kern_synch.c revision 1.101.2.6 1 /* $NetBSD: kern_synch.c,v 1.101.2.6 2001/09/26 19:55:04 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_ktrace.h"
82 #include "opt_lockdebug.h"
83 #include "opt_multiprocessor.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/callout.h>
88 #include <sys/proc.h>
89 #include <sys/lwp.h>
90 #include <sys/kernel.h>
91 #include <sys/buf.h>
92 #include <sys/signalvar.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sa.h>
96 #include <sys/savar.h>
97
98 #include <uvm/uvm_extern.h>
99
100 #ifdef KTRACE
101 #include <sys/ktrace.h>
102 #endif
103
104 #include <machine/cpu.h>
105
106 int lbolt; /* once a second sleep address */
107 int rrticks; /* number of hardclock ticks per roundrobin() */
108
109 /*
110 * The global scheduler state.
111 */
112 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
113 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
114 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
115
116 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
117 #if defined(MULTIPROCESSOR)
118 struct lock kernel_lock;
119 #endif
120
121 void schedcpu(void *);
122 void updatepri(struct lwp *);
123 void endtsleep(void *);
124
125 __inline void awaken(struct lwp *);
126
127 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
128
129
130
131 /*
132 * Force switch among equal priority processes every 100ms.
133 * Called from hardclock every hz/10 == rrticks hardclock ticks.
134 */
135 /* ARGSUSED */
136 void
137 roundrobin(struct cpu_info *ci)
138 {
139 struct schedstate_percpu *spc = &ci->ci_schedstate;
140
141 spc->spc_rrticks = rrticks;
142
143 if (curproc != NULL) {
144 if (spc->spc_flags & SPCF_SEENRR) {
145 /*
146 * The process has already been through a roundrobin
147 * without switching and may be hogging the CPU.
148 * Indicate that the process should yield.
149 */
150 spc->spc_flags |= SPCF_SHOULDYIELD;
151 } else
152 spc->spc_flags |= SPCF_SEENRR;
153 }
154 need_resched(curcpu());
155 }
156
157 /*
158 * Constants for digital decay and forget:
159 * 90% of (p_estcpu) usage in 5 * loadav time
160 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
161 * Note that, as ps(1) mentions, this can let percentages
162 * total over 100% (I've seen 137.9% for 3 processes).
163 *
164 * Note that hardclock updates p_estcpu and p_cpticks independently.
165 *
166 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
167 * That is, the system wants to compute a value of decay such
168 * that the following for loop:
169 * for (i = 0; i < (5 * loadavg); i++)
170 * p_estcpu *= decay;
171 * will compute
172 * p_estcpu *= 0.1;
173 * for all values of loadavg:
174 *
175 * Mathematically this loop can be expressed by saying:
176 * decay ** (5 * loadavg) ~= .1
177 *
178 * The system computes decay as:
179 * decay = (2 * loadavg) / (2 * loadavg + 1)
180 *
181 * We wish to prove that the system's computation of decay
182 * will always fulfill the equation:
183 * decay ** (5 * loadavg) ~= .1
184 *
185 * If we compute b as:
186 * b = 2 * loadavg
187 * then
188 * decay = b / (b + 1)
189 *
190 * We now need to prove two things:
191 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
192 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
193 *
194 * Facts:
195 * For x close to zero, exp(x) =~ 1 + x, since
196 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
197 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
198 * For x close to zero, ln(1+x) =~ x, since
199 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
200 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
201 * ln(.1) =~ -2.30
202 *
203 * Proof of (1):
204 * Solve (factor)**(power) =~ .1 given power (5*loadav):
205 * solving for factor,
206 * ln(factor) =~ (-2.30/5*loadav), or
207 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
208 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
209 *
210 * Proof of (2):
211 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
212 * solving for power,
213 * power*ln(b/(b+1)) =~ -2.30, or
214 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
215 *
216 * Actual power values for the implemented algorithm are as follows:
217 * loadav: 1 2 3 4
218 * power: 5.68 10.32 14.94 19.55
219 */
220
221 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
222 #define loadfactor(loadav) (2 * (loadav))
223 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
224
225 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
226 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
227
228 /*
229 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
230 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
231 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
232 *
233 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
234 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
235 *
236 * If you dont want to bother with the faster/more-accurate formula, you
237 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
238 * (more general) method of calculating the %age of CPU used by a process.
