Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.105
      1 /*	$NetBSD: kern_synch.c,v 1.105 2001/09/25 01:38:38 chs Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78  */
     79 
     80 #include "opt_ddb.h"
     81 #include "opt_ktrace.h"
     82 #include "opt_lockdebug.h"
     83 #include "opt_multiprocessor.h"
     84 
     85 #include <sys/param.h>
     86 #include <sys/systm.h>
     87 #include <sys/callout.h>
     88 #include <sys/proc.h>
     89 #include <sys/kernel.h>
     90 #include <sys/buf.h>
     91 #include <sys/signalvar.h>
     92 #include <sys/resourcevar.h>
     93 #include <sys/sched.h>
     94 
     95 #include <uvm/uvm_extern.h>
     96 
     97 #ifdef KTRACE
     98 #include <sys/ktrace.h>
     99 #endif
    100 
    101 #include <machine/cpu.h>
    102 
    103 int	lbolt;			/* once a second sleep address */
    104 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    105 
    106 /*
    107  * The global scheduler state.
    108  */
    109 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    110 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    111 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    112 
    113 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    114 #if defined(MULTIPROCESSOR)
    115 struct lock kernel_lock;
    116 #endif
    117 
    118 void schedcpu(void *);
    119 void updatepri(struct proc *);
    120 void endtsleep(void *);
    121 
    122 __inline void awaken(struct proc *);
    123 
    124 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    125 
    126 /*
    127  * Force switch among equal priority processes every 100ms.
    128  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    129  */
    130 /* ARGSUSED */
    131 void
    132 roundrobin(struct cpu_info *ci)
    133 {
    134 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    135 
    136 	spc->spc_rrticks = rrticks;
    137 
    138 	if (curproc != NULL) {
    139 		if (spc->spc_flags & SPCF_SEENRR) {
    140 			/*
    141 			 * The process has already been through a roundrobin
    142 			 * without switching and may be hogging the CPU.
    143 			 * Indicate that the process should yield.
    144 			 */
    145 			spc->spc_flags |= SPCF_SHOULDYIELD;
    146 		} else
    147 			spc->spc_flags |= SPCF_SEENRR;
    148 	}
    149 	need_resched(curcpu());
    150 }
    151 
    152 /*
    153  * Constants for digital decay and forget:
    154  *	90% of (p_estcpu) usage in 5 * loadav time
    155  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    156  *          Note that, as ps(1) mentions, this can let percentages
    157  *          total over 100% (I've seen 137.9% for 3 processes).
    158  *
    159  * Note that hardclock updates p_estcpu and p_cpticks independently.
    160  *
    161  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    162  * That is, the system wants to compute a value of decay such
    163  * that the following for loop:
    164  * 	for (i = 0; i < (5 * loadavg); i++)
    165  * 		p_estcpu *= decay;
    166  * will compute
    167  * 	p_estcpu *= 0.1;
    168  * for all values of loadavg:
    169  *
    170  * Mathematically this loop can be expressed by saying:
    171  * 	decay ** (5 * loadavg) ~= .1
    172  *
    173  * The system computes decay as:
    174  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    175  *
    176  * We wish to prove that the system's computation of decay
    177  * will always fulfill the equation:
    178  * 	decay ** (5 * loadavg) ~= .1
    179  *
    180  * If we compute b as:
    181  * 	b = 2 * loadavg
    182  * then
    183  * 	decay = b / (b + 1)
    184  *
    185  * We now need to prove two things:
    186  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    187  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    188  *
    189  * Facts:
    190  *         For x close to zero, exp(x) =~ 1 + x, since
    191  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    192  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    193  *         For x close to zero, ln(1+x) =~ x, since
    194  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    195  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    196  *         ln(.1) =~ -2.30
    197  *
    198  * Proof of (1):
    199  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    200  *	solving for factor,
    201  *      ln(factor) =~ (-2.30/5*loadav), or
    202  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    203  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    204  *
    205  * Proof of (2):
    206  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    207  *	solving for power,
    208  *      power*ln(b/(b+1)) =~ -2.30, or
    209  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    210  *
    211  * Actual power values for the implemented algorithm are as follows:
    212  *      loadav: 1       2       3       4
    213  *      power:  5.68    10.32   14.94   19.55
    214  */
    215 
    216 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    217 #define	loadfactor(loadav)	(2 * (loadav))
    218 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    219 
    220 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    221 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    222 
    223 /*
    224  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    225  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    226  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    227  *
    228  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    229  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    230  *
    231  * If you dont want to bother with the faster/more-accurate formula, you
    232  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    233  * (more general) method of calculating the %age of CPU used by a process.
