kern_synch.c revision 1.107 1 /* $NetBSD: kern_synch.c,v 1.107 2001/11/30 16:21:16 kleink Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.107 2001/11/30 16:21:16 kleink Exp $");
82
83 #include "opt_ddb.h"
84 #include "opt_ktrace.h"
85 #include "opt_lockdebug.h"
86 #include "opt_multiprocessor.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/proc.h>
92 #include <sys/kernel.h>
93 #include <sys/buf.h>
94 #include <sys/signalvar.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sched.h>
97
98 #include <uvm/uvm_extern.h>
99
100 #ifdef KTRACE
101 #include <sys/ktrace.h>
102 #endif
103
104 #include <machine/cpu.h>
105
106 int lbolt; /* once a second sleep address */
107 int rrticks; /* number of hardclock ticks per roundrobin() */
108
109 /*
110 * The global scheduler state.
111 */
112 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
113 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
114 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
115
116 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
117 #if defined(MULTIPROCESSOR)
118 struct lock kernel_lock;
119 #endif
120
121 void schedcpu(void *);
122 void updatepri(struct proc *);
123 void endtsleep(void *);
124
125 __inline void awaken(struct proc *);
126
127 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
128
129 /*
130 * Force switch among equal priority processes every 100ms.
131 * Called from hardclock every hz/10 == rrticks hardclock ticks.
132 */
133 /* ARGSUSED */
134 void
135 roundrobin(struct cpu_info *ci)
136 {
137 struct schedstate_percpu *spc = &ci->ci_schedstate;
138
139 spc->spc_rrticks = rrticks;
140
141 if (curproc != NULL) {
142 if (spc->spc_flags & SPCF_SEENRR) {
143 /*
144 * The process has already been through a roundrobin
145 * without switching and may be hogging the CPU.
146 * Indicate that the process should yield.
147 */
148 spc->spc_flags |= SPCF_SHOULDYIELD;
149 } else
150 spc->spc_flags |= SPCF_SEENRR;
151 }
152 need_resched(curcpu());
153 }
154
155 /*
156 * Constants for digital decay and forget:
157 * 90% of (p_estcpu) usage in 5 * loadav time
158 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
159 * Note that, as ps(1) mentions, this can let percentages
160 * total over 100% (I've seen 137.9% for 3 processes).
161 *
162 * Note that hardclock updates p_estcpu and p_cpticks independently.
163 *
164 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
165 * That is, the system wants to compute a value of decay such
166 * that the following for loop:
167 * for (i = 0; i < (5 * loadavg); i++)
168 * p_estcpu *= decay;
169 * will compute
170 * p_estcpu *= 0.1;
171 * for all values of loadavg:
172 *
173 * Mathematically this loop can be expressed by saying:
174 * decay ** (5 * loadavg) ~= .1
175 *
176 * The system computes decay as:
177 * decay = (2 * loadavg) / (2 * loadavg + 1)
178 *
179 * We wish to prove that the system's computation of decay
180 * will always fulfill the equation:
181 * decay ** (5 * loadavg) ~= .1
182 *
183 * If we compute b as:
184 * b = 2 * loadavg
185 * then
186 * decay = b / (b + 1)
187 *
188 * We now need to prove two things:
189 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
190 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
191 *
192 * Facts:
193 * For x close to zero, exp(x) =~ 1 + x, since
194 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
195 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
196 * For x close to zero, ln(1+x) =~ x, since
197 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
198 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
199 * ln(.1) =~ -2.30
200 *
201 * Proof of (1):
202 * Solve (factor)**(power) =~ .1 given power (5*loadav):
203 * solving for factor,
204 * ln(factor) =~ (-2.30/5*loadav), or
205 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
206 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
207 *
208 * Proof of (2):
209 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
210 * solving for power,
211 * power*ln(b/(b+1)) =~ -2.30, or
212 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
213 *
214 * Actual power values for the implemented algorithm are as follows:
215 * loadav: 1 2 3 4
216 * power: 5.68 10.32 14.94 19.55
217 */
218
219 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
220 #define loadfactor(loadav) (2 * (loadav))
221 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
222
223 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
224 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
225
226 /*
227 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
228 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
229 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
230 *
231 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
232 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
233 *
234 * If you dont want to bother with the faster/more-accurate formula, you
235 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
236 * (more general) method of calculating the %age of CPU used by a process.
