kern_synch.c revision 1.101.2.7 1 /* $NetBSD: kern_synch.c,v 1.101.2.7 2001/11/14 19:16:38 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.101.2.7 2001/11/14 19:16:38 nathanw Exp $");
82
83 #include "opt_ddb.h"
84 #include "opt_ktrace.h"
85 #include "opt_lockdebug.h"
86 #include "opt_multiprocessor.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/proc.h>
92 #include <sys/lwp.h>
93 #include <sys/kernel.h>
94 #include <sys/buf.h>
95 #include <sys/signalvar.h>
96 #include <sys/resourcevar.h>
97 #include <sys/sched.h>
98 #include <sys/sa.h>
99 #include <sys/savar.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #ifdef KTRACE
104 #include <sys/ktrace.h>
105 #endif
106
107 #include <machine/cpu.h>
108
109 int lbolt; /* once a second sleep address */
110 int rrticks; /* number of hardclock ticks per roundrobin() */
111
112 /*
113 * The global scheduler state.
114 */
115 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
116 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
117 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
118
119 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
120 #if defined(MULTIPROCESSOR)
121 struct lock kernel_lock;
122 #endif
123
124 void schedcpu(void *);
125 void updatepri(struct lwp *);
126 void endtsleep(void *);
127
128 __inline void awaken(struct lwp *);
129
130 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
131
132
133
134 /*
135 * Force switch among equal priority processes every 100ms.
136 * Called from hardclock every hz/10 == rrticks hardclock ticks.
137 */
138 /* ARGSUSED */
139 void
140 roundrobin(struct cpu_info *ci)
141 {
142 struct schedstate_percpu *spc = &ci->ci_schedstate;
143
144 spc->spc_rrticks = rrticks;
145
146 if (curproc != NULL) {
147 if (spc->spc_flags & SPCF_SEENRR) {
148 /*
149 * The process has already been through a roundrobin
150 * without switching and may be hogging the CPU.
151 * Indicate that the process should yield.
152 */
153 spc->spc_flags |= SPCF_SHOULDYIELD;
154 } else
155 spc->spc_flags |= SPCF_SEENRR;
156 }
157 need_resched(curcpu());
158 }
159
160 /*
161 * Constants for digital decay and forget:
162 * 90% of (p_estcpu) usage in 5 * loadav time
163 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
164 * Note that, as ps(1) mentions, this can let percentages
165 * total over 100% (I've seen 137.9% for 3 processes).
166 *
167 * Note that hardclock updates p_estcpu and p_cpticks independently.
168 *
169 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
170 * That is, the system wants to compute a value of decay such
171 * that the following for loop:
172 * for (i = 0; i < (5 * loadavg); i++)
173 * p_estcpu *= decay;
174 * will compute
175 * p_estcpu *= 0.1;
176 * for all values of loadavg:
177 *
178 * Mathematically this loop can be expressed by saying:
179 * decay ** (5 * loadavg) ~= .1
180 *
181 * The system computes decay as:
182 * decay = (2 * loadavg) / (2 * loadavg + 1)
183 *
184 * We wish to prove that the system's computation of decay
185 * will always fulfill the equation:
186 * decay ** (5 * loadavg) ~= .1
187 *
188 * If we compute b as:
189 * b = 2 * loadavg
190 * then
191 * decay = b / (b + 1)
192 *
193 * We now need to prove two things:
194 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
195 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
196 *
197 * Facts:
198 * For x close to zero, exp(x) =~ 1 + x, since
199 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
200 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
201 * For x close to zero, ln(1+x) =~ x, since
202 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
203 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
204 * ln(.1) =~ -2.30
205 *
206 * Proof of (1):
207 * Solve (factor)**(power) =~ .1 given power (5*loadav):
208 * solving for factor,
209 * ln(factor) =~ (-2.30/5*loadav), or
210 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
211 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
212 *
213 * Proof of (2):
214 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
215 * solving for power,
216 * power*ln(b/(b+1)) =~ -2.30, or
217 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
218 *
219 * Actual power values for the implemented algorithm are as follows:
220 * loadav: 1 2 3 4
221 * power: 5.68 10.32 14.94 19.55
222 */
223
224 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
225 #define loadfactor(loadav) (2 * (loadav))
226 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
227
228 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
229 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
230
231 /*
232 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
233 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
234 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
235 *
236 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
237 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
238 *
239 * If you dont want to bother with the faster/more-accurate formula, you
240 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
241 * (more general) method of calculating the %age of CPU used by a process.
