) {
272 l->l_slptime++;
273 minslp = min(minslp, l->l_slptime);
274 } else
275 minslp = 0;
276 }
277 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
278 /*
279 * If the process has slept the entire second,
280 * stop recalculating its priority until it wakes up.
281 */
282 if (minslp > 1)
283 continue;
284 s = splstatclock(); /* prevent state changes */
285 /*
286 * p_pctcpu is only for ps.
287 */
288 clkhz = stathz != 0 ? stathz : hz;
289 #if (FSHIFT >= CCPU_SHIFT)
290 p->p_pctcpu += (clkhz == 100)?
291 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
292 100 * (((fixpt_t) p->p_cpticks)
293 << (FSHIFT - CCPU_SHIFT)) / clkhz;
294 #else
295 p->p_pctcpu += ((FSCALE - ccpu) *
296 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
297 #endif
298 p->p_cpticks = 0;
299 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
300 p->p_estcpu = newcpu;
301 SCHED_LOCK(s1);
302 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
303 if (l->l_slptime > 1)
304 continue;
305 resetpriority(l);
306 if (l->l_priority >= PUSER) {
307 if (l->l_stat == LSRUN &&
308 (l->l_flag & L_INMEM) &&
309 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
310 remrunqueue(l);
311 l->l_priority = l->l_usrpri;
312 setrunqueue(l);
313 } else
314 l->l_priority = l->l_usrpri;
315 }
316 }
317 SCHED_UNLOCK(s1);
318 splx(s);
319 }
320 proclist_unlock_read();
321 uvm_meter();
322 wakeup((caddr_t)&lbolt);
323 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
324 }
325
326 /*
327 * Recalculate the priority of a process after it has slept for a while.
328 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
329 * least six times the loadfactor will decay p_estcpu to zero.
330 */
331 void
332 updatepri(struct lwp *l)
333 {
334 struct proc *p = l->l_proc;
335 unsigned int newcpu;
336 fixpt_t loadfac;
337
338 SCHED_ASSERT_LOCKED();
339
340 newcpu = p->p_estcpu;
341 loadfac = loadfactor(averunnable.ldavg[0]);
342
343 if (l->l_slptime > 5 * loadfac)
344 p->p_estcpu = 0; /* XXX NJWLWP */
345 else {
346 l->l_slptime--; /* the first time was done in schedcpu */
347 while (newcpu && --l->l_slptime)
348 newcpu = (int) decay_cpu(loadfac, newcpu);
349 p->p_estcpu = newcpu;
350 }
351 resetpriority(l);
352 }
353
354 /*
355 * During autoconfiguration or after a panic, a sleep will simply
356 * lower the priority briefly to allow interrupts, then return.
357 * The priority to be used (safepri) is machine-dependent, thus this
358 * value is initialized and maintained in the machine-dependent layers.
359 * This priority will typically be 0, or the lowest priority
360 * that is safe for use on the interrupt stack; it can be made
361 * higher to block network software interrupts after panics.
362 */
363 int safepri;
364
365 /*
366 * General sleep call. Suspends the current process until a wakeup is
367 * performed on the specified identifier. The process will then be made
368 * runnable with the specified priority. Sleeps at most timo/hz seconds
369 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
370 * before and after sleeping, else signals are not checked. Returns 0 if
371 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
372 * signal needs to be delivered, ERESTART is returned if the current system
373 * call should be restarted if possible, and EINTR is returned if the system
374 * call should be interrupted by the signal (return EINTR).
375 *
376 * The interlock is held until the scheduler_slock is acquired. The
377 * interlock will be locked before returning back to the caller
378 * unless the PNORELOCK flag is specified, in which case the
379 * interlock will always be unlocked upon return.
380 */
381 int
382 ltsleep(void *ident, int priority, const char *wmesg, int timo,
383 __volatile struct simplelock *interlock)
384 {
385 struct lwp *l = curlwp;
386 struct proc *p = l->l_proc;
387 struct slpque *qp;
388 int sig, s;
389 int catch = priority & PCATCH;
390 int relock = (priority & PNORELOCK) == 0;
391 int exiterr = (priority & PNOEXITERR) == 0;
392
393 /*
394 * XXXSMP
395 * This is probably bogus. Figure out what the right
396 * thing to do here really is.
