kern_synch.c revision 1.102 1 /* $NetBSD: kern_synch.c,v 1.102 2001/04/20 17:58:49 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include "opt_ddb.h"
81 #include "opt_ktrace.h"
82 #include "opt_lockdebug.h"
83 #include "opt_multiprocessor.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/callout.h>
88 #include <sys/proc.h>
89 #include <sys/kernel.h>
90 #include <sys/buf.h>
91 #include <sys/signalvar.h>
92 #include <sys/resourcevar.h>
93 #include <sys/sched.h>
94
95 #include <uvm/uvm_extern.h>
96
97 #ifdef KTRACE
98 #include <sys/ktrace.h>
99 #endif
100
101 #include <machine/cpu.h>
102
103 int lbolt; /* once a second sleep address */
104 int rrticks; /* number of hardclock ticks per roundrobin() */
105
106 /*
107 * The global scheduler state.
108 */
109 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
110 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
111 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
112
113 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
114 #if defined(MULTIPROCESSOR)
115 struct lock kernel_lock;
116 #endif
117
118 void schedcpu(void *);
119 void updatepri(struct proc *);
120 void endtsleep(void *);
121
122 __inline void awaken(struct proc *);
123
124 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
125
126 /*
127 * Force switch among equal priority processes every 100ms.
128 * Called from hardclock every hz/10 == rrticks hardclock ticks.
129 */
130 /* ARGSUSED */
131 void
132 roundrobin(struct cpu_info *ci)
133 {
134 struct schedstate_percpu *spc = &ci->ci_schedstate;
135
136 spc->spc_rrticks = rrticks;
137
138 if (curproc != NULL) {
139 if (spc->spc_flags & SPCF_SEENRR) {
140 /*
141 * The process has already been through a roundrobin
142 * without switching and may be hogging the CPU.
143 * Indicate that the process should yield.
144 */
145 spc->spc_flags |= SPCF_SHOULDYIELD;
146 } else
147 spc->spc_flags |= SPCF_SEENRR;
148 }
149 need_resched(curcpu());
150 }
151
152 /*
153 * Constants for digital decay and forget:
154 * 90% of (p_estcpu) usage in 5 * loadav time
155 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
156 * Note that, as ps(1) mentions, this can let percentages
157 * total over 100% (I've seen 137.9% for 3 processes).
158 *
159 * Note that hardclock updates p_estcpu and p_cpticks independently.
160 *
161 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
162 * That is, the system wants to compute a value of decay such
163 * that the following for loop:
164 * for (i = 0; i < (5 * loadavg); i++)
165 * p_estcpu *= decay;
166 * will compute
167 * p_estcpu *= 0.1;
168 * for all values of loadavg:
169 *
170 * Mathematically this loop can be expressed by saying:
171 * decay ** (5 * loadavg) ~= .1
172 *
173 * The system computes decay as:
174 * decay = (2 * loadavg) / (2 * loadavg + 1)
175 *
176 * We wish to prove that the system's computation of decay
177 * will always fulfill the equation:
178 * decay ** (5 * loadavg) ~= .1
179 *
180 * If we compute b as:
181 * b = 2 * loadavg
182 * then
183 * decay = b / (b + 1)
184 *
185 * We now need to prove two things:
186 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
187 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
188 *
189 * Facts:
190 * For x close to zero, exp(x) =~ 1 + x, since
191 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
192 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
193 * For x close to zero, ln(1+x) =~ x, since
194 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
195 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
196 * ln(.1) =~ -2.30
197 *
198 * Proof of (1):
199 * Solve (factor)**(power) =~ .1 given power (5*loadav):
200 * solving for factor,
201 * ln(factor) =~ (-2.30/5*loadav), or
202 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
203 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
204 *
205 * Proof of (2):
206 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
207 * solving for power,
208 * power*ln(b/(b+1)) =~ -2.30, or
209 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
210 *
211 * Actual power values for the implemented algorithm are as follows:
212 * loadav: 1 2 3 4
213 * power: 5.68 10.32 14.94 19.55
214 */
215
216 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
217 #define loadfactor(loadav) (2 * (loadav))
218 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
219
220 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
221 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
222
223 /*
224 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
225 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
226 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
227 *
228 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
229 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
230 *
231 * If you dont want to bother with the faster/more-accurate formula, you
232 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
233 * (more general) method of calculating the %age of CPU used by a process.