237 */
238 #define CCPU_SHIFT 11
239
240 /*
241 * Recompute process priorities, every hz ticks.
242 */
243 /* ARGSUSED */
244 void
245 schedcpu(void *arg)
246 {
247 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
248 struct proc *p;
249 int s, s1;
250 unsigned int newcpu;
251 int clkhz;
252
253 proclist_lock_read();
254 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
255 /*
256 * Increment time in/out of memory and sleep time
257 * (if sleeping). We ignore overflow; with 16-bit int's
258 * (remember them?) overflow takes 45 days.
259 */
260 p->p_swtime++;
261 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
262 p->p_slptime++;
263 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
264 /*
265 * If the process has slept the entire second,
266 * stop recalculating its priority until it wakes up.
267 */
268 if (p->p_slptime > 1)
269 continue;
270 s = splstatclock(); /* prevent state changes */
271 /*
272 * p_pctcpu is only for ps.
273 */
274 clkhz = stathz != 0 ? stathz : hz;
275 #if (FSHIFT >= CCPU_SHIFT)
276 p->p_pctcpu += (clkhz == 100)?
277 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
278 100 * (((fixpt_t) p->p_cpticks)
279 << (FSHIFT - CCPU_SHIFT)) / clkhz;
280 #else
281 p->p_pctcpu += ((FSCALE - ccpu) *
282 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
283 #endif
284 p->p_cpticks = 0;
285 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
286 p->p_estcpu = newcpu;
287 SCHED_LOCK(s1);
288 resetpriority(p);
289 if (p->p_priority >= PUSER) {
290 if (p->p_stat == SRUN &&
291 (p->p_flag & P_INMEM) &&
292 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
293 remrunqueue(p);
294 p->p_priority = p->p_usrpri;
295 setrunqueue(p);
296 } else
297 p->p_priority = p->p_usrpri;
298 }
299 SCHED_UNLOCK(s1);
300 splx(s);
301 }
302 proclist_unlock_read();
303 uvm_meter();
304 wakeup((caddr_t)&lbolt);
305 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
306 }
307
308 /*
309 * Recalculate the priority of a process after it has slept for a while.
310 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
311 * least six times the loadfactor will decay p_estcpu to zero.
312 */
313 void
314 updatepri(struct proc *p)
315 {
316 unsigned int newcpu;
317 fixpt_t loadfac;
318
319 SCHED_ASSERT_LOCKED();
320
321 newcpu = p->p_estcpu;
322 loadfac = loadfactor(averunnable.ldavg[0]);
323
324 if (p->p_slptime > 5 * loadfac)
325 p->p_estcpu = 0;
326 else {
327 p->p_slptime--; /* the first time was done in schedcpu */
328 while (newcpu && --p->p_slptime)
329 newcpu = (int) decay_cpu(loadfac, newcpu);
330 p->p_estcpu = newcpu;
331 }
332 resetpriority(p);
333 }
334
335 /*
336 * During autoconfiguration or after a panic, a sleep will simply
337 * lower the priority briefly to allow interrupts, then return.
338 * The priority to be used (safepri) is machine-dependent, thus this
339 * value is initialized and maintained in the machine-dependent layers.
340 * This priority will typically be 0, or the lowest priority
341 * that is safe for use on the interrupt stack; it can be made
342 * higher to block network software interrupts after panics.
343 */
344 int safepri;
345
346 /*
347 * General sleep call. Suspends the current process until a wakeup is
348 * performed on the specified identifier. The process will then be made
349 * runnable with the specified priority. Sleeps at most timo/hz seconds
350 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
351 * before and after sleeping, else signals are not checked. Returns 0 if
352 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
353 * signal needs to be delivered, ERESTART is returned if the current system
354 * call should be restarted if possible, and EINTR is returned if the system
355 * call should be interrupted by the signal (return EINTR).