397 * Note that not sleeping if ltsleep is called with curlwp == NULL
398 * in the shutdown case is disgusting but partly necessary given
399 * how shutdown (barely) works.
400 */
401 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
402 /*
403 * After a panic, or during autoconfiguration,
404 * just give interrupts a chance, then just return;
405 * don't run any other procs or panic below,
406 * in case this is the idle process and already asleep.
407 */
408 s = splhigh();
409 splx(safepri);
410 splx(s);
411 if (interlock != NULL && relock == 0)
412 simple_unlock(interlock);
413 return (0);
414 }
415
416 KASSERT(p != NULL);
417 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
418
419 #ifdef KTRACE
420 if (KTRPOINT(p, KTR_CSW))
421 ktrcsw(p, 1, 0);
422 #endif
423
424 SCHED_LOCK(s);
425
426 #ifdef DIAGNOSTIC
427 if (ident == NULL)
428 panic("ltsleep: ident == NULL");
429 if (l->l_stat != LSONPROC)
430 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
431 if (l->l_back != NULL)
432 panic("ltsleep: p_back != NULL");
433 #endif
434
435 l->l_wchan = ident;
436 l->l_wmesg = wmesg;
437 l->l_slptime = 0;
438 l->l_priority = priority & PRIMASK;
439
440 qp = SLPQUE(ident);
441 if (qp->sq_head == 0)
442 qp->sq_head = l;
443 else {
444 *qp->sq_tailp = l;
445 }
446 *(qp->sq_tailp = &l->l_forw) = 0;
447
448 if (timo)
449 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
450
451 /*
452 * We can now release the interlock; the scheduler_slock
453 * is held, so a thread can't get in to do wakeup() before
454 * we do the switch.
455 *
456 * XXX We leave the code block here, after inserting ourselves
457 * on the sleep queue, because we might want a more clever
458 * data structure for the sleep queues at some point.
459 */
460 if (interlock != NULL)
461 simple_unlock(interlock);
462
463 /*
464 * We put ourselves on the sleep queue and start our timeout
465 * before calling CURSIG, as we could stop there, and a wakeup
466 * or a SIGCONT (or both) could occur while we were stopped.
467 * A SIGCONT would cause us to be marked as SSLEEP
468 * without resuming us, thus we must be ready for sleep
469 * when CURSIG is called. If the wakeup happens while we're
470 * stopped, p->p_wchan will be 0 upon return from CURSIG.
471 */
472 if (catch) {
473 l->l_flag |= L_SINTR;
474 if ((sig = CURSIG(l)) != 0) {
475 if (l->l_wchan != NULL)
476 unsleep(l);
477 l->l_stat = LSONPROC;
478 SCHED_UNLOCK(s);
479 goto resume;
480 }
481 if (l->l_wchan == NULL) {
482 catch = 0;
483 SCHED_UNLOCK(s);
484 goto resume;
485 }
486 } else
487 sig = 0;
488 l->l_stat = LSSLEEP;
489 p->p_nrlwps--;
490 p->p_stats->p_ru.ru_nvcsw++;
491 SCHED_ASSERT_LOCKED();
492 if (l->l_flag & L_SA)
493 sa_switch(l, SA_UPCALL_BLOCKED);
494 else
495 mi_switch(l, NULL);
496
497 #if defined(DDB) && !defined(GPROF)
498 /* handy breakpoint location after process "wakes" */
499 __asm(".globl bpendtsleep ; bpendtsleep:");
500 #endif
501 /*
502 * p->p_nrlwps is incremented by whoever made us runnable again,
503 * either setrunnable() or awaken().