242 */
243 #define CCPU_SHIFT 11
244
245 /*
246 * Recompute process priorities, every hz ticks.
247 */
248 /* ARGSUSED */
249 void
250 schedcpu(void *arg)
251 {
252 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
253 struct lwp *l;
254 struct proc *p;
255 int s, s1;
256 unsigned int newcpu;
257 int clkhz;
258
259 proclist_lock_read();
260 for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l,l_list)) {
261 /*
262 * Increment time in/out of memory and sleep time
263 * (if sleeping). We ignore overflow; with 16-bit int's
264 * (remember them?) overflow takes 45 days.
265 */
266 p = l->l_proc;
267 l->l_swtime++;
268 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
269 l->l_stat == LSSUSPENDED)
270 l->l_slptime++;
271 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
272 /*
273 * If the process has slept the entire second,
274 * stop recalculating its priority until it wakes up.
275 */
276 if (l->l_slptime > 1)
277 continue;
278 s = splstatclock(); /* prevent state changes */
279 /*
280 * p_pctcpu is only for ps.
281 */
282 clkhz = stathz != 0 ? stathz : hz;
283 #if (FSHIFT >= CCPU_SHIFT)
284 p->p_pctcpu += (clkhz == 100)?
285 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
286 100 * (((fixpt_t) p->p_cpticks)
287 << (FSHIFT - CCPU_SHIFT)) / clkhz;
288 #else
289 l->l_pctcpu += ((FSCALE - ccpu) *
290 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
291 #endif
292 p->p_cpticks = 0;
293 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
294 p->p_estcpu = newcpu;
295 SCHED_LOCK(s1);
296 resetpriority(l);
297 if (l->l_priority >= PUSER) {
298 if (l->l_stat == LSRUN &&
299 (l->l_flag & L_INMEM) &&
300 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
301 remrunqueue(l);
302 l->l_priority = l->l_usrpri;
303 setrunqueue(l);
304 } else
305 l->l_priority = l->l_usrpri;
306 }
307 SCHED_UNLOCK(s1);
308 splx(s);
309 }
310 proclist_unlock_read();
311 uvm_meter();
312 wakeup((caddr_t)&lbolt);
313 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
314 }
315
316 /*
317 * Recalculate the priority of a process after it has slept for a while.
318 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
319 * least six times the loadfactor will decay p_estcpu to zero.
320 */
321 void
322 updatepri(struct lwp *l)
323 {
324 struct proc *p = l->l_proc;
325 unsigned int newcpu;
326 fixpt_t loadfac;
327
328 SCHED_ASSERT_LOCKED();
329
330 newcpu = p->p_estcpu;
331 loadfac = loadfactor(averunnable.ldavg[0]);
332
333 if (l->l_slptime > 5 * loadfac)
334 p->p_estcpu = 0; /* XXX NJWLWP */
335 else {
336 l->l_slptime--; /* the first time was done in schedcpu */
337 while (newcpu && --l->l_slptime)
338 newcpu = (int) decay_cpu(loadfac, newcpu);
339 p->p_estcpu = newcpu;
340 }
341 resetpriority(l);
342 }
343
344 /*
345 * During autoconfiguration or after a panic, a sleep will simply
346 * lower the priority briefly to allow interrupts, then return.
347 * The priority to be used (safepri) is machine-dependent, thus this
348 * value is initialized and maintained in the machine-dependent layers.
349 * This priority will typically be 0, or the lowest priority
350 * that is safe for use on the interrupt stack; it can be made
351 * higher to block network software interrupts after panics.
352 */
353 int safepri;
354
355 /*
356 * General sleep call. Suspends the current process until a wakeup is
357 * performed on the specified identifier. The process will then be made
358 * runnable with the specified priority. Sleeps at most timo/hz seconds
359 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
360 * before and after sleeping, else signals are not checked. Returns 0 if
361 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
362 * signal needs to be delivered, ERESTART is returned if the current system
363 * call should be restarted if possible, and EINTR is returned if the system
364 * call should be interrupted by the signal (return EINTR).
365 *
366 * The interlock is held until the scheduler_slock is acquired. The
367 * interlock will be locked before returning back to the caller
368 * unless the PNORELOCK flag is specified, in which case the
369 * interlock will always be unlocked upon return.