356 *
357 * The interlock is held until the scheduler_slock is acquired. The
358 * interlock will be locked before returning back to the caller
359 * unless the PNORELOCK flag is specified, in which case the
360 * interlock will always be unlocked upon return.
361 */
362 int
363 ltsleep(void *ident, int priority, const char *wmesg, int timo,
364 __volatile struct simplelock *interlock)
365 {
366 struct proc *p = curproc;
367 struct slpque *qp;
368 int sig, s;
369 int catch = priority & PCATCH;
370 int relock = (priority & PNORELOCK) == 0;
371
372 /*
373 * XXXSMP
374 * This is probably bogus. Figure out what the right
375 * thing to do here really is.
376 * Note that not sleeping if ltsleep is called with curproc == NULL
377 * in the shutdown case is disgusting but partly necessary given
378 * how shutdown (barely) works.
379 */
380 if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
381 /*
382 * After a panic, or during autoconfiguration,
383 * just give interrupts a chance, then just return;
384 * don't run any other procs or panic below,
385 * in case this is the idle process and already asleep.
386 */
387 s = splhigh();
388 splx(safepri);
389 splx(s);
390 if (interlock != NULL && relock == 0)
391 simple_unlock(interlock);
392 return (0);
393 }
394
395 KASSERT(p != NULL);
396 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
397
398 #ifdef KTRACE
399 if (KTRPOINT(p, KTR_CSW))
400 ktrcsw(p, 1, 0);
401 #endif
402
403 SCHED_LOCK(s);
404
405 #ifdef DIAGNOSTIC
406 if (ident == NULL)
407 panic("ltsleep: ident == NULL");
408 if (p->p_stat != SONPROC)
409 panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
410 if (p->p_back != NULL)
411 panic("ltsleep: p_back != NULL");
412 #endif
413
414 p->p_wchan = ident;
415 p->p_wmesg = wmesg;
416 p->p_slptime = 0;
417 p->p_priority = priority & PRIMASK;
418
419 qp = SLPQUE(ident);
420 if (qp->sq_head == 0)
421 qp->sq_head = p;
422 else
423 *qp->sq_tailp = p;
424 *(qp->sq_tailp = &p->p_forw) = 0;
425
426 if (timo)
427 callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
428
429 /*
430 * We can now release the interlock; the scheduler_slock
431 * is held, so a thread can't get in to do wakeup() before
432 * we do the switch.
433 *
434 * XXX We leave the code block here, after inserting ourselves
435 * on the sleep queue, because we might want a more clever
436 * data structure for the sleep queues at some point.
437 */
438 if (interlock != NULL)
439 simple_unlock(interlock);
440
441 /*
442 * We put ourselves on the sleep queue and start our timeout
443 * before calling CURSIG, as we could stop there, and a wakeup
444 * or a SIGCONT (or both) could occur while we were stopped.
445 * A SIGCONT would cause us to be marked as SSLEEP
446 * without resuming us, thus we must be ready for sleep
447 * when CURSIG is called. If the wakeup happens while we're
448 * stopped, p->p_wchan will be 0 upon return from CURSIG.