239 */
240 #define CCPU_SHIFT 11
241
242 /*
243 * Recompute process priorities, every hz ticks.
244 */
245 /* ARGSUSED */
246 void
247 schedcpu(void *arg)
248 {
249 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
250 struct lwp *l;
251 struct proc *p;
252 int s, s1;
253 unsigned int newcpu;
254 int clkhz;
255
256 proclist_lock_read();
257 for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l,l_list)) {
258 /*
259 * Increment time in/out of memory and sleep time
260 * (if sleeping). We ignore overflow; with 16-bit int's
261 * (remember them?) overflow takes 45 days.
262 */
263 p = l->l_proc;
264 l->l_swtime++;
265 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
266 l->l_stat == LSSUSPENDED)
267 l->l_slptime++;
268 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
269 /*
270 * If the process has slept the entire second,
271 * stop recalculating its priority until it wakes up.
272 */
273 if (l->l_slptime > 1)
274 continue;
275 s = splstatclock(); /* prevent state changes */
276 /*
277 * p_pctcpu is only for ps.
278 */
279 clkhz = stathz != 0 ? stathz : hz;
280 #if (FSHIFT >= CCPU_SHIFT)
281 p->p_pctcpu += (clkhz == 100)?
282 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
283 100 * (((fixpt_t) p->p_cpticks)
284 << (FSHIFT - CCPU_SHIFT)) / clkhz;
285 #else
286 l->l_pctcpu += ((FSCALE - ccpu) *
287 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
288 #endif
289 p->p_cpticks = 0;
290 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
291 p->p_estcpu = newcpu;
292 SCHED_LOCK(s1);
293 resetpriority(l);
294 if (l->l_priority >= PUSER) {
295 if (l->l_stat == LSRUN &&
296 (l->l_flag & L_INMEM) &&
297 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
298 remrunqueue(l);
299 l->l_priority = l->l_usrpri;
300 setrunqueue(l);
301 } else
302 l->l_priority = l->l_usrpri;
303 }
304 SCHED_UNLOCK(s1);
305 splx(s);
306 }
307 proclist_unlock_read();
308 uvm_meter();
309 wakeup((caddr_t)&lbolt);
310 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
311 }
312
313 /*
314 * Recalculate the priority of a process after it has slept for a while.
315 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
316 * least six times the loadfactor will decay p_estcpu to zero.
317 */
318 void
319 updatepri(struct lwp *l)
320 {
321 struct proc *p = l->l_proc;
322 unsigned int newcpu;
323 fixpt_t loadfac;
324
325 SCHED_ASSERT_LOCKED();
326
327 newcpu = p->p_estcpu;
328 loadfac = loadfactor(averunnable.ldavg[0]);
329
330 if (l->l_slptime > 5 * loadfac)
331 p->p_estcpu = 0; /* XXX NJWLWP */
332 else {
333 l->l_slptime--; /* the first time was done in schedcpu */
334 while (newcpu && --l->l_slptime)
335 newcpu = (int) decay_cpu(loadfac, newcpu);
336 p->p_estcpu = newcpu;
337 }
338 resetpriority(l);
339 }
340
341 /*
342 * During autoconfiguration or after a panic, a sleep will simply
343 * lower the priority briefly to allow interrupts, then return.
344 * The priority to be used (safepri) is machine-dependent, thus this
345 * value is initialized and maintained in the machine-dependent layers.
346 * This priority will typically be 0, or the lowest priority
347 * that is safe for use on the interrupt stack; it can be made
348 * higher to block network software interrupts after panics.
349 */
350 int safepri;
351
352 /*
353 * General sleep call. Suspends the current process until a wakeup is
354 * performed on the specified identifier. The process will then be made
355 * runnable with the specified priority. Sleeps at most timo/hz seconds
356 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
357 * before and after sleeping, else signals are not checked. Returns 0 if
358 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
359 * signal needs to be delivered, ERESTART is returned if the current system
360 * call should be restarted if possible, and EINTR is returned if the system
361 * call should be interrupted by the signal (return EINTR).
362 *
363 * The interlock is held until the scheduler_slock is acquired. The
364 * interlock will be locked before returning back to the caller
365 * unless the PNORELOCK flag is specified, in which case the
366 * interlock will always be unlocked upon return.