    234  */
    235 #define	CCPU_SHIFT	11
    236 
    237 /*
    238  * Recompute process priorities, every hz ticks.
    239  */
    240 /* ARGSUSED */
    241 void
    242 schedcpu(void *arg)
    243 {
    244 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    245 	struct proc *p;
    246 	int s, s1;
    247 	unsigned int newcpu;
    248 	int clkhz;
    249 
    250 	proclist_lock_read();
    251 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    252 		/*
    253 		 * Increment time in/out of memory and sleep time
    254 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    255 		 * (remember them?) overflow takes 45 days.
    256 		 */
    257 		p->p_swtime++;
    258 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    259 			p->p_slptime++;
    260 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    261 		/*
    262 		 * If the process has slept the entire second,
    263 		 * stop recalculating its priority until it wakes up.
    264 		 */
    265 		if (p->p_slptime > 1)
    266 			continue;
    267 		s = splstatclock();	/* prevent state changes */
    268 		/*
    269 		 * p_pctcpu is only for ps.
    270 		 */
    271 		clkhz = stathz != 0 ? stathz : hz;
    272 #if	(FSHIFT >= CCPU_SHIFT)
    273 		p->p_pctcpu += (clkhz == 100)?
    274 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    275                 	100 * (((fixpt_t) p->p_cpticks)
    276 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    277 #else
    278 		p->p_pctcpu += ((FSCALE - ccpu) *
    279 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    280 #endif
    281 		p->p_cpticks = 0;
    282 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    283 		p->p_estcpu = newcpu;
    284 		SCHED_LOCK(s1);
    285 		resetpriority(p);
    286 		if (p->p_priority >= PUSER) {
    287 			if (p->p_stat == SRUN &&
    288 			    (p->p_flag & P_INMEM) &&
    289 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    290 				remrunqueue(p);
    291 				p->p_priority = p->p_usrpri;
    292 				setrunqueue(p);
    293 			} else
    294 				p->p_priority = p->p_usrpri;
    295 		}
    296 		SCHED_UNLOCK(s1);
    297 		splx(s);
    298 	}
    299 	proclist_unlock_read();
    300 	uvm_meter();
    301 	wakeup((caddr_t)&lbolt);
    302 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    303 }
    304 
    305 /*
    306  * Recalculate the priority of a process after it has slept for a while.
    307  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    308  * least six times the loadfactor will decay p_estcpu to zero.
    309  */
    310 void
    311 updatepri(struct proc *p)
    312 {
    313 	unsigned int newcpu;
    314 	fixpt_t loadfac;
    315 
    316 	SCHED_ASSERT_LOCKED();
    317 
    318 	newcpu = p->p_estcpu;
    319 	loadfac = loadfactor(averunnable.ldavg[0]);
    320 
    321 	if (p->p_slptime > 5 * loadfac)
    322 		p->p_estcpu = 0;
    323 	else {
    324 		p->p_slptime--;	/* the first time was done in schedcpu */
    325 		while (newcpu && --p->p_slptime)
    326 			newcpu = (int) decay_cpu(loadfac, newcpu);
    327 		p->p_estcpu = newcpu;
    328 	}
    329 	resetpriority(p);
    330 }
    331 
    332 /*
    333  * During autoconfiguration or after a panic, a sleep will simply
    334  * lower the priority briefly to allow interrupts, then return.