370 */
371 int
372 ltsleep(void *ident, int priority, const char *wmesg, int timo,
373 __volatile struct simplelock *interlock)
374 {
375 struct lwp *l = curproc;
376 struct proc *p = l->l_proc;
377 struct slpque *qp;
378 int sig, s;
379 int catch = priority & PCATCH;
380 int relock = (priority & PNORELOCK) == 0;
381 int exiterr = (priority & PNOEXITERR) == 0;
382
383 /*
384 * XXXSMP
385 * This is probably bogus. Figure out what the right
386 * thing to do here really is.
387 * Note that not sleeping if ltsleep is called with curproc == NULL
388 * in the shutdown case is disgusting but partly necessary given
389 * how shutdown (barely) works.
390 */
391 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
392 /*
393 * After a panic, or during autoconfiguration,
394 * just give interrupts a chance, then just return;
395 * don't run any other procs or panic below,
396 * in case this is the idle process and already asleep.
397 */
398 s = splhigh();
399 splx(safepri);
400 splx(s);
401 if (interlock != NULL && relock == 0)
402 simple_unlock(interlock);
403 return (0);
404 }
405
406 KASSERT(p != NULL);
407 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
408
409 #ifdef KTRACE
410 if (KTRPOINT(p, KTR_CSW))
411 ktrcsw(p, 1, 0);
412 #endif
413
414 SCHED_LOCK(s);
415
416 #ifdef DIAGNOSTIC
417 if (ident == NULL)
418 panic("ltsleep: ident == NULL");
419 if (l->l_stat != LSONPROC)
420 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
421 if (l->l_back != NULL)
422 panic("ltsleep: p_back != NULL");
423 #endif
424
425 l->l_wchan = ident;
426 l->l_wmesg = wmesg;
427 l->l_slptime = 0;
428 l->l_priority = priority & PRIMASK;
429
430 qp = SLPQUE(ident);
431 if (qp->sq_head == 0)
432 qp->sq_head = l;
433 else {
434 *qp->sq_tailp = l;
435 }
436 *(qp->sq_tailp = &l->l_forw) = 0;
437
438 if (timo)
439 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
440
441 /*
442 * We can now release the interlock; the scheduler_slock
443 * is held, so a thread can't get in to do wakeup() before
444 * we do the switch.
445 *
446 * XXX We leave the code block here, after inserting ourselves
447 * on the sleep queue, because we might want a more clever
448 * data structure for the sleep queues at some point.
449 */
450 if (interlock != NULL)
451 simple_unlock(interlock);
452
453 /*
454 * We put ourselves on the sleep queue and start our timeout
455 * before calling CURSIG, as we could stop there, and a wakeup
456 * or a SIGCONT (or both) could occur while we were stopped.
457 * A SIGCONT would cause us to be marked as SSLEEP
458 * without resuming us, thus we must be ready for sleep
459 * when CURSIG is called. If the wakeup happens while we're
460 * stopped, p->p_wchan will be 0 upon return from CURSIG.
461 */
462 if (catch) {
463 l->l_flag |= L_SINTR;
464 if ((sig = CURSIG(l)) != 0) {
465 if (l->l_wchan != NULL)
466 unsleep(l);
467 l->l_stat = LSONPROC;
468 SCHED_UNLOCK(s);
469 goto resume;
470 }
471 if (l->l_wchan == NULL) {
472 catch = 0;
473 SCHED_UNLOCK(s);
474 goto resume;
475 }
476 } else
477 sig = 0;
478 l->l_stat = LSSLEEP;
479 p->p_nrlwps--;
480 p->p_stats->p_ru.ru_nvcsw++;
481 SCHED_ASSERT_LOCKED();
482 if (l->l_flag & L_SA)
483 sa_switch(l, SA_UPCALL_BLOCKED);
484 else
485 mi_switch(l, NULL);
486
487 #if defined(DDB) && !defined(GPROF)
488 /* handy breakpoint location after process "wakes" */
489 asm(".globl bpendtsleep ; bpendtsleep:");
490 #endif
491
492 SCHED_ASSERT_UNLOCKED();
493 splx(s);
494
495 resume:
496 KDASSERT(l->l_cpu != NULL);
497 KDASSERT(l->l_cpu == curcpu());
498 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
499 p->p_nrlwps++;
500
501 l->l_flag &= ~L_SINTR;
502 if (l->l_flag & L_TIMEOUT) {
503 l->l_flag &= ~L_TIMEOUT;
504 if (sig == 0) {
505 #ifdef KTRACE
506 if (KTRPOINT(p, KTR_CSW))
507 ktrcsw(p, 0, 0);
508 #endif
509 if (relock && interlock != NULL)
510 simple_lock(interlock);
511 return (EWOULDBLOCK);
512 }
513 } else if (timo)
514 callout_stop(&l->l_tsleep_ch);
515 if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
516 #ifdef KTRACE
517 if (KTRPOINT(p, KTR_CSW))
518 ktrcsw(p, 0, 0);
519 #endif
520 if (relock && interlock != NULL)
521 simple_lock(interlock);
522 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
523 return (EINTR);
524 return (ERESTART);
525 }
526 /* XXXNJW this is very much a kluge.