367 */
368 int
369 ltsleep(void *ident, int priority, const char *wmesg, int timo,
370 __volatile struct simplelock *interlock)
371 {
372 struct lwp *l = curproc;
373 struct proc *p = l->l_proc;
374 struct slpque *qp;
375 int sig, s;
376 int catch = priority & PCATCH;
377 int relock = (priority & PNORELOCK) == 0;
378 int exiterr = (priority & PNOEXITERR) == 0;
379
380 /*
381 * XXXSMP
382 * This is probably bogus. Figure out what the right
383 * thing to do here really is.
384 * Note that not sleeping if ltsleep is called with curproc == NULL
385 * in the shutdown case is disgusting but partly necessary given
386 * how shutdown (barely) works.
387 */
388 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
389 /*
390 * After a panic, or during autoconfiguration,
391 * just give interrupts a chance, then just return;
392 * don't run any other procs or panic below,
393 * in case this is the idle process and already asleep.
394 */
395 s = splhigh();
396 splx(safepri);
397 splx(s);
398 if (interlock != NULL && relock == 0)
399 simple_unlock(interlock);
400 return (0);
401 }
402
403 KASSERT(p != NULL);
404 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
405
406 #ifdef KTRACE
407 if (KTRPOINT(p, KTR_CSW))
408 ktrcsw(p, 1, 0);
409 #endif
410
411 SCHED_LOCK(s);
412
413 #ifdef DIAGNOSTIC
414 if (ident == NULL)
415 panic("ltsleep: ident == NULL");
416 if (l->l_stat != LSONPROC)
417 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
418 if (l->l_back != NULL)
419 panic("ltsleep: p_back != NULL");
420 #endif
421
422 l->l_wchan = ident;
423 l->l_wmesg = wmesg;
424 l->l_slptime = 0;
425 l->l_priority = priority & PRIMASK;
426
427 qp = SLPQUE(ident);
428 if (qp->sq_head == 0)
429 qp->sq_head = l;
430 else {
431 *qp->sq_tailp = l;
432 }
433 *(qp->sq_tailp = &l->l_forw) = 0;
434
435 if (timo)
436 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
437
438 /*
439 * We can now release the interlock; the scheduler_slock
440 * is held, so a thread can't get in to do wakeup() before
441 * we do the switch.
442 *
443 * XXX We leave the code block here, after inserting ourselves
444 * on the sleep queue, because we might want a more clever
445 * data structure for the sleep queues at some point.
446 */
447 if (interlock != NULL)
448 simple_unlock(interlock);
449
450 /*
451 * We put ourselves on the sleep queue and start our timeout
452 * before calling CURSIG, as we could stop there, and a wakeup
453 * or a SIGCONT (or both) could occur while we were stopped.
454 * A SIGCONT would cause us to be marked as SSLEEP
455 * without resuming us, thus we must be ready for sleep
456 * when CURSIG is called. If the wakeup happens while we're
457 * stopped, p->p_wchan will be 0 upon return from CURSIG.
458 */
459 if (catch) {
460 l->l_flag |= L_SINTR;
461 if ((sig = CURSIG(l)) != 0) {
462 if (l->l_wchan != NULL)
463 unsleep(l);
464 l->l_stat = LSONPROC;
465 SCHED_UNLOCK(s);
466 goto resume;
467 }
468 if (l->l_wchan == NULL) {
469 catch = 0;
470 SCHED_UNLOCK(s);
471 goto resume;
472 }
473 } else
474 sig = 0;
475 l->l_stat = LSSLEEP;
476 p->p_nrlwps--;
477 p->p_stats->p_ru.ru_nvcsw++;
478 SCHED_ASSERT_LOCKED();
479 if (l->l_flag & L_SA)
480 sa_switch(l, SA_UPCALL_BLOCKED);
481 else
482 mi_switch(l, NULL);
483
484 #if defined(DDB) && !defined(GPROF)
485 /* handy breakpoint location after process "wakes" */
486 asm(".globl bpendtsleep ; bpendtsleep:");
487 #endif
488
489 SCHED_ASSERT_UNLOCKED();
490 splx(s);
491
492 resume:
493 KDASSERT(l->l_cpu != NULL);
494 KDASSERT(l->l_cpu == curcpu());
495 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
496 p->p_nrlwps++;
497
498 l->l_flag &= ~L_SINTR;
499 if (l->l_flag & L_TIMEOUT) {
500 l->l_flag &= ~L_TIMEOUT;
501 if (sig == 0) {
502 #ifdef KTRACE
503 if (KTRPOINT(p, KTR_CSW))
504 ktrcsw(p, 0, 0);
505 #endif
506 if (relock && interlock != NULL)
507 simple_lock(interlock);
508 return (EWOULDBLOCK);
509 }
510 } else if (timo)
511 callout_stop(&l->l_tsleep_ch);
512 if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
513 #ifdef KTRACE
514 if (KTRPOINT(p, KTR_CSW))
515 ktrcsw(p, 0, 0);
516 #endif
517 if (relock && interlock != NULL)
518 simple_lock(interlock);
519 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
520 return (EINTR);
521 return (ERESTART);
522 }
523 /* XXXNJW this is very much a kluge.