234 */
235 #define CCPU_SHIFT 11
236
237 /*
238 * Recompute process priorities, every hz ticks.
239 */
240 /* ARGSUSED */
241 void
242 schedcpu(void *arg)
243 {
244 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
245 struct proc *p;
246 int s, s1;
247 unsigned int newcpu;
248 int clkhz;
249
250 proclist_lock_read();
251 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
252 /*
253 * Increment time in/out of memory and sleep time
254 * (if sleeping). We ignore overflow; with 16-bit int's
255 * (remember them?) overflow takes 45 days.
256 */
257 p->p_swtime++;
258 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
259 p->p_slptime++;
260 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
261 /*
262 * If the process has slept the entire second,
263 * stop recalculating its priority until it wakes up.
264 */
265 if (p->p_slptime > 1)
266 continue;
267 s = splstatclock(); /* prevent state changes */
268 /*
269 * p_pctcpu is only for ps.
270 */
271 clkhz = stathz != 0 ? stathz : hz;
272 #if (FSHIFT >= CCPU_SHIFT)
273 p->p_pctcpu += (clkhz == 100)?
274 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
275 100 * (((fixpt_t) p->p_cpticks)
276 << (FSHIFT - CCPU_SHIFT)) / clkhz;
277 #else
278 p->p_pctcpu += ((FSCALE - ccpu) *
279 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
280 #endif
281 p->p_cpticks = 0;
282 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
283 p->p_estcpu = newcpu;
284 SCHED_LOCK(s1);
285 resetpriority(p);
286 if (p->p_priority >= PUSER) {
287 if (p->p_stat == SRUN &&
288 (p->p_flag & P_INMEM) &&
289 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
290 remrunqueue(p);
291 p->p_priority = p->p_usrpri;
292 setrunqueue(p);
293 } else
294 p->p_priority = p->p_usrpri;
295 }
296 SCHED_UNLOCK(s1);
297 splx(s);
298 }
299 proclist_unlock_read();
300 uvm_meter();
301 wakeup((caddr_t)&lbolt);
302 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
303 }
304
305 /*
306 * Recalculate the priority of a process after it has slept for a while.
307 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
308 * least six times the loadfactor will decay p_estcpu to zero.
309 */
310 void
311 updatepri(struct proc *p)
312 {
313 unsigned int newcpu;
314 fixpt_t loadfac;
315
316 SCHED_ASSERT_LOCKED();
317
318 newcpu = p->p_estcpu;
319 loadfac = loadfactor(averunnable.ldavg[0]);
320
321 if (p->p_slptime > 5 * loadfac)
322 p->p_estcpu = 0;
323 else {
324 p->p_slptime--; /* the first time was done in schedcpu */
325 while (newcpu && --p->p_slptime)
326 newcpu = (int) decay_cpu(loadfac, newcpu);
327 p->p_estcpu = newcpu;
328 }
329 resetpriority(p);
330 }
331
332 /*
333 * During autoconfiguration or after a panic, a sleep will simply
334 * lower the priority briefly to allow interrupts, then return.
335 * The priority to be used (safepri) is machine-dependent, thus this
336 * value is initialized and maintained in the machine-dependent layers.
337 * This priority will typically be 0, or the lowest priority
338 * that is safe for use on the interrupt stack; it can be made
339 * higher to block network software interrupts after panics.
340 */
341 int safepri;
342
343 /*
344 * General sleep call. Suspends the current process until a wakeup is
345 * performed on the specified identifier. The process will then be made
346 * runnable with the specified priority. Sleeps at most timo/hz seconds
347 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
348 * before and after sleeping, else signals are not checked. Returns 0 if
349 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
350 * signal needs to be delivered, ERESTART is returned if the current system
351 * call should be restarted if possible, and EINTR is returned if the system
352 * call should be interrupted by the signal (return EINTR).