449 */
450 if (catch) {
451 p->p_flag |= P_SINTR;
452 if ((sig = CURSIG(p)) != 0) {
453 if (p->p_wchan != NULL)
454 unsleep(p);
455 p->p_stat = SONPROC;
456 SCHED_UNLOCK(s);
457 goto resume;
458 }
459 if (p->p_wchan == NULL) {
460 catch = 0;
461 SCHED_UNLOCK(s);
462 goto resume;
463 }
464 } else
465 sig = 0;
466 p->p_stat = SSLEEP;
467 p->p_stats->p_ru.ru_nvcsw++;
468
469 SCHED_ASSERT_LOCKED();
470 mi_switch(p);
471
472 #if defined(DDB) && !defined(GPROF)
473 /* handy breakpoint location after process "wakes" */
474 __asm(".globl bpendtsleep ; bpendtsleep:");
475 #endif
476
477 SCHED_ASSERT_UNLOCKED();
478 splx(s);
479
480 resume:
481 KDASSERT(p->p_cpu != NULL);
482 KDASSERT(p->p_cpu == curcpu());
483 p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
484
485 p->p_flag &= ~P_SINTR;
486 if (p->p_flag & P_TIMEOUT) {
487 p->p_flag &= ~P_TIMEOUT;
488 if (sig == 0) {
489 #ifdef KTRACE
490 if (KTRPOINT(p, KTR_CSW))
491 ktrcsw(p, 0, 0);
492 #endif
493 if (relock && interlock != NULL)
494 simple_lock(interlock);
495 return (EWOULDBLOCK);
496 }
497 } else if (timo)
498 callout_stop(&p->p_tsleep_ch);
499 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
500 #ifdef KTRACE
501 if (KTRPOINT(p, KTR_CSW))
502 ktrcsw(p, 0, 0);
503 #endif
504 if (relock && interlock != NULL)
505 simple_lock(interlock);
506 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
507 return (EINTR);
508 return (ERESTART);
509 }
510 #ifdef KTRACE
511 if (KTRPOINT(p, KTR_CSW))
512 ktrcsw(p, 0, 0);
513 #endif
514 if (relock && interlock != NULL)
515 simple_lock(interlock);
516 return (0);
517 }
518
519 /*
520 * Implement timeout for tsleep.
521 * If process hasn't been awakened (wchan non-zero),
522 * set timeout flag and undo the sleep. If proc
523 * is stopped, just unsleep so it will remain stopped.
524 */
525 void
526 endtsleep(void *arg)
527 {
528 struct proc *p;
529 int s;
530
531 p = (struct proc *)arg;
532
533 SCHED_LOCK(s);
534 if (p->p_wchan) {
535 if (p->p_stat == SSLEEP)
536 setrunnable(p);
537 else
538 unsleep(p);
539 p->p_flag |= P_TIMEOUT;
540 }
541 SCHED_UNLOCK(s);
542 }
543
544 /*
545 * Remove a process from its wait queue
546 */
547 void
548 unsleep(struct proc *p)
549 {
550 struct slpque *qp;
551 struct proc **hp;
552
553 SCHED_ASSERT_LOCKED();
554
555 if (p->p_wchan) {
556 hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
557 while (*hp != p)
558 hp = &(*hp)->p_forw;
559 *hp = p->p_forw;
560 if (qp->sq_tailp == &p->p_forw)
561 qp->sq_tailp = hp;
562 p->p_wchan = 0;
563 }
564 }
565
566 /*
567 * Optimized-for-wakeup() version of setrunnable().
568 */
569 __inline void
570 awaken(struct proc *p)
571 {
572
573 SCHED_ASSERT_LOCKED();
574
575 if (p->p_slptime > 1)
576 updatepri(p);
577 p->p_slptime = 0;
578 p->p_stat = SRUN;
579
580 /*
581 * Since curpriority is a user priority, p->p_priority
582 * is always better than curpriority.
583 */
584 if (p->p_flag & P_INMEM) {
585 setrunqueue(p);
586 KASSERT(p->p_cpu != NULL);
587 need_resched(p->p_cpu);
588 } else
589 sched_wakeup(&proc0);
590 }
591
592 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
593 void
594 sched_unlock_idle(void)
595 {
596
597 simple_unlock(&sched_lock);
598 }
599
600 void
601 sched_lock_idle(void)
602 {
603
604 simple_lock(&sched_lock);
605 }
606 #endif /* MULTIPROCESSOR || LOCKDEBUG */
607
608 /*
609 * Make all processes sleeping on the specified identifier runnable.