    335  * The priority to be used (safepri) is machine-dependent, thus this
    336  * value is initialized and maintained in the machine-dependent layers.
    337  * This priority will typically be 0, or the lowest priority
    338  * that is safe for use on the interrupt stack; it can be made
    339  * higher to block network software interrupts after panics.
    340  */
    341 int safepri;
    342 
    343 /*
    344  * General sleep call.  Suspends the current process until a wakeup is
    345  * performed on the specified identifier.  The process will then be made
    346  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    347  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    348  * before and after sleeping, else signals are not checked.  Returns 0 if
    349  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    350  * signal needs to be delivered, ERESTART is returned if the current system
    351  * call should be restarted if possible, and EINTR is returned if the system
    352  * call should be interrupted by the signal (return EINTR).
    353  *
    354  * The interlock is held until the scheduler_slock is acquired.  The
    355  * interlock will be locked before returning back to the caller
    356  * unless the PNORELOCK flag is specified, in which case the
    357  * interlock will always be unlocked upon return.
    358  */
    359 int
    360 ltsleep(void *ident, int priority, const char *wmesg, int timo,
    361     __volatile struct simplelock *interlock)
    362 {
    363 	struct proc *p = curproc;
    364 	struct slpque *qp;
    365 	int sig, s;
    366 	int catch = priority & PCATCH;
    367 	int relock = (priority & PNORELOCK) == 0;
    368 
    369 	/*
    370 	 * XXXSMP
    371 	 * This is probably bogus.  Figure out what the right
    372 	 * thing to do here really is.
    373 	 * Note that not sleeping if ltsleep is called with curproc == NULL
    374 	 * in the shutdown case is disgusting but partly necessary given
    375 	 * how shutdown (barely) works.
    376 	 */
    377 	if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
    378 		/*
    379 		 * After a panic, or during autoconfiguration,
    380 		 * just give interrupts a chance, then just return;
    381 		 * don't run any other procs or panic below,
    382 		 * in case this is the idle process and already asleep.
    383 		 */
    384 		s = splhigh();
    385 		splx(safepri);
    386 		splx(s);
    387 		if (interlock != NULL && relock == 0)
    388 			simple_unlock(interlock);
    389 		return (0);
    390 	}
    391 
    392 	KASSERT(p != NULL);
    393 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    394 
    395 #ifdef KTRACE
    396 	if (KTRPOINT(p, KTR_CSW))
    397 		ktrcsw(p, 1, 0);
    398 #endif
    399 
    400 	SCHED_LOCK(s);
    401 
    402 #ifdef DIAGNOSTIC
    403 	if (ident == NULL)
    404 		panic("ltsleep: ident == NULL");
    405 	if (p->p_stat != SONPROC)
    406 		panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
    407 	if (p->p_back != NULL)
    408 		panic("ltsleep: p_back != NULL");
    409 #endif
    410 
    411 	p->p_wchan = ident;
    412 	p->p_wmesg = wmesg;
    413 	p->p_slptime = 0;
    414 	p->p_priority = priority & PRIMASK;
    415 
    416 	qp = SLPQUE(ident);
    417 	if (qp->sq_head == 0)
    418 		qp->sq_head = p;
    419 	else
    420 		*qp->sq_tailp = p;
    421 	*(qp->sq_tailp = &p->p_forw) = 0;
    422 
    423 	if (timo)
    424 		callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
    425 
    426 	/*
    427 	 * We can now release the interlock; the scheduler_slock
    428 	 * is held, so a thread can't get in to do wakeup() before
    429 	 * we do the switch.
    430 	 *
    431 	 * XXX We leave the code block here, after inserting ourselves
    432 	 * on the sleep queue, because we might want a more clever
    433 	 * data structure for the sleep queues at some point.