504 */
505
506 SCHED_ASSERT_UNLOCKED();
507 splx(s);
508
509 resume:
510 KDASSERT(l->l_cpu != NULL);
511 KDASSERT(l->l_cpu == curcpu());
512 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
513
514 l->l_flag &= ~L_SINTR;
515 if (l->l_flag & L_TIMEOUT) {
516 l->l_flag &= ~L_TIMEOUT;
517 if (sig == 0) {
518 #ifdef KTRACE
519 if (KTRPOINT(p, KTR_CSW))
520 ktrcsw(p, 0, 0);
521 #endif
522 if (relock && interlock != NULL)
523 simple_lock(interlock);
524 return (EWOULDBLOCK);
525 }
526 } else if (timo)
527 callout_stop(&l->l_tsleep_ch);
528 if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
529 #ifdef KTRACE
530 if (KTRPOINT(p, KTR_CSW))
531 ktrcsw(p, 0, 0);
532 #endif
533 if (relock && interlock != NULL)
534 simple_lock(interlock);
535 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
536 return (EINTR);
537 return (ERESTART);
538 }
539 /* XXXNJW this is very much a kluge.
540 * revisit. a better way of preventing looping/hanging syscalls like
541 * wait4() and _lwp_wait() from wedging an exiting process
542 * would be preferred.
543 */
544 if (catch && ((p->p_flag & P_WEXIT) && exiterr))
545 return (EINTR);
546 #ifdef KTRACE
547 if (KTRPOINT(p, KTR_CSW))
548 ktrcsw(p, 0, 0);
549 #endif
550 if (relock && interlock != NULL)
551 simple_lock(interlock);
552 return (0);
553 }
554
555 /*
556 * Implement timeout for tsleep.
557 * If process hasn't been awakened (wchan non-zero),
558 * set timeout flag and undo the sleep. If proc
559 * is stopped, just unsleep so it will remain stopped.
560 */
561 void
562 endtsleep(void *arg)
563 {
564 struct lwp *l;
565 int s;
566
567 l = (struct lwp *)arg;
568 SCHED_LOCK(s);
569 if (l->l_wchan) {
570 if (l->l_stat == LSSLEEP)
571 setrunnable(l);
572 else
573 unsleep(l);
574 l->l_flag |= L_TIMEOUT;
575 }
576 SCHED_UNLOCK(s);
577 }
578
579 /*
580 * Remove a process from its wait queue
581 */
582 void
583 unsleep(struct lwp *l)
584 {
585 struct slpque *qp;
586 struct lwp **hp;
587
588 SCHED_ASSERT_LOCKED();
589
590 if (l->l_wchan) {
591 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
592 while (*hp != l)
593 hp = &(*hp)->l_forw;
594 *hp = l->l_forw;
595 if (qp->sq_tailp == &l->l_forw)
596 qp->sq_tailp = hp;
597 l->l_wchan = 0;
598 }
599 }
600
601 /*
602 * Optimized-for-wakeup() version of setrunnable().
603 */
604 __inline void
605 awaken(struct lwp *l)
606 {
607
608 SCHED_ASSERT_LOCKED();
609
610 if (l->l_slptime > 1)
611 updatepri(l);
612 l->l_slptime = 0;
613 l->l_stat = LSRUN;
614 l->l_proc->p_nrlwps++;
615 /*
616 * Since curpriority is a user priority, p->p_priority
617 * is always better than curpriority on the last CPU on
618 * which it ran.
619 *
620 * XXXSMP See affinity comment in resched_proc().
621 */
622 if (l->l_flag & L_INMEM) {
623 setrunqueue(l);
624 if (l->l_flag & L_SA)
625 l->l_proc->p_sa->sa_woken = l;
626 KASSERT(l->l_cpu != NULL);
627 need_resched(l->l_cpu);
628 } else
629 sched_wakeup(&proc0);
630 }
631
632 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
633 void
634 sched_unlock_idle(void)
635 {
636
637 simple_unlock(&sched_lock);
638 }
639
640 void
641 sched_lock_idle(void)
642 {
643
644 simple_lock(&sched_lock);
645 }
646 #endif /* MULTIPROCESSOR || LOCKDEBUG */
647
648 /*
649 * Make all processes sleeping on the specified identifier runnable.