610 */
611
612 void
613 wakeup(void *ident)
614 {
615 int s;
616
617 SCHED_ASSERT_UNLOCKED();
618
619 SCHED_LOCK(s);
620 sched_wakeup(ident);
621 SCHED_UNLOCK(s);
622 }
623
624 void
625 sched_wakeup(void *ident)
626 {
627 struct slpque *qp;
628 struct proc *p, **q;
629
630 SCHED_ASSERT_LOCKED();
631
632 qp = SLPQUE(ident);
633 restart:
634 for (q = &qp->sq_head; (p = *q) != NULL; ) {
635 #ifdef DIAGNOSTIC
636 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
637 panic("wakeup");
638 #endif
639 if (p->p_wchan == ident) {
640 p->p_wchan = 0;
641 *q = p->p_forw;
642 if (qp->sq_tailp == &p->p_forw)
643 qp->sq_tailp = q;
644 if (p->p_stat == SSLEEP) {
645 awaken(p);
646 goto restart;
647 }
648 } else
649 q = &p->p_forw;
650 }
651 }
652
653 /*
654 * Make the highest priority process first in line on the specified
655 * identifier runnable.
656 */
657 void
658 wakeup_one(void *ident)
659 {
660 struct slpque *qp;
661 struct proc *p, **q;
662 struct proc *best_sleepp, **best_sleepq;
663 struct proc *best_stopp, **best_stopq;
664 int s;
665
666 best_sleepp = best_stopp = NULL;
667 best_sleepq = best_stopq = NULL;
668
669 SCHED_LOCK(s);
670
671 qp = SLPQUE(ident);
672
673 for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
674 #ifdef DIAGNOSTIC
675 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
676 panic("wakeup_one");
677 #endif
678 if (p->p_wchan == ident) {
679 if (p->p_stat == SSLEEP) {
680 if (best_sleepp == NULL ||
681 p->p_priority < best_sleepp->p_priority) {
682 best_sleepp = p;
683 best_sleepq = q;
684 }
685 } else {
686 if (best_stopp == NULL ||
687 p->p_priority < best_stopp->p_priority) {
688 best_stopp = p;
689 best_stopq = q;
690 }
691 }
692 }
693 }
694
695 /*
696 * Consider any SSLEEP process higher than the highest priority SSTOP
697 * process.
698 */
699 if (best_sleepp != NULL) {
700 p = best_sleepp;
701 q = best_sleepq;
702 } else {
703 p = best_stopp;
704 q = best_stopq;
705 }
706
707 if (p != NULL) {
708 p->p_wchan = NULL;
709 *q = p->p_forw;
710 if (qp->sq_tailp == &p->p_forw)
711 qp->sq_tailp = q;
712 if (p->p_stat == SSLEEP)
713 awaken(p);
714 }
715 SCHED_UNLOCK(s);
716 }
717
718 /*
719 * General yield call. Puts the current process back on its run queue and
720 * performs a voluntary context switch.
721 */
722 void
723 yield(void)
724 {
725 struct proc *p = curproc;
726 int s;
727
728 SCHED_LOCK(s);
729 p->p_priority = p->p_usrpri;
730 p->p_stat = SRUN;
731 setrunqueue(p);
732 p->p_stats->p_ru.ru_nvcsw++;
733 mi_switch(p);
734 SCHED_ASSERT_UNLOCKED();
735 splx(s);
736 }
737
738 /*
739 * General preemption call. Puts the current process back on its run queue
740 * and performs an involuntary context switch. If a process is supplied,
741 * we switch to that process. Otherwise, we use the normal process selection
742 * criteria.
743 */
744 void
745 preempt(struct proc *newp)
746 {
747 struct proc *p = curproc;
748 int s;
749
750 /*
751 * XXX Switching to a specific process is not supported yet.
752 */
753 if (newp != NULL)
754 panic("preempt: cpu_preempt not yet implemented");
755
756 SCHED_LOCK(s);
757 p->p_priority = p->p_usrpri;
758 p->p_stat = SRUN;
759 setrunqueue(p);
760 p->p_stats->p_ru.ru_nivcsw++;
761 mi_switch(p);
762 SCHED_ASSERT_UNLOCKED();
763 splx(s);
764 }
765
766 /*
767 * The machine independent parts of context switch.
