Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.107
      1 /*	$NetBSD: kern_synch.c,v 1.107 2001/11/30 16:21:16 kleink Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.107 2001/11/30 16:21:16 kleink Exp $");
     82 
     83 #include "opt_ddb.h"
     84 #include "opt_ktrace.h"
     85 #include "opt_lockdebug.h"
     86 #include "opt_multiprocessor.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/proc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/buf.h>
     94 #include <sys/signalvar.h>
     95 #include <sys/resourcevar.h>
     96 #include <sys/sched.h>
     97 
     98 #include <uvm/uvm_extern.h>
     99 
    100 #ifdef KTRACE
    101 #include <sys/ktrace.h>
    102 #endif
    103 
    104 #include <machine/cpu.h>
    105 
    106 int	lbolt;			/* once a second sleep address */
    107 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    108 
    109 /*
    110  * The global scheduler state.
    111  */
    112 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    113 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    114 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    115 
    116 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    117 #if defined(MULTIPROCESSOR)
    118 struct lock kernel_lock;
    119 #endif
    120 
    121 void schedcpu(void *);
    122 void updatepri(struct proc *);
    123 void endtsleep(void *);
    124 
    125 __inline void awaken(struct proc *);
    126 
    127 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    128 
    129 /*
    130  * Force switch among equal priority processes every 100ms.
    131  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    132  */
    133 /* ARGSUSED */
    134 void
    135 roundrobin(struct cpu_info *ci)
    136 {
    137 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    138 
    139 	spc->spc_rrticks = rrticks;
    140 
    141 	if (curproc != NULL) {
    142 		if (spc->spc_flags & SPCF_SEENRR) {
    143 			/*
    144 			 * The process has already been through a roundrobin
    145 			 * without switching and may be hogging the CPU.
    146 			 * Indicate that the process should yield.
    147 			 */
    148 			spc->spc_flags |= SPCF_SHOULDYIELD;
    149 		} else
    150 			spc->spc_flags |= SPCF_SEENRR;
    151 	}
    152 	need_resched(curcpu());
    153 }
    154 
    155 /*
    156  * Constants for digital decay and forget:
    157  *	90% of (p_estcpu) usage in 5 * loadav time
    158  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    159  *          Note that, as ps(1) mentions, this can let percentages
    160  *          total over 100% (I've seen 137.9% for 3 processes).
    161  *
    162  * Note that hardclock updates p_estcpu and p_cpticks independently.
    163  *
    164  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    165  * That is, the system wants to compute a value of decay such
    166  * that the following for loop:
    167  * 	for (i = 0; i < (5 * loadavg); i++)
    168  * 		p_estcpu *= decay;
    169  * will compute
    170  * 	p_estcpu *= 0.1;
    171  * for all values of loadavg:
    172  *
    173  * Mathematically this loop can be expressed by saying:
    174  * 	decay ** (5 * loadavg) ~= .1
    175  *
    176  * The system computes decay as:
    177  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    178  *
    179  * We wish to prove that the system's computation of decay
    180  * will always fulfill the equation:
    181  * 	decay ** (5 * loadavg) ~= .1
    182  *
    183  * If we compute b as:
    184  * 	b = 2 * loadavg
    185  * then
    186  * 	decay = b / (b + 1)
    187  *
    188  * We now need to prove two things:
    189  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    190  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    191  *
    192  * Facts:
    193  *         For x close to zero, exp(x) =~ 1 + x, since
    194  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    195  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    196  *         For x close to zero, ln(1+x) =~ x, since
    197  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    198  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    199  *         ln(.1) =~ -2.30
    200  *
    201  * Proof of (1):
    202  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    203  *	solving for factor,
    204  *      ln(factor) =~ (-2.30/5*loadav), or
    205  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    206  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    207  *
    208  * Proof of (2):
    209  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    210  *	solving for power,
    211  *      power*ln(b/(b+1)) =~ -2.30, or
    212  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    213  *
    214  * Actual power values for the implemented algorithm are as follows:
    215  *      loadav: 1       2       3       4
    216  *      power:  5.68    10.32   14.94   19.55
    217  */
    218 
    219 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    220 #define	loadfactor(loadav)	(2 * (loadav))
    221 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    222 
    223 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    224 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    225 
    226 /*
    227  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    228  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    229  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    230  *
    231  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    232  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    233  *
    234  * If you dont want to bother with the faster/more-accurate formula, you
    235  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    236  * (more general) method of calculating the %age of CPU used by a process.