353 *
354 * The interlock is held until the scheduler_slock is held. The
355 * interlock will be locked before returning back to the caller
356 * unless the PNORELOCK flag is specified, in which case the
357 * interlock will always be unlocked upon return.
358 */
359 int
360 ltsleep(void *ident, int priority, const char *wmesg, int timo,
361 __volatile struct simplelock *interlock)
362 {
363 struct proc *p = curproc;
364 struct slpque *qp;
365 int sig, s;
366 int catch = priority & PCATCH;
367 int relock = (priority & PNORELOCK) == 0;
368
369 /*
370 * XXXSMP
371 * This is probably bogus. Figure out what the right
372 * thing to do here really is.
373 * Note that not sleeping if ltsleep is called with curproc == NULL
374 * in the shutdown case is disgusting but partly necessary given
375 * how shutdown (barely) works.
376 */
377 if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
378 /*
379 * After a panic, or during autoconfiguration,
380 * just give interrupts a chance, then just return;
381 * don't run any other procs or panic below,
382 * in case this is the idle process and already asleep.
383 */
384 s = splhigh();
385 splx(safepri);
386 splx(s);
387 if (interlock != NULL && relock == 0)
388 simple_unlock(interlock);
389 return (0);
390 }
391
392 KASSERT(p != NULL);
393
394 #ifdef KTRACE
395 if (KTRPOINT(p, KTR_CSW))
396 ktrcsw(p, 1, 0);
397 #endif
398
399 SCHED_LOCK(s);
400
401 #ifdef DIAGNOSTIC
402 if (ident == NULL)
403 panic("ltsleep: ident == NULL");
404 if (p->p_stat != SONPROC)
405 panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
406 if (p->p_back != NULL)
407 panic("ltsleep: p_back != NULL");
408 #endif
409
410 p->p_wchan = ident;
411 p->p_wmesg = wmesg;
412 p->p_slptime = 0;
413 p->p_priority = priority & PRIMASK;
414
415 qp = SLPQUE(ident);
416 if (qp->sq_head == 0)
417 qp->sq_head = p;
418 else
419 *qp->sq_tailp = p;
420 *(qp->sq_tailp = &p->p_forw) = 0;
421
422 if (timo)
423 callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
424
425 /*
426 * We can now release the interlock; the scheduler_slock
427 * is held, so a thread can't get in to do wakeup() before
428 * we do the switch.
429 *
430 * XXX We leave the code block here, after inserting ourselves
431 * on the sleep queue, because we might want a more clever
432 * data structure for the sleep queues at some point.
433 */
434 if (interlock != NULL)
435 simple_unlock(interlock);
436
437 /*
438 * We put ourselves on the sleep queue and start our timeout
439 * before calling CURSIG, as we could stop there, and a wakeup
440 * or a SIGCONT (or both) could occur while we were stopped.
441 * A SIGCONT would cause us to be marked as SSLEEP
442 * without resuming us, thus we must be ready for sleep
443 * when CURSIG is called. If the wakeup happens while we're
444 * stopped, p->p_wchan will be 0 upon return from CURSIG.