    434 	 */
    435 	if (interlock != NULL)
    436 		simple_unlock(interlock);
    437 
    438 	/*
    439 	 * We put ourselves on the sleep queue and start our timeout
    440 	 * before calling CURSIG, as we could stop there, and a wakeup
    441 	 * or a SIGCONT (or both) could occur while we were stopped.
    442 	 * A SIGCONT would cause us to be marked as SSLEEP
    443 	 * without resuming us, thus we must be ready for sleep
    444 	 * when CURSIG is called.  If the wakeup happens while we're
    445 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    446 	 */
    447 	if (catch) {
    448 		p->p_flag |= P_SINTR;
    449 		if ((sig = CURSIG(p)) != 0) {
    450 			if (p->p_wchan != NULL)
    451 				unsleep(p);
    452 			p->p_stat = SONPROC;
    453 			SCHED_UNLOCK(s);
    454 			goto resume;
    455 		}
    456 		if (p->p_wchan == NULL) {
    457 			catch = 0;
    458 			SCHED_UNLOCK(s);
    459 			goto resume;
    460 		}
    461 	} else
    462 		sig = 0;
    463 	p->p_stat = SSLEEP;
    464 	p->p_stats->p_ru.ru_nvcsw++;
    465 
    466 	SCHED_ASSERT_LOCKED();
    467 	mi_switch(p);
    468 
    469 #if	defined(DDB) && !defined(GPROF)
    470 	/* handy breakpoint location after process "wakes" */
    471 	asm(".globl bpendtsleep ; bpendtsleep:");
    472 #endif
    473 
    474 	SCHED_ASSERT_UNLOCKED();
    475 	splx(s);
    476 
    477  resume:
    478 	KDASSERT(p->p_cpu != NULL);
    479 	KDASSERT(p->p_cpu == curcpu());
    480 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
    481 
    482 	p->p_flag &= ~P_SINTR;
    483 	if (p->p_flag & P_TIMEOUT) {
    484 		p->p_flag &= ~P_TIMEOUT;
    485 		if (sig == 0) {
    486 #ifdef KTRACE
    487 			if (KTRPOINT(p, KTR_CSW))
    488 				ktrcsw(p, 0, 0);
    489 #endif
    490 			if (relock && interlock != NULL)
    491 				simple_lock(interlock);
    492 			return (EWOULDBLOCK);
    493 		}
    494 	} else if (timo)
    495 		callout_stop(&p->p_tsleep_ch);
    496 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    497 #ifdef KTRACE
    498 		if (KTRPOINT(p, KTR_CSW))
    499 			ktrcsw(p, 0, 0);
    500 #endif
    501 		if (relock && interlock != NULL)
    502 			simple_lock(interlock);
    503 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    504 			return (EINTR);
    505 		return (ERESTART);
    506 	}
    507 #ifdef KTRACE
    508 	if (KTRPOINT(p, KTR_CSW))
    509 		ktrcsw(p, 0, 0);
    510 #endif
    511 	if (relock && interlock != NULL)
    512 		simple_lock(interlock);
    513 	return (0);
    514 }
    515 
    516 /*
    517  * Implement timeout for tsleep.
    518  * If process hasn't been awakened (wchan non-zero),
    519  * set timeout flag and undo the sleep.  If proc
    520  * is stopped, just unsleep so it will remain stopped.
    521  */
    522 void
    523 endtsleep(void *arg)
    524 {
    525 	struct proc *p;
    526 	int s;
    527 
    528 	p = (struct proc *)arg;
    529 
    530 	SCHED_LOCK(s);
    531 	if (p->p_wchan) {
    532 		if (p->p_stat == SSLEEP)
    533 			setrunnable(p);
    534 		else
    535 			unsleep(p);
    536 		p->p_flag |= P_TIMEOUT;
    537 	}
    538 	SCHED_UNLOCK(s);
    539 }
    540 
    541 /*
    542  * Remove a process from its wait queue
    543  */
    544 void
    545 unsleep(struct proc *p)
    546 {
    547 	struct slpque *qp;
    548 	struct proc **hp;
    549 
    550 	SCHED_ASSERT_LOCKED();
    551 
    552 	if (p->p_wchan) {
    553 		hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
    554 		while (*hp != p)
    555 			hp = &(*hp)->p_forw;
    556 		*hp = p->p_forw;
    557 		if (qp->sq_tailp == &p->p_forw)
    558 			qp->sq_tailp = hp;
    559 		p->p_wchan = 0;
    560 	}
    561 }
    562 
    563 /*
    564  * Optimized-for-wakeup() version of setrunnable().