    237  */
    238 #define	CCPU_SHIFT	11
    239 
    240 /*
    241  * Recompute process priorities, every hz ticks.
    242  */
    243 /* ARGSUSED */
    244 void
    245 schedcpu(void *arg)
    246 {
    247 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    248 	struct proc *p;
    249 	int s, s1;
    250 	unsigned int newcpu;
    251 	int clkhz;
    252 
    253 	proclist_lock_read();
    254 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    255 		/*
    256 		 * Increment time in/out of memory and sleep time
    257 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    258 		 * (remember them?) overflow takes 45 days.
    259 		 */
    260 		p->p_swtime++;
    261 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    262 			p->p_slptime++;
    263 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    264 		/*
    265 		 * If the process has slept the entire second,
    266 		 * stop recalculating its priority until it wakes up.
    267 		 */
    268 		if (p->p_slptime > 1)
    269 			continue;
    270 		s = splstatclock();	/* prevent state changes */
    271 		/*
    272 		 * p_pctcpu is only for ps.
    273 		 */
    274 		clkhz = stathz != 0 ? stathz : hz;
    275 #if	(FSHIFT >= CCPU_SHIFT)
    276 		p->p_pctcpu += (clkhz == 100)?
    277 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    278                 	100 * (((fixpt_t) p->p_cpticks)
    279 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    280 #else
    281 		p->p_pctcpu += ((FSCALE - ccpu) *
    282 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    283 #endif
    284 		p->p_cpticks = 0;
    285 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    286 		p->p_estcpu = newcpu;
    287 		SCHED_LOCK(s1);
    288 		resetpriority(p);
    289 		if (p->p_priority >= PUSER) {
    290 			if (p->p_stat == SRUN &&
    291 			    (p->p_flag & P_INMEM) &&
    292 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    293 				remrunqueue(p);
    294 				p->p_priority = p->p_usrpri;
    295 				setrunqueue(p);
    296 			} else
    297 				p->p_priority = p->p_usrpri;
    298 		}
    299 		SCHED_UNLOCK(s1);
    300 		splx(s);
    301 	}
    302 	proclist_unlock_read();
    303 	uvm_meter();
    304 	wakeup((caddr_t)&lbolt);
    305 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    306 }
    307 
    308 /*
    309  * Recalculate the priority of a process after it has slept for a while.
    310  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    311  * least six times the loadfactor will decay p_estcpu to zero.
    312  */
    313 void
    314 updatepri(struct proc *p)
    315 {
    316 	unsigned int newcpu;
    317 	fixpt_t loadfac;
    318 
    319 	SCHED_ASSERT_LOCKED();
    320 
    321 	newcpu = p->p_estcpu;
    322 	loadfac = loadfactor(averunnable.ldavg[0]);
    323 
    324 	if (p->p_slptime > 5 * loadfac)
    325 		p->p_estcpu = 0;
    326 	else {
    327 		p->p_slptime--;	/* the first time was done in schedcpu */
    328 		while (newcpu && --p->p_slptime)
    329 			newcpu = (int) decay_cpu(loadfac, newcpu);
    330 		p->p_estcpu = newcpu;
    331 	}
    332 	resetpriority(p);
    333 }
    334 
    335 /*
    336  * During autoconfiguration or after a panic, a sleep will simply
    337  * lower the priority briefly to allow interrupts, then return.