650 */
651
652 void
653 wakeup(void *ident)
654 {
655 int s;
656
657 SCHED_ASSERT_UNLOCKED();
658
659 SCHED_LOCK(s);
660 sched_wakeup(ident);
661 SCHED_UNLOCK(s);
662 }
663
664 void
665 sched_wakeup(void *ident)
666 {
667 struct slpque *qp;
668 struct lwp *l, **q;
669
670 SCHED_ASSERT_LOCKED();
671
672 qp = SLPQUE(ident);
673 restart:
674 for (q = &qp->sq_head; (l = *q) != NULL; ) {
675 #ifdef DIAGNOSTIC
676 if (l->l_back || (l->l_stat != LSSLEEP &&
677 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
678 panic("wakeup");
679 #endif
680 if (l->l_wchan == ident) {
681 l->l_wchan = 0;
682 *q = l->l_forw;
683 if (qp->sq_tailp == &l->l_forw)
684 qp->sq_tailp = q;
685 if (l->l_stat == LSSLEEP) {
686 awaken(l);
687 goto restart;
688 }
689 } else
690 q = &l->l_forw;
691 }
692 }
693
694 /*
695 * Make the highest priority process first in line on the specified
696 * identifier runnable.
697 */
698 void
699 wakeup_one(void *ident)
700 {
701 struct slpque *qp;
702 struct lwp *l, **q;
703 struct lwp *best_sleepp, **best_sleepq;
704 struct lwp *best_stopp, **best_stopq;
705 int s;
706
707 best_sleepp = best_stopp = NULL;
708 best_sleepq = best_stopq = NULL;
709
710 SCHED_LOCK(s);
711
712 qp = SLPQUE(ident);
713
714 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
715 #ifdef DIAGNOSTIC
716 if (l->l_back || (l->l_stat != LSSLEEP &&
717 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
718 panic("wakeup_one");
719 #endif
720 if (l->l_wchan == ident) {
721 if (l->l_stat == LSSLEEP) {
722 if (best_sleepp == NULL ||
723 l->l_priority < best_sleepp->l_priority) {
724 best_sleepp = l;
725 best_sleepq = q;
726 }
727 } else {
728 if (best_stopp == NULL ||
729 l->l_priority < best_stopp->l_priority) {
730 best_stopp = l;
731 best_stopq = q;
732 }
733 }
734 }
735 }
736
737 /*
738 * Consider any SSLEEP process higher than the highest priority SSTOP
739 * process.
740 */
741 if (best_sleepp != NULL) {
742 l = best_sleepp;
743 q = best_sleepq;
744 } else {
745 l = best_stopp;
746 q = best_stopq;
747 }
748
749 if (l != NULL) {
750 l->l_wchan = NULL;
751 *q = l->l_forw;
752 if (qp->sq_tailp == &l->l_forw)
753 qp->sq_tailp = q;
754 if (l->l_stat == LSSLEEP)
755 awaken(l);
756 }
757 SCHED_UNLOCK(s);
758 }
759
760 /*
761 * General yield call. Puts the current process back on its run queue and
762 * performs a voluntary context switch. Should only be called when the
763 * current process explicitly requests it (eg sched_yield(2) in compat code).
764 */
765 void
766 yield(void)
767 {
768 struct lwp *l = curlwp;
769 int s;
770
771 SCHED_LOCK(s);
772 l->l_priority = l->l_usrpri;
773 l->l_stat = LSRUN;
774 setrunqueue(l);
775 l->l_proc->p_stats->p_ru.ru_nvcsw++;
776 mi_switch(l, NULL);
777 SCHED_ASSERT_UNLOCKED();
778 splx(s);
779 }
780
781 /*
782 * General preemption call. Puts the current process back on its run queue
783 * and performs an involuntary context switch. If a process is supplied,
784 * we switch to that process. Otherwise, we use the normal process selection
785 * criteria.
786 */
787
788 void
789 preempt(struct lwp *newl)
790 {
791 struct lwp *l = curlwp;
792 int r, s;
793
794 if (l->l_flag & L_SA) {
795 SCHED_LOCK(s);
796 l->l_priority = l->l_usrpri;
797 l->l_stat = LSRUN;
798 setrunqueue(l);
799 l->l_proc->p_stats->p_ru.ru_nivcsw++;
800 r = mi_switch(l, newl);
801 SCHED_ASSERT_UNLOCKED();
802 splx(s);
803 if (r != 0)
804 sa_preempt(l);
805 } else {
806 SCHED_LOCK(s);
807 l->l_priority = l->l_usrpri;
808 l->l_stat = LSRUN;
809 setrunqueue(l);
810 l->l_proc->p_stats->p_ru.ru_nivcsw++;
811 mi_switch(l, newl);
812 SCHED_ASSERT_UNLOCKED();
813 splx(s);
814 }
815
816 }
817
818 /*
819 * The machine independent parts of context switch.