445 */
446 if (catch) {
447 p->p_flag |= P_SINTR;
448 if ((sig = CURSIG(p)) != 0) {
449 if (p->p_wchan != NULL)
450 unsleep(p);
451 p->p_stat = SONPROC;
452 SCHED_UNLOCK(s);
453 goto resume;
454 }
455 if (p->p_wchan == NULL) {
456 catch = 0;
457 SCHED_UNLOCK(s);
458 goto resume;
459 }
460 } else
461 sig = 0;
462 p->p_stat = SSLEEP;
463 p->p_stats->p_ru.ru_nvcsw++;
464
465 SCHED_ASSERT_LOCKED();
466 mi_switch(p);
467
468 #ifdef DDB
469 /* handy breakpoint location after process "wakes" */
470 asm(".globl bpendtsleep ; bpendtsleep:");
471 #endif
472
473 SCHED_ASSERT_UNLOCKED();
474 splx(s);
475
476 resume:
477 KDASSERT(p->p_cpu != NULL);
478 KDASSERT(p->p_cpu == curcpu());
479 p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
480
481 p->p_flag &= ~P_SINTR;
482 if (p->p_flag & P_TIMEOUT) {
483 p->p_flag &= ~P_TIMEOUT;
484 if (sig == 0) {
485 #ifdef KTRACE
486 if (KTRPOINT(p, KTR_CSW))
487 ktrcsw(p, 0, 0);
488 #endif
489 if (relock && interlock != NULL)
490 simple_lock(interlock);
491 return (EWOULDBLOCK);
492 }
493 } else if (timo)
494 callout_stop(&p->p_tsleep_ch);
495 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
496 #ifdef KTRACE
497 if (KTRPOINT(p, KTR_CSW))
498 ktrcsw(p, 0, 0);
499 #endif
500 if (relock && interlock != NULL)
501 simple_lock(interlock);
502 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
503 return (EINTR);
504 return (ERESTART);
505 }
506 #ifdef KTRACE
507 if (KTRPOINT(p, KTR_CSW))
508 ktrcsw(p, 0, 0);
509 #endif
510 if (relock && interlock != NULL)
511 simple_lock(interlock);
512 return (0);
513 }
514
515 /*
516 * Implement timeout for tsleep.
517 * If process hasn't been awakened (wchan non-zero),
518 * set timeout flag and undo the sleep. If proc
519 * is stopped, just unsleep so it will remain stopped.
520 */
521 void
522 endtsleep(void *arg)
523 {
524 struct proc *p;
525 int s;
526
527 p = (struct proc *)arg;
528
529 SCHED_LOCK(s);
530 if (p->p_wchan) {
531 if (p->p_stat == SSLEEP)
532 setrunnable(p);
533 else
534 unsleep(p);
535 p->p_flag |= P_TIMEOUT;
536 }
537 SCHED_UNLOCK(s);
538 }
539
540 /*
541 * Remove a process from its wait queue
542 */
543 void
544 unsleep(struct proc *p)
545 {
546 struct slpque *qp;
547 struct proc **hp;
548
549 SCHED_ASSERT_LOCKED();
550
551 if (p->p_wchan) {
552 hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
553 while (*hp != p)
554 hp = &(*hp)->p_forw;
555 *hp = p->p_forw;
556 if (qp->sq_tailp == &p->p_forw)
557 qp->sq_tailp = hp;
558 p->p_wchan = 0;
559 }
560 }
561
562 /*
563 * Optimized-for-wakeup() version of setrunnable().
564 */
565 __inline void
566 awaken(struct proc *p)
567 {
568
569 SCHED_ASSERT_LOCKED();
570
571 if (p->p_slptime > 1)
572 updatepri(p);
573 p->p_slptime = 0;
574 p->p_stat = SRUN;
575
576 /*
577 * Since curpriority is a user priority, p->p_priority
578 * is always better than curpriority.
579 */
580 if (p->p_flag & P_INMEM) {
581 setrunqueue(p);
582 KASSERT(p->p_cpu != NULL);
583 need_resched(p->p_cpu);
584 } else
585 sched_wakeup(&proc0);
586 }
587
588 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
589 void
590 sched_unlock_idle(void)
591 {
592
593 simple_unlock(&sched_lock);
594 }
595
596 void
597 sched_lock_idle(void)
598 {
599
600 simple_lock(&sched_lock);
601 }
602 #endif /* MULTIPROCESSOR || LOCKDEBUG */
603
604 /*
605 * Make all processes sleeping on the specified identifier runnable.