    338  * The priority to be used (safepri) is machine-dependent, thus this
    339  * value is initialized and maintained in the machine-dependent layers.
    340  * This priority will typically be 0, or the lowest priority
    341  * that is safe for use on the interrupt stack; it can be made
    342  * higher to block network software interrupts after panics.
    343  */
    344 int safepri;
    345 
    346 /*
    347  * General sleep call.  Suspends the current process until a wakeup is
    348  * performed on the specified identifier.  The process will then be made
    349  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    350  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    351  * before and after sleeping, else signals are not checked.  Returns 0 if
    352  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    353  * signal needs to be delivered, ERESTART is returned if the current system
    354  * call should be restarted if possible, and EINTR is returned if the system
    355  * call should be interrupted by the signal (return EINTR).
    356  *
    357  * The interlock is held until the scheduler_slock is acquired.  The
    358  * interlock will be locked before returning back to the caller
    359  * unless the PNORELOCK flag is specified, in which case the
    360  * interlock will always be unlocked upon return.
    361  */
    362 int
    363 ltsleep(void *ident, int priority, const char *wmesg, int timo,
    364     __volatile struct simplelock *interlock)
    365 {
    366 	struct proc *p = curproc;
    367 	struct slpque *qp;
    368 	int sig, s;
    369 	int catch = priority & PCATCH;
    370 	int relock = (priority & PNORELOCK) == 0;
    371 
    372 	/*
    373 	 * XXXSMP
    374 	 * This is probably bogus.  Figure out what the right
    375 	 * thing to do here really is.
    376 	 * Note that not sleeping if ltsleep is called with curproc == NULL
    377 	 * in the shutdown case is disgusting but partly necessary given
    378 	 * how shutdown (barely) works.
    379 	 */
    380 	if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
    381 		/*
    382 		 * After a panic, or during autoconfiguration,
    383 		 * just give interrupts a chance, then just return;
    384 		 * don't run any other procs or panic below,
    385 		 * in case this is the idle process and already asleep.
    386 		 */
    387 		s = splhigh();
    388 		splx(safepri);
    389 		splx(s);
    390 		if (interlock != NULL && relock == 0)
    391 			simple_unlock(interlock);
    392 		return (0);
    393 	}
    394 
    395 	KASSERT(p != NULL);
    396 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    397 
    398 #ifdef KTRACE
    399 	if (KTRPOINT(p, KTR_CSW))
    400 		ktrcsw(p, 1, 0);
    401 #endif
    402 
    403 	SCHED_LOCK(s);
    404 
    405 #ifdef DIAGNOSTIC
    406 	if (ident == NULL)
    407 		panic("ltsleep: ident == NULL");
    408 	if (p->p_stat != SONPROC)
    409 		panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
    410 	if (p->p_back != NULL)
    411 		panic("ltsleep: p_back != NULL");
    412 #endif
    413 
    414 	p->p_wchan = ident;
    415 	p->p_wmesg = wmesg;
    416 	p->p_slptime = 0;
    417 	p->p_priority = priority & PRIMASK;
    418 
    419 	qp = SLPQUE(ident);
    420 	if (qp->sq_head == 0)
    421 		qp->sq_head = p;
    422 	else
    423 		*qp->sq_tailp = p;
    424 	*(qp->sq_tailp = &p->p_forw) = 0;
    425 
    426 	if (timo)
    427 		callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
    428 
    429 	/*
    430 	 * We can now release the interlock; the scheduler_slock
    431 	 * is held, so a thread can't get in to do wakeup() before
    432 	 * we do the switch.
    433 	 *
    434 	 * XXX We leave the code block here, after inserting ourselves
    435 	 * on the sleep queue, because we might want a more clever
    436 	 * data structure for the sleep queues at some point.
    437 	 */
    438 	if (interlock != NULL)
    439 		simple_unlock(interlock);
    440 
    441 	/*
    442 	 * We put ourselves on the sleep queue and start our timeout
    443 	 * before calling CURSIG, as we could stop there, and a wakeup
    444 	 * or a SIGCONT (or both) could occur while we were stopped.