768 * Must be called at splsched() (no higher!) and with
769 * the sched_lock held.
770 */
771 void
772 mi_switch(struct proc *p)
773 {
774 struct schedstate_percpu *spc;
775 struct rlimit *rlim;
776 long s, u;
777 struct timeval tv;
778 #if defined(MULTIPROCESSOR)
779 int hold_count;
780 #endif
781
782 SCHED_ASSERT_LOCKED();
783
784 #if defined(MULTIPROCESSOR)
785 /*
786 * Release the kernel_lock, as we are about to yield the CPU.
787 * The scheduler lock is still held until cpu_switch()
788 * selects a new process and removes it from the run queue.
789 */
790 if (p->p_flag & P_BIGLOCK)
791 hold_count = spinlock_release_all(&kernel_lock);
792 #endif
793
794 KDASSERT(p->p_cpu != NULL);
795 KDASSERT(p->p_cpu == curcpu());
796
797 spc = &p->p_cpu->ci_schedstate;
798
799 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
800 spinlock_switchcheck();
801 #endif
802 #ifdef LOCKDEBUG
803 simple_lock_switchcheck();
804 #endif
805
806 /*
807 * Compute the amount of time during which the current
808 * process was running, and add that to its total so far.
809 */
810 microtime(&tv);
811 u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
812 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
813 if (u < 0) {
814 u += 1000000;
815 s--;
816 } else if (u >= 1000000) {
817 u -= 1000000;
818 s++;
819 }
820 p->p_rtime.tv_usec = u;
821 p->p_rtime.tv_sec = s;
822
823 /*
824 * Check if the process exceeds its cpu resource allocation.
825 * If over max, kill it. In any case, if it has run for more
826 * than 10 minutes, reduce priority to give others a chance.
827 */
828 rlim = &p->p_rlimit[RLIMIT_CPU];
829 if (s >= rlim->rlim_cur) {
830 /*
831 * XXXSMP: we're inside the scheduler lock perimeter;
832 * use sched_psignal.
833 */
834 if (s >= rlim->rlim_max)
835 sched_psignal(p, SIGKILL);
836 else {
837 sched_psignal(p, SIGXCPU);
838 if (rlim->rlim_cur < rlim->rlim_max)
839 rlim->rlim_cur += 5;
840 }
841 }
842 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
843 p->p_nice == NZERO) {
844 p->p_nice = autoniceval + NZERO;
845 resetpriority(p);
846 }
847
848 /*
849 * Process is about to yield the CPU; clear the appropriate
850 * scheduling flags.
851 */
852 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
853
854 /*
855 * Pick a new current process and switch to it. When we
856 * run again, we'll return back here.
857 */
858 uvmexp.swtch++;
859 cpu_switch(p);
860
861 /*
862 * Make sure that MD code released the scheduler lock before
863 * resuming us.
864 */
865 SCHED_ASSERT_UNLOCKED();
866
867 /*
868 * We're running again; record our new start time. We might
869 * be running on a new CPU now, so don't use the cache'd
870 * schedstate_percpu pointer.
871 */
872 KDASSERT(p->p_cpu != NULL);
873 KDASSERT(p->p_cpu == curcpu());
874 microtime(&p->p_cpu->ci_schedstate.spc_runtime);
875
876 #if defined(MULTIPROCESSOR)
877 /*
878 * Reacquire the kernel_lock now. We do this after we've
879 * released the scheduler lock to avoid deadlock, and before
880 * we reacquire the interlock.
881 */
882 if (p->p_flag & P_BIGLOCK)
883 spinlock_acquire_count(&kernel_lock, hold_count);
884 #endif
885 }
886
887 /*
888 * Initialize the (doubly-linked) run queues
889 * to be empty.
890 */
891 void
892 rqinit()
893 {
894 int i;
895
896 for (i = 0; i < RUNQUE_NQS; i++)
897 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
898 (struct proc *)&sched_qs[i];
899 }
900
901 /*
902 * Change process state to be runnable,
903 * placing it on the run queue if it is in memory,
904 * and awakening the swapper if it isn't in memory.