524 * revisit. a better way of preventing looping/hanging syscalls like
525 * wait4() and _lwp_wait() from wedging an exiting process
526 * would be preferred.
527 */
528 if (catch && ((p->p_flag & P_WEXIT) && exiterr))
529 return (EINTR);
530 #ifdef KTRACE
531 if (KTRPOINT(p, KTR_CSW))
532 ktrcsw(p, 0, 0);
533 #endif
534 if (relock && interlock != NULL)
535 simple_lock(interlock);
536 return (0);
537 }
538
539 /*
540 * Implement timeout for tsleep.
541 * If process hasn't been awakened (wchan non-zero),
542 * set timeout flag and undo the sleep. If proc
543 * is stopped, just unsleep so it will remain stopped.
544 */
545 void
546 endtsleep(void *arg)
547 {
548 struct lwp *l;
549 int s;
550
551 l = (struct lwp *)arg;
552 SCHED_LOCK(s);
553 if (l->l_wchan) {
554 if (l->l_stat == LSSLEEP)
555 setrunnable(l);
556 else
557 unsleep(l);
558 l->l_flag |= L_TIMEOUT;
559 }
560 SCHED_UNLOCK(s);
561 }
562
563 /*
564 * Remove a process from its wait queue
565 */
566 void
567 unsleep(struct lwp *l)
568 {
569 struct slpque *qp;
570 struct lwp **hp;
571
572 SCHED_ASSERT_LOCKED();
573
574 if (l->l_wchan) {
575 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
576 while (*hp != l)
577 hp = &(*hp)->l_forw;
578 *hp = l->l_forw;
579 if (qp->sq_tailp == &l->l_forw)
580 qp->sq_tailp = hp;
581 l->l_wchan = 0;
582 }
583 }
584
585 /*
586 * Optimized-for-wakeup() version of setrunnable().
587 */
588 __inline void
589 awaken(struct lwp *l)
590 {
591
592 SCHED_ASSERT_LOCKED();
593
594 if (l->l_slptime > 1)
595 updatepri(l);
596 l->l_slptime = 0;
597 l->l_stat = LSRUN;
598
599 /*
600 * Since curpriority is a user priority, p->p_priority
601 * is always better than curpriority.
602 */
603 if (l->l_flag & L_INMEM) {
604 setrunqueue(l);
605 KASSERT(l->l_cpu != NULL);
606 need_resched(l->l_cpu);
607 } else
608 sched_wakeup(&proc0);
609 }
610
611 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
612 void
613 sched_unlock_idle(void)
614 {
615
616 simple_unlock(&sched_lock);
617 }
618
619 void
620 sched_lock_idle(void)
621 {
622
623 simple_lock(&sched_lock);
624 }
625 #endif /* MULTIPROCESSOR || LOCKDEBUG */
626
627 /*
628 * Make all processes sleeping on the specified identifier runnable.