527 * revisit. a better way of preventing looping/hanging syscalls like
528 * wait4() and _lwp_wait() from wedging an exiting process
529 * would be preferred.
530 */
531 if (catch && ((p->p_flag & P_WEXIT) && exiterr))
532 return (EINTR);
533 #ifdef KTRACE
534 if (KTRPOINT(p, KTR_CSW))
535 ktrcsw(p, 0, 0);
536 #endif
537 if (relock && interlock != NULL)
538 simple_lock(interlock);
539 return (0);
540 }
541
542 /*
543 * Implement timeout for tsleep.
544 * If process hasn't been awakened (wchan non-zero),
545 * set timeout flag and undo the sleep. If proc
546 * is stopped, just unsleep so it will remain stopped.
547 */
548 void
549 endtsleep(void *arg)
550 {
551 struct lwp *l;
552 int s;
553
554 l = (struct lwp *)arg;
555 SCHED_LOCK(s);
556 if (l->l_wchan) {
557 if (l->l_stat == LSSLEEP)
558 setrunnable(l);
559 else
560 unsleep(l);
561 l->l_flag |= L_TIMEOUT;
562 }
563 SCHED_UNLOCK(s);
564 }
565
566 /*
567 * Remove a process from its wait queue
568 */
569 void
570 unsleep(struct lwp *l)
571 {
572 struct slpque *qp;
573 struct lwp **hp;
574
575 SCHED_ASSERT_LOCKED();
576
577 if (l->l_wchan) {
578 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
579 while (*hp != l)
580 hp = &(*hp)->l_forw;
581 *hp = l->l_forw;
582 if (qp->sq_tailp == &l->l_forw)
583 qp->sq_tailp = hp;
584 l->l_wchan = 0;
585 }
586 }
587
588 /*
589 * Optimized-for-wakeup() version of setrunnable().
590 */
591 __inline void
592 awaken(struct lwp *l)
593 {
594
595 SCHED_ASSERT_LOCKED();
596
597 if (l->l_slptime > 1)
598 updatepri(l);
599 l->l_slptime = 0;
600 l->l_stat = LSRUN;
601
602 /*
603 * Since curpriority is a user priority, p->p_priority
604 * is always better than curpriority.
605 */
606 if (l->l_flag & L_INMEM) {
607 setrunqueue(l);
608 KASSERT(l->l_cpu != NULL);
609 need_resched(l->l_cpu);
610 } else
611 sched_wakeup(&proc0);
612 }
613
614 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
615 void
616 sched_unlock_idle(void)
617 {
618
619 simple_unlock(&sched_lock);
620 }
621
622 void
623 sched_lock_idle(void)
624 {
625
626 simple_lock(&sched_lock);
627 }
628 #endif /* MULTIPROCESSOR || LOCKDEBUG */
629
630 /*
631 * Make all processes sleeping on the specified identifier runnable.
632 */
633
634 void
635 wakeup(void *ident)
636 {
637 int s;
638
639 SCHED_ASSERT_UNLOCKED();
640
641 SCHED_LOCK(s);
642 sched_wakeup(ident);
643 SCHED_UNLOCK(s);
644 }
645
646 void
647 sched_wakeup(void *ident)
648 {
649 struct slpque *qp;
650 struct lwp *l, **q;
651
652 SCHED_ASSERT_LOCKED();
653
654 qp = SLPQUE(ident);
655 restart:
656 for (q = &qp->sq_head; (l = *q) != NULL; ) {
657 #ifdef DIAGNOSTIC
658 if (l->l_back || (l->l_stat != LSSLEEP &&
659 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
660 panic("wakeup");
661 #endif
662 if (l->l_wchan == ident) {
663 l->l_wchan = 0;
664 *q = l->l_forw;
665 if (qp->sq_tailp == &l->l_forw)
666 qp->sq_tailp = q;
667 if (l->l_stat == LSSLEEP) {
668 awaken(l);
669 goto restart;
670 }
671 } else
672 q = &l->l_forw;
673 }
674 }
675
676 /*
677 * Make the highest priority process first in line on the specified
678 * identifier runnable.