    445 	 * A SIGCONT would cause us to be marked as SSLEEP
    446 	 * without resuming us, thus we must be ready for sleep
    447 	 * when CURSIG is called.  If the wakeup happens while we're
    448 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    449 	 */
    450 	if (catch) {
    451 		p->p_flag |= P_SINTR;
    452 		if ((sig = CURSIG(p)) != 0) {
    453 			if (p->p_wchan != NULL)
    454 				unsleep(p);
    455 			p->p_stat = SONPROC;
    456 			SCHED_UNLOCK(s);
    457 			goto resume;
    458 		}
    459 		if (p->p_wchan == NULL) {
    460 			catch = 0;
    461 			SCHED_UNLOCK(s);
    462 			goto resume;
    463 		}
    464 	} else
    465 		sig = 0;
    466 	p->p_stat = SSLEEP;
    467 	p->p_stats->p_ru.ru_nvcsw++;
    468 
    469 	SCHED_ASSERT_LOCKED();
    470 	mi_switch(p);
    471 
    472 #if	defined(DDB) && !defined(GPROF)
    473 	/* handy breakpoint location after process "wakes" */
    474 	__asm(".globl bpendtsleep ; bpendtsleep:");
    475 #endif
    476 
    477 	SCHED_ASSERT_UNLOCKED();
    478 	splx(s);
    479 
    480  resume:
    481 	KDASSERT(p->p_cpu != NULL);
    482 	KDASSERT(p->p_cpu == curcpu());
    483 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
    484 
    485 	p->p_flag &= ~P_SINTR;
    486 	if (p->p_flag & P_TIMEOUT) {
    487 		p->p_flag &= ~P_TIMEOUT;
    488 		if (sig == 0) {
    489 #ifdef KTRACE
    490 			if (KTRPOINT(p, KTR_CSW))
    491 				ktrcsw(p, 0, 0);
    492 #endif
    493 			if (relock && interlock != NULL)
    494 				simple_lock(interlock);
    495 			return (EWOULDBLOCK);
    496 		}
    497 	} else if (timo)
    498 		callout_stop(&p->p_tsleep_ch);
    499 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    500 #ifdef KTRACE
    501 		if (KTRPOINT(p, KTR_CSW))
    502 			ktrcsw(p, 0, 0);
    503 #endif
    504 		if (relock && interlock != NULL)
    505 			simple_lock(interlock);
    506 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    507 			return (EINTR);
    508 		return (ERESTART);
    509 	}
    510 #ifdef KTRACE
    511 	if (KTRPOINT(p, KTR_CSW))
    512 		ktrcsw(p, 0, 0);
    513 #endif
    514 	if (relock && interlock != NULL)
    515 		simple_lock(interlock);
    516 	return (0);
    517 }
    518 
    519 /*
    520  * Implement timeout for tsleep.
    521  * If process hasn't been awakened (wchan non-zero),
    522  * set timeout flag and undo the sleep.  If proc
    523  * is stopped, just unsleep so it will remain stopped.
    524  */
    525 void
    526 endtsleep(void *arg)
    527 {
    528 	struct proc *p;
    529 	int s;
    530 
    531 	p = (struct proc *)arg;
    532 
    533 	SCHED_LOCK(s);
    534 	if (p->p_wchan) {
    535 		if (p->p_stat == SSLEEP)
    536 			setrunnable(p);
    537 		else
    538 			unsleep(p);
    539 		p->p_flag |= P_TIMEOUT;
    540 	}
    541 	SCHED_UNLOCK(s);
    542 }
    543 
    544 /*
    545  * Remove a process from its wait queue
    546  */
    547 void
    548 unsleep(struct proc *p)
    549 {
    550 	struct slpque *qp;
    551 	struct proc **hp;
    552 
    553 	SCHED_ASSERT_LOCKED();
    554 
    555 	if (p->p_wchan) {
    556 		hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
    557 		while (*hp != p)
    558 			hp = &(*hp)->p_forw;
    559 		*hp = p->p_forw;
    560 		if (qp->sq_tailp == &p->p_forw)
    561 			qp->sq_tailp = hp;
    562 		p->p_wchan = 0;
    563 	}
    564 }
    565 
    566 /*
    567  * Optimized-for-wakeup() version of setrunnable().