629 */
630
631 void
632 wakeup(void *ident)
633 {
634 int s;
635
636 SCHED_ASSERT_UNLOCKED();
637
638 SCHED_LOCK(s);
639 sched_wakeup(ident);
640 SCHED_UNLOCK(s);
641 }
642
643 void
644 sched_wakeup(void *ident)
645 {
646 struct slpque *qp;
647 struct lwp *l, **q;
648
649 SCHED_ASSERT_LOCKED();
650
651 qp = SLPQUE(ident);
652 restart:
653 for (q = &qp->sq_head; (l = *q) != NULL; ) {
654 #ifdef DIAGNOSTIC
655 if (l->l_back || (l->l_stat != LSSLEEP &&
656 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
657 panic("wakeup");
658 #endif
659 if (l->l_wchan == ident) {
660 l->l_wchan = 0;
661 *q = l->l_forw;
662 if (qp->sq_tailp == &l->l_forw)
663 qp->sq_tailp = q;
664 if (l->l_stat == LSSLEEP) {
665 awaken(l);
666 goto restart;
667 }
668 } else
669 q = &l->l_forw;
670 }
671 }
672
673 /*
674 * Make the highest priority process first in line on the specified
675 * identifier runnable.
676 */
677 void
678 wakeup_one(void *ident)
679 {
680 struct slpque *qp;
681 struct lwp *l, **q;
682 struct lwp *best_sleepp, **best_sleepq;
683 struct lwp *best_stopp, **best_stopq;
684 int s;
685
686 best_sleepp = best_stopp = NULL;
687 best_sleepq = best_stopq = NULL;
688
689 SCHED_LOCK(s);
690
691 qp = SLPQUE(ident);
692
693 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
694 #ifdef DIAGNOSTIC
695 if (l->l_back || (l->l_stat != LSSLEEP &&
696 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
697 panic("wakeup_one");
698 #endif
699 if (l->l_wchan == ident) {
700 if (l->l_stat == LSSLEEP) {
701 if (best_sleepp == NULL ||
702 l->l_priority < best_sleepp->l_priority) {
703 best_sleepp = l;
704 best_sleepq = q;
705 }
706 } else {
707 if (best_stopp == NULL ||
708 l->l_priority < best_stopp->l_priority) {
709 best_stopp = l;
710 best_stopq = q;
711 }
712 }
713 }
714 }
715
716 /*
717 * Consider any SSLEEP process higher than the highest priority SSTOP
718 * process.
719 */
720 if (best_sleepp != NULL) {
721 l = best_sleepp;
722 q = best_sleepq;
723 } else {
724 l = best_stopp;
725 q = best_stopq;
726 }
727
728 if (l != NULL) {
729 l->l_wchan = NULL;
730 *q = l->l_forw;
731 if (qp->sq_tailp == &l->l_forw)
732 qp->sq_tailp = q;
733 if (l->l_stat == LSSLEEP)
734 awaken(l);
735 }
736 SCHED_UNLOCK(s);
737 }
738
739 /*
740 * General yield call. Puts the current process back on its run queue and
741 * performs a voluntary context switch.
742 */
743 void
744 yield(void)
745 {
746 struct lwp *l = curproc;
747 int s;
748
749 SCHED_LOCK(s);
750 l->l_priority = l->l_usrpri;
751 l->l_stat = LSRUN;
752 setrunqueue(l);
753 l->l_proc->p_stats->p_ru.ru_nvcsw++;
754 mi_switch(l, NULL);
755 SCHED_ASSERT_UNLOCKED();
756 splx(s);
757 }
758
759 /*
760 * General preemption call. Puts the current process back on its run queue
761 * and performs an involuntary context switch. If a process is supplied,
762 * we switch to that process. Otherwise, we use the normal process selection
763 * criteria.
764 */
765
766 void
767 preempt(struct lwp *newl)
768 {
769 struct lwp *l = curproc;
770 int r, s;
771
772 SCHED_LOCK(s);
773 l->l_priority = l->l_usrpri;
774 l->l_stat = LSRUN;
775 setrunqueue(l);
776 l->l_proc->p_stats->p_ru.ru_nivcsw++;
777 r = mi_switch(l, newl);
778 if (r && (l->l_flag & L_SA))
779 sa_upcall(l, SA_UPCALL_PREEMPTED, l, NULL, 0, 0, NULL);
780 SCHED_ASSERT_UNLOCKED();
781 splx(s);
782 }
783
784 /*
785 * The machine independent parts of context switch.
786 * Must be called at splsched() (no higher!) and with
787 * the sched_lock held.
788 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
789 * the next lwp.
790 *
791 * Returns 1 if another process was actually run.