    565  */
    566 __inline void
    567 awaken(struct proc *p)
    568 {
    569 
    570 	SCHED_ASSERT_LOCKED();
    571 
    572 	if (p->p_slptime > 1)
    573 		updatepri(p);
    574 	p->p_slptime = 0;
    575 	p->p_stat = SRUN;
    576 
    577 	/*
    578 	 * Since curpriority is a user priority, p->p_priority
    579 	 * is always better than curpriority.
    580 	 */
    581 	if (p->p_flag & P_INMEM) {
    582 		setrunqueue(p);
    583 		KASSERT(p->p_cpu != NULL);
    584 		need_resched(p->p_cpu);
    585 	} else
    586 		sched_wakeup(&proc0);
    587 }
    588 
    589 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    590 void
    591 sched_unlock_idle(void)
    592 {
    593 
    594 	simple_unlock(&sched_lock);
    595 }
    596 
    597 void
    598 sched_lock_idle(void)
    599 {
    600 
    601 	simple_lock(&sched_lock);
    602 }
    603 #endif /* MULTIPROCESSOR || LOCKDEBUG */
    604 
    605 /*
    606  * Make all processes sleeping on the specified identifier runnable.
    607  */
    608 
    609 void
    610 wakeup(void *ident)
    611 {
    612 	int s;
    613 
    614 	SCHED_ASSERT_UNLOCKED();
    615 
    616 	SCHED_LOCK(s);
    617 	sched_wakeup(ident);
    618 	SCHED_UNLOCK(s);
    619 }
    620 
    621 void
    622 sched_wakeup(void *ident)
    623 {
    624 	struct slpque *qp;
    625 	struct proc *p, **q;
    626 
    627 	SCHED_ASSERT_LOCKED();
    628 
    629 	qp = SLPQUE(ident);
    630  restart:
    631 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    632 #ifdef DIAGNOSTIC
    633 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    634 			panic("wakeup");
    635 #endif
    636 		if (p->p_wchan == ident) {
    637 			p->p_wchan = 0;
    638 			*q = p->p_forw;
    639 			if (qp->sq_tailp == &p->p_forw)
    640 				qp->sq_tailp = q;
    641 			if (p->p_stat == SSLEEP) {
    642 				awaken(p);
    643 				goto restart;
    644 			}
    645 		} else
    646 			q = &p->p_forw;
    647 	}
    648 }
    649 
    650 /*
    651  * Make the highest priority process first in line on the specified
    652  * identifier runnable.
    653  */
    654 void
    655 wakeup_one(void *ident)
    656 {
    657 	struct slpque *qp;
    658 	struct proc *p, **q;
    659 	struct proc *best_sleepp, **best_sleepq;
    660 	struct proc *best_stopp, **best_stopq;
    661 	int s;
    662 
    663 	best_sleepp = best_stopp = NULL;
    664 	best_sleepq = best_stopq = NULL;
    665 
    666 	SCHED_LOCK(s);
    667 
    668 	qp = SLPQUE(ident);
    669 
    670 	for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
    671 #ifdef DIAGNOSTIC
    672 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    673 			panic("wakeup_one");
    674 #endif
    675 		if (p->p_wchan == ident) {
    676 			if (p->p_stat == SSLEEP) {
    677 				if (best_sleepp == NULL ||
    678 				    p->p_priority < best_sleepp->p_priority) {
    679 					best_sleepp = p;
    680 					best_sleepq = q;
    681 				}
    682 			} else {
    683 				if (best_stopp == NULL ||
    684 				    p->p_priority < best_stopp->p_priority) {
    685 					best_stopp = p;
    686 					best_stopq = q;
    687 				}
    688 			}
    689 		}
    690 	}
    691 
    692 	/*
    693 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    694 	 * process.