820 * Must be called at splsched() (no higher!) and with
821 * the sched_lock held.
822 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
823 * the next lwp.
824 *
825 * Returns 1 if another process was actually run.
826 */
827 int
828 mi_switch(struct lwp *l, struct lwp *newl)
829 {
830 struct schedstate_percpu *spc;
831 struct rlimit *rlim;
832 long s, u;
833 struct timeval tv;
834 #if defined(MULTIPROCESSOR)
835 int hold_count;
836 #endif
837 struct proc *p = l->l_proc;
838 int retval;
839
840 SCHED_ASSERT_LOCKED();
841
842 #if defined(MULTIPROCESSOR)
843 /*
844 * Release the kernel_lock, as we are about to yield the CPU.
845 * The scheduler lock is still held until cpu_switch()
846 * selects a new process and removes it from the run queue.
847 */
848 if (l->l_flag & L_BIGLOCK)
849 hold_count = spinlock_release_all(&kernel_lock);
850 #endif
851
852 KDASSERT(l->l_cpu != NULL);
853 KDASSERT(l->l_cpu == curcpu());
854
855 spc = &l->l_cpu->ci_schedstate;
856
857 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
858 spinlock_switchcheck();
859 #endif
860 #ifdef LOCKDEBUG
861 simple_lock_switchcheck();
862 #endif
863
864 /*
865 * Compute the amount of time during which the current
866 * process was running.
867 */
868 microtime(&tv);
869 u = p->p_rtime.tv_usec +
870 (tv.tv_usec - spc->spc_runtime.tv_usec);
871 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
872 if (u < 0) {
873 u += 1000000;
874 s--;
875 } else if (u >= 1000000) {
876 u -= 1000000;
877 s++;
878 }
879 p->p_rtime.tv_usec = u;
880 p->p_rtime.tv_sec = s;
881
882 /*
883 * Check if the process exceeds its cpu resource allocation.
884 * If over max, kill it. In any case, if it has run for more
885 * than 10 minutes, reduce priority to give others a chance.
886 */
887 rlim = &p->p_rlimit[RLIMIT_CPU];
888 if (s >= rlim->rlim_cur) {
889 /*
890 * XXXSMP: we're inside the scheduler lock perimeter;
891 * use sched_psignal.
892 */
893 if (s >= rlim->rlim_max)
894 sched_psignal(p, SIGKILL);
895 else {
896 sched_psignal(p, SIGXCPU);
897 if (rlim->rlim_cur < rlim->rlim_max)
898 rlim->rlim_cur += 5;
899 }
900 }
901 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
902 p->p_nice == NZERO) {
903 p->p_nice = autoniceval + NZERO;
904 resetpriority(l);
905 }
906
907 /*
908 * Process is about to yield the CPU; clear the appropriate
909 * scheduling flags.
910 */
911 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
912
913 #ifdef KSTACK_CHECK_MAGIC
914 kstack_check_magic(p);
915 #endif
916
917 /*
918 * If we are using h/w performance counters, save context.
919 */
920 #if PERFCTRS
921 if (PMC_ENABLED(p))
922 pmc_save_context(p);
923 #endif
924
925 /*
926 * Switch to the new current process. When we
927 * run again, we'll return back here.
928 */
929 uvmexp.swtch++;
930 if (newl == NULL) {
931 retval = cpu_switch(l, NULL);
932 } else {
933 remrunqueue(newl);
934 cpu_switchto(l, newl);
935 retval = 0;
936 }
937
938 /*
939 * If we are using h/w performance counters, restore context.
940 */
941 #if PERFCTRS
942 if (PMC_ENABLED(p))
943 pmc_restore_context(p);
944 #endif
945
946 /*
947 * Make sure that MD code released the scheduler lock before
948 * resuming us.