679 */
680 void
681 wakeup_one(void *ident)
682 {
683 struct slpque *qp;
684 struct lwp *l, **q;
685 struct lwp *best_sleepp, **best_sleepq;
686 struct lwp *best_stopp, **best_stopq;
687 int s;
688
689 best_sleepp = best_stopp = NULL;
690 best_sleepq = best_stopq = NULL;
691
692 SCHED_LOCK(s);
693
694 qp = SLPQUE(ident);
695
696 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
697 #ifdef DIAGNOSTIC
698 if (l->l_back || (l->l_stat != LSSLEEP &&
699 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
700 panic("wakeup_one");
701 #endif
702 if (l->l_wchan == ident) {
703 if (l->l_stat == LSSLEEP) {
704 if (best_sleepp == NULL ||
705 l->l_priority < best_sleepp->l_priority) {
706 best_sleepp = l;
707 best_sleepq = q;
708 }
709 } else {
710 if (best_stopp == NULL ||
711 l->l_priority < best_stopp->l_priority) {
712 best_stopp = l;
713 best_stopq = q;
714 }
715 }
716 }
717 }
718
719 /*
720 * Consider any SSLEEP process higher than the highest priority SSTOP
721 * process.
722 */
723 if (best_sleepp != NULL) {
724 l = best_sleepp;
725 q = best_sleepq;
726 } else {
727 l = best_stopp;
728 q = best_stopq;
729 }
730
731 if (l != NULL) {
732 l->l_wchan = NULL;
733 *q = l->l_forw;
734 if (qp->sq_tailp == &l->l_forw)
735 qp->sq_tailp = q;
736 if (l->l_stat == LSSLEEP)
737 awaken(l);
738 }
739 SCHED_UNLOCK(s);
740 }
741
742 /*
743 * General yield call. Puts the current process back on its run queue and
744 * performs a voluntary context switch.
745 */
746 void
747 yield(void)
748 {
749 struct lwp *l = curproc;
750 int s;
751
752 SCHED_LOCK(s);
753 l->l_priority = l->l_usrpri;
754 l->l_stat = LSRUN;
755 setrunqueue(l);
756 l->l_proc->p_stats->p_ru.ru_nvcsw++;
757 mi_switch(l, NULL);
758 SCHED_ASSERT_UNLOCKED();
759 splx(s);
760 }
761
762 /*
763 * General preemption call. Puts the current process back on its run queue
764 * and performs an involuntary context switch. If a process is supplied,
765 * we switch to that process. Otherwise, we use the normal process selection
766 * criteria.
767 */
768
769 void
770 preempt(struct lwp *newl)
771 {
772 struct lwp *l = curproc;
773 int r, s;
774
775 SCHED_LOCK(s);
776 l->l_priority = l->l_usrpri;
777 l->l_stat = LSRUN;
778 setrunqueue(l);
779 l->l_proc->p_stats->p_ru.ru_nivcsw++;
780 r = mi_switch(l, newl);
781 if (r && (l->l_flag & L_SA))
782 sa_upcall(l, SA_UPCALL_PREEMPTED, l, NULL, 0, 0, NULL);
783 SCHED_ASSERT_UNLOCKED();
784 splx(s);
785 }
786
787 /*
788 * The machine independent parts of context switch.
789 * Must be called at splsched() (no higher!) and with
790 * the sched_lock held.
791 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
792 * the next lwp.
793 *
794 * Returns 1 if another process was actually run.
795 */
796 int
797 mi_switch(struct lwp *l, struct lwp *new)
798 {
799 struct schedstate_percpu *spc;
800 struct rlimit *rlim;
801 long s, u;
802 struct timeval tv;
803 #if defined(MULTIPROCESSOR)
804 int hold_count;
805 #endif
806 struct proc *p = l->l_proc;
807 int retval;
808
809 SCHED_ASSERT_LOCKED();
810
811 #if defined(MULTIPROCESSOR)
812 /*
813 * Release the kernel_lock, as we are about to yield the CPU.