606 */
607
608 void
609 wakeup(void *ident)
610 {
611 int s;
612
613 SCHED_ASSERT_UNLOCKED();
614
615 SCHED_LOCK(s);
616 sched_wakeup(ident);
617 SCHED_UNLOCK(s);
618 }
619
620 void
621 sched_wakeup(void *ident)
622 {
623 struct slpque *qp;
624 struct proc *p, **q;
625
626 SCHED_ASSERT_LOCKED();
627
628 qp = SLPQUE(ident);
629 restart:
630 for (q = &qp->sq_head; (p = *q) != NULL; ) {
631 #ifdef DIAGNOSTIC
632 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
633 panic("wakeup");
634 #endif
635 if (p->p_wchan == ident) {
636 p->p_wchan = 0;
637 *q = p->p_forw;
638 if (qp->sq_tailp == &p->p_forw)
639 qp->sq_tailp = q;
640 if (p->p_stat == SSLEEP) {
641 awaken(p);
642 goto restart;
643 }
644 } else
645 q = &p->p_forw;
646 }
647 }
648
649 /*
650 * Make the highest priority process first in line on the specified
651 * identifier runnable.
652 */
653 void
654 wakeup_one(void *ident)
655 {
656 struct slpque *qp;
657 struct proc *p, **q;
658 struct proc *best_sleepp, **best_sleepq;
659 struct proc *best_stopp, **best_stopq;
660 int s;
661
662 best_sleepp = best_stopp = NULL;
663 best_sleepq = best_stopq = NULL;
664
665 SCHED_LOCK(s);
666
667 qp = SLPQUE(ident);
668
669 for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
670 #ifdef DIAGNOSTIC
671 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
672 panic("wakeup_one");
673 #endif
674 if (p->p_wchan == ident) {
675 if (p->p_stat == SSLEEP) {
676 if (best_sleepp == NULL ||
677 p->p_priority < best_sleepp->p_priority) {
678 best_sleepp = p;
679 best_sleepq = q;
680 }
681 } else {
682 if (best_stopp == NULL ||
683 p->p_priority < best_stopp->p_priority) {
684 best_stopp = p;
685 best_stopq = q;
686 }
687 }
688 }
689 }
690
691 /*
692 * Consider any SSLEEP process higher than the highest priority SSTOP
693 * process.
694 */
695 if (best_sleepp != NULL) {
696 p = best_sleepp;
697 q = best_sleepq;
698 } else {
699 p = best_stopp;
700 q = best_stopq;
701 }
702
703 if (p != NULL) {
704 p->p_wchan = NULL;
705 *q = p->p_forw;
706 if (qp->sq_tailp == &p->p_forw)
707 qp->sq_tailp = q;
708 if (p->p_stat == SSLEEP)
709 awaken(p);
710 }
711 SCHED_UNLOCK(s);
712 }
713
714 /*
715 * General yield call. Puts the current process back on its run queue and
716 * performs a voluntary context switch.
717 */
718 void
719 yield(void)
720 {
721 struct proc *p = curproc;
722 int s;
723
724 SCHED_LOCK(s);
725 p->p_priority = p->p_usrpri;
726 p->p_stat = SRUN;
727 setrunqueue(p);
728 p->p_stats->p_ru.ru_nvcsw++;
729 mi_switch(p);
730 SCHED_ASSERT_UNLOCKED();
731 splx(s);
732 }
733
734 /*
735 * General preemption call. Puts the current process back on its run queue
736 * and performs an involuntary context switch. If a process is supplied,
737 * we switch to that process. Otherwise, we use the normal process selection
738 * criteria.
739 */
740 void
741 preempt(struct proc *newp)
742 {
743 struct proc *p = curproc;
744 int s;
745
746 /*
747 * XXX Switching to a specific process is not supported yet.
748 */
749 if (newp != NULL)
750 panic("preempt: cpu_preempt not yet implemented");
751
752 SCHED_LOCK(s);
753 p->p_priority = p->p_usrpri;
754 p->p_stat = SRUN;
755 setrunqueue(p);
756 p->p_stats->p_ru.ru_nivcsw++;
757 mi_switch(p);
758 SCHED_ASSERT_UNLOCKED();
759 splx(s);
760 }
761
762 /*
763 * The machine independent parts of context switch.