949 */
950 SCHED_ASSERT_UNLOCKED();
951
952 /*
953 * We're running again; record our new start time. We might
954 * be running on a new CPU now, so don't use the cache'd
955 * schedstate_percpu pointer.
956 */
957 KDASSERT(l->l_cpu != NULL);
958 KDASSERT(l->l_cpu == curcpu());
959 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
960
961 #if defined(MULTIPROCESSOR)
962 /*
963 * Reacquire the kernel_lock now. We do this after we've
964 * released the scheduler lock to avoid deadlock, and before
965 * we reacquire the interlock.
966 */
967 if (l->l_flag & L_BIGLOCK)
968 spinlock_acquire_count(&kernel_lock, hold_count);
969 #endif
970
971 return retval;
972 }
973
974 /*
975 * Initialize the (doubly-linked) run queues
976 * to be empty.
977 */
978 void
979 rqinit()
980 {
981 int i;
982
983 for (i = 0; i < RUNQUE_NQS; i++)
984 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
985 (struct lwp *)&sched_qs[i];
986 }
987
988 static __inline void
989 resched_proc(struct lwp *l)
990 {
991 struct cpu_info *ci;
992
993 /*
994 * XXXSMP
995 * Since l->l_cpu persists across a context switch,
996 * this gives us *very weak* processor affinity, in
997 * that we notify the CPU on which the process last
998 * ran that it should try to switch.
999 *
1000 * This does not guarantee that the process will run on
1001 * that processor next, because another processor might
1002 * grab it the next time it performs a context switch.
1003 *
1004 * This also does not handle the case where its last
1005 * CPU is running a higher-priority process, but every
1006 * other CPU is running a lower-priority process. There
1007 * are ways to handle this situation, but they're not
1008 * currently very pretty, and we also need to weigh the
1009 * cost of moving a process from one CPU to another.
1010 *
1011 * XXXSMP
1012 * There is also the issue of locking the other CPU's
1013 * sched state, which we currently do not do.
1014 */
1015 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1016 if (l->l_priority < ci->ci_schedstate.spc_curpriority)
1017 need_resched(ci);
1018 }
1019
1020 /*
1021 * Change process state to be runnable,
1022 * placing it on the run queue if it is in memory,
1023 * and awakening the swapper if it isn't in memory.
1024 */
1025 void
1026 setrunnable(struct lwp *l)
1027 {
1028 struct proc *p = l->l_proc;
1029
1030 SCHED_ASSERT_LOCKED();
1031
1032 switch (l->l_stat) {
1033 case 0:
1034 case LSRUN:
1035 case LSONPROC:
1036 case LSZOMB:
1037 case LSDEAD:
1038 default:
1039 panic("setrunnable");
1040 case LSSTOP:
1041 /*
1042 * If we're being traced (possibly because someone attached us
1043 * while we were stopped), check for a signal from the debugger.
1044 */
1045 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1046 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1047 CHECKSIGS(p);
1048 }
1049 case LSSLEEP:
1050 unsleep(l); /* e.g. when sending signals */
1051 break;
1052
1053 case LSIDL:
1054 break;
1055 case LSSUSPENDED:
1056 break;
1057 }
1058 l->l_stat = LSRUN;
1059 p->p_nrlwps++;
1060
1061 if (l->l_flag & L_INMEM)
1062 setrunqueue(l);
1063
1064 if (l->l_slptime > 1)
1065 updatepri(l);
1066 l->l_slptime = 0;
1067 if ((l->l_flag & L_INMEM) == 0)
1068 sched_wakeup((caddr_t)&proc0);
1069 else
1070 resched_proc(l);
1071 }
1072
1073 /*
1074 * Compute the priority of a process when running in user mode.
1075 * Arrange to reschedule if the resulting priority is better
1076 * than that of the current process.
1077 */
1078 void
1079 resetpriority(struct lwp *l)
1080 {
1081 unsigned int newpriority;
1082 struct proc *p = l->l_proc;
1083
1084 SCHED_ASSERT_LOCKED();
1085
1086 newpriority = PUSER + p->p_estcpu +
1087 NICE_WEIGHT * (p->p_nice - NZERO);
1088 newpriority = min(newpriority, MAXPRI);
1089 l->l_usrpri = newpriority;
1090 resched_proc(l);
1091 }
1092
1093 /*
1094 * Recompute priority for all LWPs in a process.