    695 	 */
    696 	if (best_sleepp != NULL) {
    697 		p = best_sleepp;
    698 		q = best_sleepq;
    699 	} else {
    700 		p = best_stopp;
    701 		q = best_stopq;
    702 	}
    703 
    704 	if (p != NULL) {
    705 		p->p_wchan = NULL;
    706 		*q = p->p_forw;
    707 		if (qp->sq_tailp == &p->p_forw)
    708 			qp->sq_tailp = q;
    709 		if (p->p_stat == SSLEEP)
    710 			awaken(p);
    711 	}
    712 	SCHED_UNLOCK(s);
    713 }
    714 
    715 /*
    716  * General yield call.  Puts the current process back on its run queue and
    717  * performs a voluntary context switch.
    718  */
    719 void
    720 yield(void)
    721 {
    722 	struct proc *p = curproc;
    723 	int s;
    724 
    725 	SCHED_LOCK(s);
    726 	p->p_priority = p->p_usrpri;
    727 	p->p_stat = SRUN;
    728 	setrunqueue(p);
    729 	p->p_stats->p_ru.ru_nvcsw++;
    730 	mi_switch(p);
    731 	SCHED_ASSERT_UNLOCKED();
    732 	splx(s);
    733 }
    734 
    735 /*
    736  * General preemption call.  Puts the current process back on its run queue
    737  * and performs an involuntary context switch.  If a process is supplied,
    738  * we switch to that process.  Otherwise, we use the normal process selection
    739  * criteria.
    740  */
    741 void
    742 preempt(struct proc *newp)
    743 {
    744 	struct proc *p = curproc;
    745 	int s;
    746 
    747 	/*
    748 	 * XXX Switching to a specific process is not supported yet.
    749 	 */
    750 	if (newp != NULL)
    751 		panic("preempt: cpu_preempt not yet implemented");
    752 
    753 	SCHED_LOCK(s);
    754 	p->p_priority = p->p_usrpri;
    755 	p->p_stat = SRUN;
    756 	setrunqueue(p);
    757 	p->p_stats->p_ru.ru_nivcsw++;
    758 	mi_switch(p);
    759 	SCHED_ASSERT_UNLOCKED();
    760 	splx(s);
    761 }
    762 
    763 /*
    764  * The machine independent parts of context switch.
    765  * Must be called at splsched() (no higher!) and with
    766  * the sched_lock held.
    767  */
    768 void
    769 mi_switch(struct proc *p)
    770 {
    771 	struct schedstate_percpu *spc;
    772 	struct rlimit *rlim;
    773 	long s, u;
    774 	struct timeval tv;
    775 #if defined(MULTIPROCESSOR)
    776 	int hold_count;
    777 #endif
    778 
    779 	SCHED_ASSERT_LOCKED();
    780 
    781 #if defined(MULTIPROCESSOR)
    782 	/*
    783 	 * Release the kernel_lock, as we are about to yield the CPU.
    784 	 * The scheduler lock is still held until cpu_switch()
    785 	 * selects a new process and removes it from the run queue.
    786 	 */
    787 	if (p->p_flag & P_BIGLOCK)
    788 		hold_count = spinlock_release_all(&kernel_lock);
    789 #endif
    790 
    791 	KDASSERT(p->p_cpu != NULL);
    792 	KDASSERT(p->p_cpu == curcpu());
    793 
    794 	spc = &p->p_cpu->ci_schedstate;
    795 
    796 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    797 	spinlock_switchcheck();
    798 #endif
    799 #ifdef LOCKDEBUG
    800 	simple_lock_switchcheck();
    801 #endif
    802 
    803 	/*
    804 	 * Compute the amount of time during which the current
    805 	 * process was running, and add that to its total so far.