764 * Must be called at splsched() (no higher!) and with
765 * the sched_lock held.
766 */
767 void
768 mi_switch(struct proc *p)
769 {
770 struct schedstate_percpu *spc;
771 struct rlimit *rlim;
772 long s, u;
773 struct timeval tv;
774 #if defined(MULTIPROCESSOR)
775 int hold_count;
776 #endif
777
778 SCHED_ASSERT_LOCKED();
779
780 #if defined(MULTIPROCESSOR)
781 /*
782 * Release the kernel_lock, as we are about to yield the CPU.
783 * The scheduler lock is still held until cpu_switch()
784 * selects a new process and removes it from the run queue.
785 */
786 if (p->p_flag & P_BIGLOCK)
787 hold_count = spinlock_release_all(&kernel_lock);
788 #endif
789
790 KDASSERT(p->p_cpu != NULL);
791 KDASSERT(p->p_cpu == curcpu());
792
793 spc = &p->p_cpu->ci_schedstate;
794
795 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
796 spinlock_switchcheck();
797 #endif
798 #ifdef LOCKDEBUG
799 simple_lock_switchcheck();
800 #endif
801
802 /*
803 * Compute the amount of time during which the current
804 * process was running, and add that to its total so far.
805 */
806 microtime(&tv);
807 u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
808 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
809 if (u < 0) {
810 u += 1000000;
811 s--;
812 } else if (u >= 1000000) {
813 u -= 1000000;
814 s++;
815 }
816 p->p_rtime.tv_usec = u;
817 p->p_rtime.tv_sec = s;
818
819 /*
820 * Check if the process exceeds its cpu resource allocation.
821 * If over max, kill it. In any case, if it has run for more
822 * than 10 minutes, reduce priority to give others a chance.
823 */
824 rlim = &p->p_rlimit[RLIMIT_CPU];
825 if (s >= rlim->rlim_cur) {
826 /*
827 * XXXSMP: we're inside the scheduler lock perimeter;
828 * use sched_psignal.
829 */
830 if (s >= rlim->rlim_max)
831 sched_psignal(p, SIGKILL);
832 else {
833 sched_psignal(p, SIGXCPU);
834 if (rlim->rlim_cur < rlim->rlim_max)
835 rlim->rlim_cur += 5;
836 }
837 }
838 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
839 p->p_nice == NZERO) {
840 p->p_nice = autoniceval + NZERO;
841 resetpriority(p);
842 }
843
844 /*
845 * Process is about to yield the CPU; clear the appropriate
846 * scheduling flags.
847 */
848 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
849
850 /*
851 * Pick a new current process and switch to it. When we
852 * run again, we'll return back here.
853 */
854 uvmexp.swtch++;
855 cpu_switch(p);
856
857 /*
858 * Make sure that MD code released the scheduler lock before
859 * resuming us.
860 */
861 SCHED_ASSERT_UNLOCKED();
862
863 /*
864 * We're running again; record our new start time. We might
865 * be running on a new CPU now, so don't use the cache'd
866 * schedstate_percpu pointer.
867 */
868 KDASSERT(p->p_cpu != NULL);
869 KDASSERT(p->p_cpu == curcpu());
870 microtime(&p->p_cpu->ci_schedstate.spc_runtime);
871
872 #if defined(MULTIPROCESSOR)
873 /*
874 * Reacquire the kernel_lock now. We do this after we've
875 * released the scheduler lock to avoid deadlock, and before
876 * we reacquire the interlock.
877 */
878 if (p->p_flag & P_BIGLOCK)
879 spinlock_acquire_count(&kernel_lock, hold_count);
880 #endif
881 }
882
883 /*
884 * Initialize the (doubly-linked) run queues
885 * to be empty.
886 */
887 void
888 rqinit()
889 {
890 int i;
891
892 for (i = 0; i < RUNQUE_NQS; i++)
893 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
894 (struct proc *)&sched_qs[i];
895 }
896
897 /*
898 * Change process state to be runnable,
899 * placing it on the run queue if it is in memory,
900 * and awakening the swapper if it isn't in memory.