    568  */
    569 __inline void
    570 awaken(struct proc *p)
    571 {
    572 
    573 	SCHED_ASSERT_LOCKED();
    574 
    575 	if (p->p_slptime > 1)
    576 		updatepri(p);
    577 	p->p_slptime = 0;
    578 	p->p_stat = SRUN;
    579 
    580 	/*
    581 	 * Since curpriority is a user priority, p->p_priority
    582 	 * is always better than curpriority.
    583 	 */
    584 	if (p->p_flag & P_INMEM) {
    585 		setrunqueue(p);
    586 		KASSERT(p->p_cpu != NULL);
    587 		need_resched(p->p_cpu);
    588 	} else
    589 		sched_wakeup(&proc0);
    590 }
    591 
    592 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    593 void
    594 sched_unlock_idle(void)
    595 {
    596 
    597 	simple_unlock(&sched_lock);
    598 }
    599 
    600 void
    601 sched_lock_idle(void)
    602 {
    603 
    604 	simple_lock(&sched_lock);
    605 }
    606 #endif /* MULTIPROCESSOR || LOCKDEBUG */
    607 
    608 /*
    609  * Make all processes sleeping on the specified identifier runnable.
    610  */
    611 
    612 void
    613 wakeup(void *ident)
    614 {
    615 	int s;
    616 
    617 	SCHED_ASSERT_UNLOCKED();
    618 
    619 	SCHED_LOCK(s);
    620 	sched_wakeup(ident);
    621 	SCHED_UNLOCK(s);
    622 }
    623 
    624 void
    625 sched_wakeup(void *ident)
    626 {
    627 	struct slpque *qp;
    628 	struct proc *p, **q;
    629 
    630 	SCHED_ASSERT_LOCKED();
    631 
    632 	qp = SLPQUE(ident);
    633  restart:
    634 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    635 #ifdef DIAGNOSTIC
    636 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    637 			panic("wakeup");
    638 #endif
    639 		if (p->p_wchan == ident) {
    640 			p->p_wchan = 0;
    641 			*q = p->p_forw;
    642 			if (qp->sq_tailp == &p->p_forw)
    643 				qp->sq_tailp = q;
    644 			if (p->p_stat == SSLEEP) {
    645 				awaken(p);
    646 				goto restart;
    647 			}
    648 		} else
    649 			q = &p->p_forw;
    650 	}
    651 }
    652 
    653 /*
    654  * Make the highest priority process first in line on the specified
    655  * identifier runnable.
    656  */
    657 void
    658 wakeup_one(void *ident)
    659 {
    660 	struct slpque *qp;
    661 	struct proc *p, **q;
    662 	struct proc *best_sleepp, **best_sleepq;
    663 	struct proc *best_stopp, **best_stopq;
    664 	int s;
    665 
    666 	best_sleepp = best_stopp = NULL;
    667 	best_sleepq = best_stopq = NULL;
    668 
    669 	SCHED_LOCK(s);
    670 
    671 	qp = SLPQUE(ident);
    672 
    673 	for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
    674 #ifdef DIAGNOSTIC
    675 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    676 			panic("wakeup_one");
    677 #endif
    678 		if (p->p_wchan == ident) {
    679 			if (p->p_stat == SSLEEP) {
    680 				if (best_sleepp == NULL ||
    681 				    p->p_priority < best_sleepp->p_priority) {
    682 					best_sleepp = p;
    683 					best_sleepq = q;
    684 				}
    685 			} else {
    686 				if (best_stopp == NULL ||
    687 				    p->p_priority < best_stopp->p_priority) {
    688 					best_stopp = p;
    689 					best_stopq = q;
    690 				}
    691 			}
    692 		}
    693 	}
    694 
    695 	/*
    696 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    697 	 * process.