    806 	 */
    807 	microtime(&tv);
    808 	u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    809 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    810 	if (u < 0) {
    811 		u += 1000000;
    812 		s--;
    813 	} else if (u >= 1000000) {
    814 		u -= 1000000;
    815 		s++;
    816 	}
    817 	p->p_rtime.tv_usec = u;
    818 	p->p_rtime.tv_sec = s;
    819 
    820 	/*
    821 	 * Check if the process exceeds its cpu resource allocation.
    822 	 * If over max, kill it.  In any case, if it has run for more
    823 	 * than 10 minutes, reduce priority to give others a chance.
    824 	 */
    825 	rlim = &p->p_rlimit[RLIMIT_CPU];
    826 	if (s >= rlim->rlim_cur) {
    827 		/*
    828 		 * XXXSMP: we're inside the scheduler lock perimeter;
    829 		 * use sched_psignal.
    830 		 */
    831 		if (s >= rlim->rlim_max)
    832 			sched_psignal(p, SIGKILL);
    833 		else {
    834 			sched_psignal(p, SIGXCPU);
    835 			if (rlim->rlim_cur < rlim->rlim_max)
    836 				rlim->rlim_cur += 5;
    837 		}
    838 	}
    839 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    840 	    p->p_nice == NZERO) {
    841 		p->p_nice = autoniceval + NZERO;
    842 		resetpriority(p);
    843 	}
    844 
    845 	/*
    846 	 * Process is about to yield the CPU; clear the appropriate
    847 	 * scheduling flags.
    848 	 */
    849 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    850 
    851 	/*
    852 	 * Pick a new current process and switch to it.  When we
    853 	 * run again, we'll return back here.
    854 	 */
    855 	uvmexp.swtch++;
    856 	cpu_switch(p);
    857 
    858 	/*
    859 	 * Make sure that MD code released the scheduler lock before
    860 	 * resuming us.
    861 	 */
    862 	SCHED_ASSERT_UNLOCKED();
    863 
    864 	/*
    865 	 * We're running again; record our new start time.  We might
    866 	 * be running on a new CPU now, so don't use the cache'd
    867 	 * schedstate_percpu pointer.
    868 	 */
    869 	KDASSERT(p->p_cpu != NULL);
    870 	KDASSERT(p->p_cpu == curcpu());
    871 	microtime(&p->p_cpu->ci_schedstate.spc_runtime);
    872 
    873 #if defined(MULTIPROCESSOR)
    874 	/*
    875 	 * Reacquire the kernel_lock now.  We do this after we've
    876 	 * released the scheduler lock to avoid deadlock, and before
    877 	 * we reacquire the interlock.
    878 	 */
    879 	if (p->p_flag & P_BIGLOCK)
    880 		spinlock_acquire_count(&kernel_lock, hold_count);
    881 #endif
    882 }
    883 
    884 /*
    885  * Initialize the (doubly-linked) run queues
    886  * to be empty.
    887  */
    888 void
    889 rqinit()
    890 {
    891 	int i;
    892 
    893 	for (i = 0; i < RUNQUE_NQS; i++)
    894 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    895 		    (struct proc *)&sched_qs[i];
    896 }
    897 
    898 /*
    899  * Change process state to be runnable,
    900  * placing it on the run queue if it is in memory,
    901  * and awakening the swapper if it isn't in memory.
    902  */
    903 void
    904 setrunnable(struct proc *p)
    905 {
    906 
    907 	SCHED_ASSERT_LOCKED();
    908 
    909 	switch (p->p_stat) {
    910 	case 0:
    911 	case SRUN:
    912 	case SONPROC:
    913 	case SZOMB:
    914 	case SDEAD:
    915 	default:
    916 		panic("setrunnable");
    917 	case SSTOP:
    918 		/*
    919 		 * If we're being traced (possibly because someone attached us
    920 		 * while we were stopped), check for a signal from the debugger.