792 */
793 int
794 mi_switch(struct lwp *l, struct lwp *new)
795 {
796 struct schedstate_percpu *spc;
797 struct rlimit *rlim;
798 long s, u;
799 struct timeval tv;
800 #if defined(MULTIPROCESSOR)
801 int hold_count;
802 #endif
803 struct proc *p = l->l_proc;
804 int retval;
805
806 SCHED_ASSERT_LOCKED();
807
808 #if defined(MULTIPROCESSOR)
809 /*
810 * Release the kernel_lock, as we are about to yield the CPU.
811 * The scheduler lock is still held until cpu_switch()
812 * selects a new process and removes it from the run queue.
813 */
814 if (p->p_flag & P_BIGLOCK)
815 hold_count = spinlock_release_all(&kernel_lock);
816 #endif
817
818 KDASSERT(l->l_cpu != NULL);
819 KDASSERT(l->l_cpu == curcpu());
820
821 spc = &l->l_cpu->ci_schedstate;
822
823 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
824 spinlock_switchcheck();
825 #endif
826 #ifdef LOCKDEBUG
827 simple_lock_switchcheck();
828 #endif
829
830 /*
831 * Compute the amount of time during which the current
832 * process was running, and add that to its total so far.
833 */
834 microtime(&tv);
835 u = p->p_rtime.tv_usec +
836 (tv.tv_usec - spc->spc_runtime.tv_usec);
837 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
838 if (u < 0) {
839 u += 1000000;
840 s--;
841 } else if (u >= 1000000) {
842 u -= 1000000;
843 s++;
844 }
845 p->p_rtime.tv_usec = u;
846 p->p_rtime.tv_sec = s;
847
848 /*
849 * Check if the process exceeds its cpu resource allocation.
850 * If over max, kill it. In any case, if it has run for more
851 * than 10 minutes, reduce priority to give others a chance.
852 */
853 rlim = &p->p_rlimit[RLIMIT_CPU];
854 if (s >= rlim->rlim_cur) {
855 /*
856 * XXXSMP: we're inside the scheduler lock perimeter;
857 * use sched_psignal.
858 */
859 if (s >= rlim->rlim_max)
860 sched_psignal(p, SIGKILL);
861 else {
862 sched_psignal(p, SIGXCPU);
863 if (rlim->rlim_cur < rlim->rlim_max)
864 rlim->rlim_cur += 5;
865 }
866 }
867 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
868 p->p_nice == NZERO) {
869 p->p_nice = autoniceval + NZERO;
870 resetpriority(l);
871 }
872
873 /*
874 * Process is about to yield the CPU; clear the appropriate
875 * scheduling flags.
876 */
877 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
878
879 /*
880 * Pick a new current process and switch to it. When we
881 * run again, we'll return back here.
882 */
883 uvmexp.swtch++;
884 if (new == NULL) {
885 retval = cpu_switch(l);
886 } else {
887 cpu_preempt(l, new);
888 retval = 0;
889 }
890
891 /*
892 * Make sure that MD code released the scheduler lock before
893 * resuming us.
894 */
895 SCHED_ASSERT_UNLOCKED();
896
897 /*
898 * We're running again; record our new start time. We might
899 * be running on a new CPU now, so don't use the cache'd
900 * schedstate_percpu pointer.
901 */
902 KDASSERT(l->l_cpu != NULL);
903 KDASSERT(l->l_cpu == curcpu());
904 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
905
906 #if defined(MULTIPROCESSOR)
907 /*
908 * Reacquire the kernel_lock now. We do this after we've
909 * released the scheduler lock to avoid deadlock, and before
910 * we reacquire the interlock.
911 */
912 if (p->p_flag & P_BIGLOCK)
913 spinlock_acquire_count(&kernel_lock, hold_count);
914 #endif
915
916 return retval;
917 }
918
919 /*
920 * Initialize the (doubly-linked) run queues
921 * to be empty.
922 */
923 void
924 rqinit()
925 {
926 int i;
927
928 for (i = 0; i < RUNQUE_NQS; i++)
929 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
930 (struct lwp *)&sched_qs[i];
931 }
932
933 /*
934 * Change process state to be runnable,
935 * placing it on the run queue if it is in memory,
936 * and awakening the swapper if it isn't in memory.
937 */
938 void
939 setrunnable(struct lwp *l)
940 {
941 struct proc *p = l->l_proc;
942
943 SCHED_ASSERT_LOCKED();
944
945 switch (l->l_stat) {
946 case 0:
947 case LSRUN:
948 case LSONPROC:
949 case LSZOMB:
950 case LSDEAD:
951 default:
952 panic("setrunnable");
953 case LSSTOP:
954 /*
955 * If we're being traced (possibly because someone attached us
956 * while we were stopped), check for a signal from the debugger.