1095 */
1096 void
1097 resetprocpriority(struct proc *p)
1098 {
1099 struct lwp *l;
1100
1101 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1102 resetpriority(l);
1103 }
1104
1105 /*
1106 * We adjust the priority of the current process. The priority of a process
1107 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1108 * is increased here. The formula for computing priorities (in kern_synch.c)
1109 * will compute a different value each time p_estcpu increases. This can
1110 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1111 * queue will not change. The cpu usage estimator ramps up quite quickly
1112 * when the process is running (linearly), and decays away exponentially, at
1113 * a rate which is proportionally slower when the system is busy. The basic
1114 * principle is that the system will 90% forget that the process used a lot
1115 * of CPU time in 5 * loadav seconds. This causes the system to favor
1116 * processes which haven't run much recently, and to round-robin among other
1117 * processes.
1118 */
1119
1120 void
1121 schedclock(struct lwp *l)
1122 {
1123 struct proc *p = l->l_proc;
1124 int s;
1125
1126 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1127 SCHED_LOCK(s);
1128 resetpriority(l);
1129 SCHED_UNLOCK(s);
1130
1131 if (l->l_priority >= PUSER)
1132 l->l_priority = l->l_usrpri;
1133 }
1134
1135 void
1136 suspendsched()
1137 {
1138 struct lwp *l;
1139 int s;
1140
1141 /*
1142 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1143 * LSSUSPENDED.
1144 */
1145 proclist_lock_read();
1146 SCHED_LOCK(s);
1147 LIST_FOREACH(l, &alllwp, l_list) {
1148 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1149 continue;
1150
1151 switch (l->l_stat) {
1152 case LSRUN:
1153 l->l_proc->p_nrlwps--;
1154 if ((l->l_flag & L_INMEM) != 0)
1155 remrunqueue(l);
1156 /* FALLTHROUGH */
1157 case LSSLEEP:
1158 l->l_stat = LSSUSPENDED;
1159 break;
1160 case LSONPROC:
1161 /*
1162 * XXX SMP: we need to deal with processes on
1163 * others CPU !
1164 */
1165 break;
1166 default:
1167 break;
1168 }
1169 }
1170 SCHED_UNLOCK(s);
1171 proclist_unlock_read();
1172 }
1173
1174 /*
1175 * Low-level routines to access the run queue. Optimised assembler
1176 * routines can override these.
1177 */
1178
1179 #ifndef __HAVE_MD_RUNQUEUE
1180
1181 /*
1182 * The primitives that manipulate the run queues. whichqs tells which
1183 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1184 * into queues, remrunqueue removes them from queues. The running process is
1185 * on no queue, other processes are on a queue related to p->p_priority,
1186 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1187 * available queues.
1188 */
1189
1190 void
1191 setrunqueue(struct lwp *l)
1192 {
1193 struct prochd *rq;
1194 struct lwp *prev;
1195 int whichq;
1196
1197 #ifdef DIAGNOSTIC
1198 if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1199 panic("setrunqueue");
1200 #endif
1201 whichq = l->l_priority / 4;
1202 sched_whichqs |= (1<<whichq);
1203 rq = &sched_qs[whichq];
1204 prev = rq->ph_rlink;
1205 l->l_forw = (struct lwp *)rq;
1206 rq->ph_rlink = l;
1207 prev->l_forw = l;
1208 l->l_back = prev;
1209 }
1210
1211 void
1212 remrunqueue(struct lwp *l)
1213 {
1214 struct lwp *prev, *next;
1215 int whichq;
1216
1217 whichq = l->l_priority / 4;
1218 #ifdef DIAGNOSTIC
1219 if (((sched_whichqs & (1<<whichq)) == 0))
1220 panic("remrunqueue");
1221 #endif
1222 prev = l->l_back;
1223 l->l_back = NULL;
1224 next = l->l_forw;
1225 prev->l_forw = next;
1226 next->l_back = prev;
1227 if (prev == next)
1228 sched_whichqs &= ~(1<<whichq);
1229 }
1230
1231 #endif
1232