    698 	 */
    699 	if (best_sleepp != NULL) {
    700 		p = best_sleepp;
    701 		q = best_sleepq;
    702 	} else {
    703 		p = best_stopp;
    704 		q = best_stopq;
    705 	}
    706 
    707 	if (p != NULL) {
    708 		p->p_wchan = NULL;
    709 		*q = p->p_forw;
    710 		if (qp->sq_tailp == &p->p_forw)
    711 			qp->sq_tailp = q;
    712 		if (p->p_stat == SSLEEP)
    713 			awaken(p);
    714 	}
    715 	SCHED_UNLOCK(s);
    716 }
    717 
    718 /*
    719  * General yield call.  Puts the current process back on its run queue and
    720  * performs a voluntary context switch.
    721  */
    722 void
    723 yield(void)
    724 {
    725 	struct proc *p = curproc;
    726 	int s;
    727 
    728 	SCHED_LOCK(s);
    729 	p->p_priority = p->p_usrpri;
    730 	p->p_stat = SRUN;
    731 	setrunqueue(p);
    732 	p->p_stats->p_ru.ru_nvcsw++;
    733 	mi_switch(p);
    734 	SCHED_ASSERT_UNLOCKED();
    735 	splx(s);
    736 }
    737 
    738 /*
    739  * General preemption call.  Puts the current process back on its run queue
    740  * and performs an involuntary context switch.  If a process is supplied,
    741  * we switch to that process.  Otherwise, we use the normal process selection
    742  * criteria.
    743  */
    744 void
    745 preempt(struct proc *newp)
    746 {
    747 	struct proc *p = curproc;
    748 	int s;
    749 
    750 	/*
    751 	 * XXX Switching to a specific process is not supported yet.
    752 	 */
    753 	if (newp != NULL)
    754 		panic("preempt: cpu_preempt not yet implemented");
    755 
    756 	SCHED_LOCK(s);
    757 	p->p_priority = p->p_usrpri;
    758 	p->p_stat = SRUN;
    759 	setrunqueue(p);
    760 	p->p_stats->p_ru.ru_nivcsw++;
    761 	mi_switch(p);
    762 	SCHED_ASSERT_UNLOCKED();
    763 	splx(s);
    764 }
    765 
    766 /*
    767  * The machine independent parts of context switch.
    768  * Must be called at splsched() (no higher!) and with
    769  * the sched_lock held.
    770  */
    771 void
    772 mi_switch(struct proc *p)
    773 {
    774 	struct schedstate_percpu *spc;
    775 	struct rlimit *rlim;
    776 	long s, u;
    777 	struct timeval tv;
    778 #if defined(MULTIPROCESSOR)
    779 	int hold_count;
    780 #endif
    781 
    782 	SCHED_ASSERT_LOCKED();
    783 
    784 #if defined(MULTIPROCESSOR)
    785 	/*
    786 	 * Release the kernel_lock, as we are about to yield the CPU.
    787 	 * The scheduler lock is still held until cpu_switch()
    788 	 * selects a new process and removes it from the run queue.
    789 	 */
    790 	if (p->p_flag & P_BIGLOCK)
    791 		hold_count = spinlock_release_all(&kernel_lock);
    792 #endif
    793 
    794 	KDASSERT(p->p_cpu != NULL);
    795 	KDASSERT(p->p_cpu == curcpu());
    796 
    797 	spc = &p->p_cpu->ci_schedstate;
    798 
    799 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    800 	spinlock_switchcheck();
    801 #endif
    802 #ifdef LOCKDEBUG
    803 	simple_lock_switchcheck();
    804 #endif
    805 
    806 	/*
    807 	 * Compute the amount of time during which the current
    808 	 * process was running, and add that to its total so far.