957 */
958 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
959 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
960 CHECKSIGS(p);
961 }
962 case LSSLEEP:
963 unsleep(l); /* e.g. when sending signals */
964 break;
965
966 case LSIDL:
967 break;
968 case LSSUSPENDED:
969 break;
970 }
971 l->l_stat = LSRUN;
972 if (l->l_flag & L_INMEM)
973 setrunqueue(l);
974
975 if (l->l_slptime > 1)
976 updatepri(l);
977 l->l_slptime = 0;
978 if ((l->l_flag & L_INMEM) == 0)
979 wakeup((caddr_t)&proc0);
980 else if (l->l_priority < curcpu()->ci_schedstate.spc_curpriority) {
981 /*
982 * XXXSMP
983 * This is not exactly right. Since p->p_cpu persists
984 * across a context switch, this gives us some sort
985 * of processor affinity. But we need to figure out
986 * at what point it's better to reschedule on a different
987 * CPU than the last one.
988 */
989 need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
990 }
991 }
992
993 /*
994 * Compute the priority of a process when running in user mode.
995 * Arrange to reschedule if the resulting priority is better
996 * than that of the current process.
997 */
998 void
999 resetpriority(struct lwp *l)
1000 {
1001 unsigned int newpriority;
1002 struct proc *p = l->l_proc;
1003
1004 SCHED_ASSERT_LOCKED();
1005
1006 newpriority = PUSER + p->p_estcpu +
1007 NICE_WEIGHT * (p->p_nice - NZERO);
1008 newpriority = min(newpriority, MAXPRI);
1009 l->l_usrpri = newpriority;
1010 if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
1011 /*
1012 * XXXSMP
1013 * Same applies as in setrunnable() above.
1014 */
1015 need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
1016 }
1017 }
1018
1019 /*
1020 * Recompute priority for all LWPs in a process.
1021 */
1022 void
1023 resetprocpriority(struct proc *p)
1024 {
1025 struct lwp *l;
1026
1027 LIST_FOREACH(l, &p->p_lwps, l_list)
1028 resetpriority(l);
1029 }
1030
1031 /*
1032 * We adjust the priority of the current process. The priority of a process
1033 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1034 * is increased here. The formula for computing priorities (in kern_synch.c)
1035 * will compute a different value each time p_estcpu increases. This can
1036 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1037 * queue will not change. The cpu usage estimator ramps up quite quickly
1038 * when the process is running (linearly), and decays away exponentially, at
1039 * a rate which is proportionally slower when the system is busy. The basic
1040 * principle is that the system will 90% forget that the process used a lot
1041 * of CPU time in 5 * loadav seconds. This causes the system to favor
1042 * processes which haven't run much recently, and to round-robin among other
1043 * processes.
1044 */
1045
1046 void
1047 schedclock(struct lwp *l)
1048 {
1049 struct proc *p = l->l_proc;
1050 int s;
1051
1052 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1053 SCHED_LOCK(s);
1054 resetpriority(l);
1055 SCHED_UNLOCK(s);
1056
1057 if (l->l_priority >= PUSER)
1058 l->l_priority = l->l_usrpri;
1059 }
1060
1061 void
1062 suspendsched()
1063 {
1064 struct lwp *l;
1065 int s;
1066
1067 /*
1068 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1069 * LSSUSPENDED.
1070 */
1071 proclist_lock_read();
1072 SCHED_LOCK(s);
1073 for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l, l_list)) {
1074 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1075 continue;
1076
1077 switch (l->l_stat) {
1078 case LSRUN:
1079 if ((l->l_flag & L_INMEM) != 0)
1080 remrunqueue(l);
1081 /* FALLTHROUGH */
1082 case LSSLEEP:
1083 l->l_stat = LSSUSPENDED;
1084 break;
1085 case LSONPROC:
1086 /*
1087 * XXX SMP: we need to deal with processes on
1088 * others CPU !
1089 */
1090 break;
1091 default:
1092 break;
1093 }
1094 }
1095 SCHED_UNLOCK(s);
1096 proclist_unlock_read();
1097 }
1098
1099
1100