905 */
906 void
907 setrunnable(struct proc *p)
908 {
909
910 SCHED_ASSERT_LOCKED();
911
912 switch (p->p_stat) {
913 case 0:
914 case SRUN:
915 case SONPROC:
916 case SZOMB:
917 case SDEAD:
918 default:
919 panic("setrunnable");
920 case SSTOP:
921 /*
922 * If we're being traced (possibly because someone attached us
923 * while we were stopped), check for a signal from the debugger.
924 */
925 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
926 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
927 CHECKSIGS(p);
928 }
929 case SSLEEP:
930 unsleep(p); /* e.g. when sending signals */
931 break;
932
933 case SIDL:
934 break;
935 }
936 p->p_stat = SRUN;
937 if (p->p_flag & P_INMEM)
938 setrunqueue(p);
939
940 if (p->p_slptime > 1)
941 updatepri(p);
942 p->p_slptime = 0;
943 if ((p->p_flag & P_INMEM) == 0)
944 sched_wakeup((caddr_t)&proc0);
945 else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
946 /*
947 * XXXSMP
948 * This is not exactly right. Since p->p_cpu persists
949 * across a context switch, this gives us some sort
950 * of processor affinity. But we need to figure out
951 * at what point it's better to reschedule on a different
952 * CPU than the last one.
953 */
954 need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
955 }
956 }
957
958 /*
959 * Compute the priority of a process when running in user mode.
960 * Arrange to reschedule if the resulting priority is better
961 * than that of the current process.
962 */
963 void
964 resetpriority(struct proc *p)
965 {
966 unsigned int newpriority;
967
968 SCHED_ASSERT_LOCKED();
969
970 newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
971 newpriority = min(newpriority, MAXPRI);
972 p->p_usrpri = newpriority;
973 if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
974 /*
975 * XXXSMP
976 * Same applies as in setrunnable() above.
977 */
978 need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
979 }
980 }
981
982 /*
983 * We adjust the priority of the current process. The priority of a process
984 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
985 * is increased here. The formula for computing priorities (in kern_synch.c)
986 * will compute a different value each time p_estcpu increases. This can
987 * cause a switch, but unless the priority crosses a PPQ boundary the actual
988 * queue will not change. The cpu usage estimator ramps up quite quickly
989 * when the process is running (linearly), and decays away exponentially, at
990 * a rate which is proportionally slower when the system is busy. The basic
991 * principle is that the system will 90% forget that the process used a lot
992 * of CPU time in 5 * loadav seconds. This causes the system to favor
993 * processes which haven't run much recently, and to round-robin among other
994 * processes.
995 */
996
997 void
998 schedclock(struct proc *p)
999 {
1000 int s;
1001
1002 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1003
1004 SCHED_LOCK(s);
1005 resetpriority(p);
1006 SCHED_UNLOCK(s);
1007
1008 if (p->p_priority >= PUSER)
1009 p->p_priority = p->p_usrpri;
1010 }
1011
1012 void
1013 suspendsched()
1014 {
1015 struct proc *p;
1016 int s;
1017
1018 /*
1019 * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
1020 */
1021 proclist_lock_read();
1022 SCHED_LOCK(s);
1023 for (p = LIST_FIRST(&allproc); p != NULL; p = LIST_NEXT(p, p_list)) {
1024 if ((p->p_flag & P_SYSTEM) != 0)
1025 continue;
1026 switch (p->p_stat) {
1027 case SRUN:
1028 if ((p->p_flag & P_INMEM) != 0)
1029 remrunqueue(p);
1030 /* FALLTHROUGH */
1031 case SSLEEP:
1032 p->p_stat = SSTOP;
1033 break;
1034 case SONPROC:
1035 /*
1036 * XXX SMP: we need to deal with processes on
1037 * others CPU !
1038 */
1039 break;
1040 default:
1041 break;
1042 }
1043 }
1044 SCHED_UNLOCK(s);
1045 proclist_unlock_read();
1046 }
1047