    809 	 */
    810 	microtime(&tv);
    811 	u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    812 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    813 	if (u < 0) {
    814 		u += 1000000;
    815 		s--;
    816 	} else if (u >= 1000000) {
    817 		u -= 1000000;
    818 		s++;
    819 	}
    820 	p->p_rtime.tv_usec = u;
    821 	p->p_rtime.tv_sec = s;
    822 
    823 	/*
    824 	 * Check if the process exceeds its cpu resource allocation.
    825 	 * If over max, kill it.  In any case, if it has run for more
    826 	 * than 10 minutes, reduce priority to give others a chance.
    827 	 */
    828 	rlim = &p->p_rlimit[RLIMIT_CPU];
    829 	if (s >= rlim->rlim_cur) {
    830 		/*
    831 		 * XXXSMP: we're inside the scheduler lock perimeter;
    832 		 * use sched_psignal.
    833 		 */
    834 		if (s >= rlim->rlim_max)
    835 			sched_psignal(p, SIGKILL);
    836 		else {
    837 			sched_psignal(p, SIGXCPU);
    838 			if (rlim->rlim_cur < rlim->rlim_max)
    839 				rlim->rlim_cur += 5;
    840 		}
    841 	}
    842 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    843 	    p->p_nice == NZERO) {
    844 		p->p_nice = autoniceval + NZERO;
    845 		resetpriority(p);
    846 	}
    847 
    848 	/*
    849 	 * Process is about to yield the CPU; clear the appropriate
    850 	 * scheduling flags.
    851 	 */
    852 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    853 
    854 	/*
    855 	 * Pick a new current process and switch to it.  When we
    856 	 * run again, we'll return back here.
    857 	 */
    858 	uvmexp.swtch++;
    859 	cpu_switch(p);
    860 
    861 	/*
    862 	 * Make sure that MD code released the scheduler lock before
    863 	 * resuming us.
    864 	 */
    865 	SCHED_ASSERT_UNLOCKED();
    866 
    867 	/*
    868 	 * We're running again; record our new start time.  We might
    869 	 * be running on a new CPU now, so don't use the cache'd
    870 	 * schedstate_percpu pointer.
    871 	 */
    872 	KDASSERT(p->p_cpu != NULL);
    873 	KDASSERT(p->p_cpu == curcpu());
    874 	microtime(&p->p_cpu->ci_schedstate.spc_runtime);
    875 
    876 #if defined(MULTIPROCESSOR)
    877 	/*
    878 	 * Reacquire the kernel_lock now.  We do this after we've
    879 	 * released the scheduler lock to avoid deadlock, and before
    880 	 * we reacquire the interlock.
    881 	 */
    882 	if (p->p_flag & P_BIGLOCK)
    883 		spinlock_acquire_count(&kernel_lock, hold_count);
    884 #endif
    885 }
    886 
    887 /*
    888  * Initialize the (doubly-linked) run queues
    889  * to be empty.
    890  */
    891 void
    892 rqinit()
    893 {
    894 	int i;
    895 
    896 	for (i = 0; i < RUNQUE_NQS; i++)
    897 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    898 		    (struct proc *)&sched_qs[i];
    899 }
    900 
    901 /*
    902  * Change process state to be runnable,
    903  * placing it on the run queue if it is in memory,
    904  * and awakening the swapper if it isn't in memory.
    905  */
    906 void
    907 setrunnable(struct proc *p)
    908 {
    909 
    910 	SCHED_ASSERT_LOCKED();
    911 
    912 	switch (p->p_stat) {
    913 	case 0:
    914 	case SRUN:
    915 	case SONPROC:
    916 	case SZOMB:
    917 	case SDEAD:
    918 	default:
    919 		panic("setrunnable");
    920 	case SSTOP:
    921 		/*
    922 		 * If we're being traced (possibly because someone attached us
    923 		 * while we were stopped), check for a signal from the debugger.