901 */
902 void
903 setrunnable(struct proc *p)
904 {
905
906 SCHED_ASSERT_LOCKED();
907
908 switch (p->p_stat) {
909 case 0:
910 case SRUN:
911 case SONPROC:
912 case SZOMB:
913 case SDEAD:
914 default:
915 panic("setrunnable");
916 case SSTOP:
917 /*
918 * If we're being traced (possibly because someone attached us
919 * while we were stopped), check for a signal from the debugger.
920 */
921 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
922 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
923 CHECKSIGS(p);
924 }
925 case SSLEEP:
926 unsleep(p); /* e.g. when sending signals */
927 break;
928
929 case SIDL:
930 break;
931 }
932 p->p_stat = SRUN;
933 if (p->p_flag & P_INMEM)
934 setrunqueue(p);
935
936 if (p->p_slptime > 1)
937 updatepri(p);
938 p->p_slptime = 0;
939 if ((p->p_flag & P_INMEM) == 0)
940 sched_wakeup((caddr_t)&proc0);
941 else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
942 /*
943 * XXXSMP
944 * This is not exactly right. Since p->p_cpu persists
945 * across a context switch, this gives us some sort
946 * of processor affinity. But we need to figure out
947 * at what point it's better to reschedule on a different
948 * CPU than the last one.
949 */
950 need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
951 }
952 }
953
954 /*
955 * Compute the priority of a process when running in user mode.
956 * Arrange to reschedule if the resulting priority is better
957 * than that of the current process.
958 */
959 void
960 resetpriority(struct proc *p)
961 {
962 unsigned int newpriority;
963
964 SCHED_ASSERT_LOCKED();
965
966 newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
967 newpriority = min(newpriority, MAXPRI);
968 p->p_usrpri = newpriority;
969 if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
970 /*
971 * XXXSMP
972 * Same applies as in setrunnable() above.
973 */
974 need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
975 }
976 }
977
978 /*
979 * We adjust the priority of the current process. The priority of a process
980 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
981 * is increased here. The formula for computing priorities (in kern_synch.c)
982 * will compute a different value each time p_estcpu increases. This can
983 * cause a switch, but unless the priority crosses a PPQ boundary the actual
984 * queue will not change. The cpu usage estimator ramps up quite quickly
985 * when the process is running (linearly), and decays away exponentially, at
986 * a rate which is proportionally slower when the system is busy. The basic
987 * principle is that the system will 90% forget that the process used a lot
988 * of CPU time in 5 * loadav seconds. This causes the system to favor
989 * processes which haven't run much recently, and to round-robin among other
990 * processes.
991 */
992
993 void
994 schedclock(struct proc *p)
995 {
996 int s;
997
998 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
999
1000 SCHED_LOCK(s);
1001 resetpriority(p);
1002 SCHED_UNLOCK(s);
1003
1004 if (p->p_priority >= PUSER)
1005 p->p_priority = p->p_usrpri;
1006 }
1007
1008 void
1009 suspendsched()
1010 {
1011 struct proc *p;
1012 int s;
1013
1014 /*
1015 * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
1016 */
1017 proclist_lock_read();
1018 SCHED_LOCK(s);
1019 for (p = LIST_FIRST(&allproc); p != NULL; p = LIST_NEXT(p, p_list)) {
1020 if ((p->p_flag & P_SYSTEM) != 0)
1021 continue;
1022 switch (p->p_stat) {
1023 case SRUN:
1024 if ((p->p_flag & P_INMEM) != 0)
1025 remrunqueue(p);
1026 /* FALLTHROUGH */
1027 case SSLEEP:
1028 p->p_stat = SSTOP;
1029 break;
1030 case SONPROC:
1031 /*
1032 * XXX SMP: we need to deal with processes on
1033 * others CPU !
1034 */
1035 break;
1036 default:
1037 break;
1038 }
1039 }
1040 SCHED_UNLOCK(s);
1041 proclist_unlock_read();
1042 }
1043