814 * The scheduler lock is still held until cpu_switch()
815 * selects a new process and removes it from the run queue.
816 */
817 if (p->p_flag & P_BIGLOCK)
818 hold_count = spinlock_release_all(&kernel_lock);
819 #endif
820
821 KDASSERT(l->l_cpu != NULL);
822 KDASSERT(l->l_cpu == curcpu());
823
824 spc = &l->l_cpu->ci_schedstate;
825
826 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
827 spinlock_switchcheck();
828 #endif
829 #ifdef LOCKDEBUG
830 simple_lock_switchcheck();
831 #endif
832
833 /*
834 * Compute the amount of time during which the current
835 * process was running, and add that to its total so far.
836 */
837 microtime(&tv);
838 u = p->p_rtime.tv_usec +
839 (tv.tv_usec - spc->spc_runtime.tv_usec);
840 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
841 if (u < 0) {
842 u += 1000000;
843 s--;
844 } else if (u >= 1000000) {
845 u -= 1000000;
846 s++;
847 }
848 p->p_rtime.tv_usec = u;
849 p->p_rtime.tv_sec = s;
850
851 /*
852 * Check if the process exceeds its cpu resource allocation.
853 * If over max, kill it. In any case, if it has run for more
854 * than 10 minutes, reduce priority to give others a chance.
855 */
856 rlim = &p->p_rlimit[RLIMIT_CPU];
857 if (s >= rlim->rlim_cur) {
858 /*
859 * XXXSMP: we're inside the scheduler lock perimeter;
860 * use sched_psignal.
861 */
862 if (s >= rlim->rlim_max)
863 sched_psignal(p, SIGKILL);
864 else {
865 sched_psignal(p, SIGXCPU);
866 if (rlim->rlim_cur < rlim->rlim_max)
867 rlim->rlim_cur += 5;
868 }
869 }
870 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
871 p->p_nice == NZERO) {
872 p->p_nice = autoniceval + NZERO;
873 resetpriority(l);
874 }
875
876 /*
877 * Process is about to yield the CPU; clear the appropriate
878 * scheduling flags.
879 */
880 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
881
882 /*
883 * Pick a new current process and switch to it. When we
884 * run again, we'll return back here.
885 */
886 uvmexp.swtch++;
887 if (new == NULL) {
888 retval = cpu_switch(l);
889 } else {
890 cpu_preempt(l, new);
891 retval = 0;
892 }
893
894 /*
895 * Make sure that MD code released the scheduler lock before
896 * resuming us.
897 */
898 SCHED_ASSERT_UNLOCKED();
899
900 /*
901 * We're running again; record our new start time. We might
902 * be running on a new CPU now, so don't use the cache'd
903 * schedstate_percpu pointer.
904 */
905 KDASSERT(l->l_cpu != NULL);
906 KDASSERT(l->l_cpu == curcpu());
907 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
908
909 #if defined(MULTIPROCESSOR)
910 /*
911 * Reacquire the kernel_lock now. We do this after we've
912 * released the scheduler lock to avoid deadlock, and before
913 * we reacquire the interlock.
914 */
915 if (p->p_flag & P_BIGLOCK)
916 spinlock_acquire_count(&kernel_lock, hold_count);
917 #endif
918
919 return retval;
920 }
921
922 /*
923 * Initialize the (doubly-linked) run queues
924 * to be empty.
925 */
926 void
927 rqinit()
928 {
929 int i;
930
931 for (i = 0; i < RUNQUE_NQS; i++)
932 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
933 (struct lwp *)&sched_qs[i];
934 }
935
936 /*
937 * Change process state to be runnable,
938 * placing it on the run queue if it is in memory,
939 * and awakening the swapper if it isn't in memory.
940 */
941 void
942 setrunnable(struct lwp *l)
943 {
944 struct proc *p = l->l_proc;
945
946 SCHED_ASSERT_LOCKED();
947
948 switch (l->l_stat) {
949 case 0:
950 case LSRUN:
951 case LSONPROC:
952 case LSZOMB:
953 case LSDEAD:
954 default:
955 panic("setrunnable");
956 case LSSTOP:
957 /*
958 * If we're being traced (possibly because someone attached us
959 * while we were stopped), check for a signal from the debugger.