    921 		 */
    922 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    923 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
    924 			CHECKSIGS(p);
    925 		}
    926 	case SSLEEP:
    927 		unsleep(p);		/* e.g. when sending signals */
    928 		break;
    929 
    930 	case SIDL:
    931 		break;
    932 	}
    933 	p->p_stat = SRUN;
    934 	if (p->p_flag & P_INMEM)
    935 		setrunqueue(p);
    936 
    937 	if (p->p_slptime > 1)
    938 		updatepri(p);
    939 	p->p_slptime = 0;
    940 	if ((p->p_flag & P_INMEM) == 0)
    941 		sched_wakeup((caddr_t)&proc0);
    942 	else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
    943 		/*
    944 		 * XXXSMP
    945 		 * This is not exactly right.  Since p->p_cpu persists
    946 		 * across a context switch, this gives us some sort
    947 		 * of processor affinity.  But we need to figure out
    948 		 * at what point it's better to reschedule on a different
    949 		 * CPU than the last one.
    950 		 */
    951 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    952 	}
    953 }
    954 
    955 /*
    956  * Compute the priority of a process when running in user mode.
    957  * Arrange to reschedule if the resulting priority is better
    958  * than that of the current process.
    959  */
    960 void
    961 resetpriority(struct proc *p)
    962 {
    963 	unsigned int newpriority;
    964 
    965 	SCHED_ASSERT_LOCKED();
    966 
    967 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
    968 	newpriority = min(newpriority, MAXPRI);
    969 	p->p_usrpri = newpriority;
    970 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
    971 		/*
    972 		 * XXXSMP
    973 		 * Same applies as in setrunnable() above.
    974 		 */
    975 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    976 	}
    977 }
    978 
    979 /*
    980  * We adjust the priority of the current process.  The priority of a process
    981  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
    982  * is increased here.  The formula for computing priorities (in kern_synch.c)
    983  * will compute a different value each time p_estcpu increases. This can
    984  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    985  * queue will not change.  The cpu usage estimator ramps up quite quickly
    986  * when the process is running (linearly), and decays away exponentially, at
    987  * a rate which is proportionally slower when the system is busy.  The basic
    988  * principle is that the system will 90% forget that the process used a lot
    989  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    990  * processes which haven't run much recently, and to round-robin among other
    991  * processes.
    992  */
    993 
    994 void
    995 schedclock(struct proc *p)
    996 {
    997 	int s;
    998 
    999 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1000 
   1001 	SCHED_LOCK(s);
   1002 	resetpriority(p);
   1003 	SCHED_UNLOCK(s);
   1004 
   1005 	if (p->p_priority >= PUSER)
   1006 		p->p_priority = p->p_usrpri;
   1007 }
   1008 
   1009 void
   1010 suspendsched()
   1011 {
   1012 	struct proc *p;
   1013 	int s;
   1014 
   1015 	/*
   1016 	 * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
   1017 	 */
   1018 	proclist_lock_read();
   1019 	SCHED_LOCK(s);
   1020 	for (p = LIST_FIRST(&allproc); p != NULL; p = LIST_NEXT(p, p_list)) {
   1021 		if ((p->p_flag & P_SYSTEM) != 0)
   1022 			continue;
   1023 		switch (p->p_stat) {
   1024 		case SRUN:
   1025 			if ((p->p_flag & P_INMEM) != 0)
   1026 				remrunqueue(p);
   1027 			/* FALLTHROUGH */
   1028 		case SSLEEP:
   1029 			p->p_stat = SSTOP;
   1030 			break;
   1031 		case SONPROC:
   1032 			/*
   1033 			 * XXX SMP: we need to deal with processes on
   1034 			 * others CPU !
   1035 			 */
   1036 			break;
   1037 		default:
   1038 			break;
   1039 		}
   1040 	}
   1041 	SCHED_UNLOCK(s);
   1042 	proclist_unlock_read();
   1043 }
   1044