    924 		 */
    925 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    926 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
    927 			CHECKSIGS(p);
    928 		}
    929 	case SSLEEP:
    930 		unsleep(p);		/* e.g. when sending signals */
    931 		break;
    932 
    933 	case SIDL:
    934 		break;
    935 	}
    936 	p->p_stat = SRUN;
    937 	if (p->p_flag & P_INMEM)
    938 		setrunqueue(p);
    939 
    940 	if (p->p_slptime > 1)
    941 		updatepri(p);
    942 	p->p_slptime = 0;
    943 	if ((p->p_flag & P_INMEM) == 0)
    944 		sched_wakeup((caddr_t)&proc0);
    945 	else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
    946 		/*
    947 		 * XXXSMP
    948 		 * This is not exactly right.  Since p->p_cpu persists
    949 		 * across a context switch, this gives us some sort
    950 		 * of processor affinity.  But we need to figure out
    951 		 * at what point it's better to reschedule on a different
    952 		 * CPU than the last one.
    953 		 */
    954 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    955 	}
    956 }
    957 
    958 /*
    959  * Compute the priority of a process when running in user mode.
    960  * Arrange to reschedule if the resulting priority is better
    961  * than that of the current process.
    962  */
    963 void
    964 resetpriority(struct proc *p)
    965 {
    966 	unsigned int newpriority;
    967 
    968 	SCHED_ASSERT_LOCKED();
    969 
    970 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
    971 	newpriority = min(newpriority, MAXPRI);
    972 	p->p_usrpri = newpriority;
    973 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
    974 		/*
    975 		 * XXXSMP
    976 		 * Same applies as in setrunnable() above.
    977 		 */
    978 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    979 	}
    980 }
    981 
    982 /*
    983  * We adjust the priority of the current process.  The priority of a process
    984  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
    985  * is increased here.  The formula for computing priorities (in kern_synch.c)
    986  * will compute a different value each time p_estcpu increases. This can
    987  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    988  * queue will not change.  The cpu usage estimator ramps up quite quickly
    989  * when the process is running (linearly), and decays away exponentially, at
    990  * a rate which is proportionally slower when the system is busy.  The basic
    991  * principle is that the system will 90% forget that the process used a lot
    992  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    993  * processes which haven't run much recently, and to round-robin among other
    994  * processes.
    995  */
    996 
    997 void
    998 schedclock(struct proc *p)
    999 {
   1000 	int s;
   1001 
   1002 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1003 
   1004 	SCHED_LOCK(s);
   1005 	resetpriority(p);
   1006 	SCHED_UNLOCK(s);
   1007 
   1008 	if (p->p_priority >= PUSER)
   1009 		p->p_priority = p->p_usrpri;
   1010 }
   1011 
   1012 void
   1013 suspendsched()
   1014 {
   1015 	struct proc *p;
   1016 	int s;
   1017 
   1018 	/*
   1019 	 * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
   1020 	 */
   1021 	proclist_lock_read();
   1022 	SCHED_LOCK(s);
   1023 	for (p = LIST_FIRST(&allproc); p != NULL; p = LIST_NEXT(p, p_list)) {
   1024 		if ((p->p_flag & P_SYSTEM) != 0)
   1025 			continue;
   1026 		switch (p->p_stat) {
   1027 		case SRUN:
   1028 			if ((p->p_flag & P_INMEM) != 0)
   1029 				remrunqueue(p);
   1030 			/* FALLTHROUGH */
   1031 		case SSLEEP:
   1032 			p->p_stat = SSTOP;
   1033 			break;
   1034 		case SONPROC:
   1035 			/*
   1036 			 * XXX SMP: we need to deal with processes on
   1037 			 * others CPU !
   1038 			 */
   1039 			break;
   1040 		default:
   1041 			break;
   1042 		}
   1043 	}
   1044 	SCHED_UNLOCK(s);
   1045 	proclist_unlock_read();
   1046 }
   1047