960 */
961 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
962 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
963 CHECKSIGS(p);
964 }
965 case LSSLEEP:
966 unsleep(l); /* e.g. when sending signals */
967 break;
968
969 case LSIDL:
970 break;
971 case LSSUSPENDED:
972 break;
973 }
974 l->l_stat = LSRUN;
975 if (l->l_flag & L_INMEM)
976 setrunqueue(l);
977
978 if (l->l_slptime > 1)
979 updatepri(l);
980 l->l_slptime = 0;
981 if ((l->l_flag & L_INMEM) == 0)
982 wakeup((caddr_t)&proc0);
983 else if (l->l_priority < curcpu()->ci_schedstate.spc_curpriority) {
984 /*
985 * XXXSMP
986 * This is not exactly right. Since p->p_cpu persists
987 * across a context switch, this gives us some sort
988 * of processor affinity. But we need to figure out
989 * at what point it's better to reschedule on a different
990 * CPU than the last one.
991 */
992 need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
993 }
994 }
995
996 /*
997 * Compute the priority of a process when running in user mode.
998 * Arrange to reschedule if the resulting priority is better
999 * than that of the current process.
1000 */
1001 void
1002 resetpriority(struct lwp *l)
1003 {
1004 unsigned int newpriority;
1005 struct proc *p = l->l_proc;
1006
1007 SCHED_ASSERT_LOCKED();
1008
1009 newpriority = PUSER + p->p_estcpu +
1010 NICE_WEIGHT * (p->p_nice - NZERO);
1011 newpriority = min(newpriority, MAXPRI);
1012 l->l_usrpri = newpriority;
1013 if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
1014 /*
1015 * XXXSMP
1016 * Same applies as in setrunnable() above.
1017 */
1018 need_resched((l->l_cpu != NULL) ? l->l_cpu : curcpu());
1019 }
1020 }
1021
1022 /*
1023 * Recompute priority for all LWPs in a process.
1024 */
1025 void
1026 resetprocpriority(struct proc *p)
1027 {
1028 struct lwp *l;
1029
1030 LIST_FOREACH(l, &p->p_lwps, l_list)
1031 resetpriority(l);
1032 }
1033
1034 /*
1035 * We adjust the priority of the current process. The priority of a process
1036 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1037 * is increased here. The formula for computing priorities (in kern_synch.c)
1038 * will compute a different value each time p_estcpu increases. This can
1039 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1040 * queue will not change. The cpu usage estimator ramps up quite quickly
1041 * when the process is running (linearly), and decays away exponentially, at
1042 * a rate which is proportionally slower when the system is busy. The basic
1043 * principle is that the system will 90% forget that the process used a lot
1044 * of CPU time in 5 * loadav seconds. This causes the system to favor
1045 * processes which haven't run much recently, and to round-robin among other
1046 * processes.
1047 */
1048
1049 void
1050 schedclock(struct lwp *l)
1051 {
1052 struct proc *p = l->l_proc;
1053 int s;
1054
1055 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1056 SCHED_LOCK(s);
1057 resetpriority(l);
1058 SCHED_UNLOCK(s);
1059
1060 if (l->l_priority >= PUSER)
1061 l->l_priority = l->l_usrpri;
1062 }
1063
1064 void
1065 suspendsched()
1066 {
1067 struct lwp *l;
1068 int s;
1069
1070 /*
1071 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1072 * LSSUSPENDED.
1073 */
1074 proclist_lock_read();
1075 SCHED_LOCK(s);
1076 for (l = LIST_FIRST(&alllwp); l != NULL; l = LIST_NEXT(l, l_list)) {
1077 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1078 continue;
1079
1080 switch (l->l_stat) {
1081 case LSRUN:
1082 if ((l->l_flag & L_INMEM) != 0)
1083 remrunqueue(l);
1084 /* FALLTHROUGH */
1085 case LSSLEEP:
1086 l->l_stat = LSSUSPENDED;
1087 break;
1088 case LSONPROC:
1089 /*
1090 * XXX SMP: we need to deal with processes on
1091 * others CPU !
1092 */
1093 break;
1094 default:
1095 break;
1096 }
1097 }
1098 SCHED_UNLOCK(s);
1099 proclist_unlock_read();
1100 }
1101
1102
1103