Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.107.8.2
      1 /*	$NetBSD: kern_synch.c,v 1.107.8.2 2002/07/15 10:36:35 gehenna Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.107.8.2 2002/07/15 10:36:35 gehenna Exp $");
     82 
     83 #include "opt_ddb.h"
     84 #include "opt_ktrace.h"
     85 #include "opt_kstack.h"
     86 #include "opt_lockdebug.h"
     87 #include "opt_multiprocessor.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/callout.h>
     92 #include <sys/proc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/buf.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/resourcevar.h>
     97 #include <sys/sched.h>
     98 
     99 #include <uvm/uvm_extern.h>
    100 
    101 #ifdef KTRACE
    102 #include <sys/ktrace.h>
    103 #endif
    104 
    105 #include <machine/cpu.h>
    106 
    107 int	lbolt;			/* once a second sleep address */
    108 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    109 
    110 /*
    111  * The global scheduler state.
    112  */
    113 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    114 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    115 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    116 
    117 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    118 
    119 void schedcpu(void *);
    120 void updatepri(struct proc *);
    121 void endtsleep(void *);
    122 
    123 __inline void awaken(struct proc *);
    124 
    125 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    126 
    127 /*
    128  * Force switch among equal priority processes every 100ms.
    129  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    130  */
    131 /* ARGSUSED */
    132 void
    133 roundrobin(struct cpu_info *ci)
    134 {
    135 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    136 
    137 	spc->spc_rrticks = rrticks;
    138 
    139 	if (curproc != NULL) {
    140 		if (spc->spc_flags & SPCF_SEENRR) {
    141 			/*
    142 			 * The process has already been through a roundrobin
    143 			 * without switching and may be hogging the CPU.
    144 			 * Indicate that the process should yield.
    145 			 */
    146 			spc->spc_flags |= SPCF_SHOULDYIELD;
    147 		} else
    148 			spc->spc_flags |= SPCF_SEENRR;
    149 	}
    150 	need_resched(curcpu());
    151 }
    152 
    153 /*
    154  * Constants for digital decay and forget:
    155  *	90% of (p_estcpu) usage in 5 * loadav time
    156  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    157  *          Note that, as ps(1) mentions, this can let percentages
    158  *          total over 100% (I've seen 137.9% for 3 processes).
    159  *
    160  * Note that hardclock updates p_estcpu and p_cpticks independently.
    161  *
    162  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    163  * That is, the system wants to compute a value of decay such
    164  * that the following for loop:
    165  * 	for (i = 0; i < (5 * loadavg); i++)
    166  * 		p_estcpu *= decay;
    167  * will compute
    168  * 	p_estcpu *= 0.1;
    169  * for all values of loadavg:
    170  *
    171  * Mathematically this loop can be expressed by saying:
    172  * 	decay ** (5 * loadavg) ~= .1
    173  *
    174  * The system computes decay as:
    175  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    176  *
    177  * We wish to prove that the system's computation of decay
    178  * will always fulfill the equation:
    179  * 	decay ** (5 * loadavg) ~= .1
    180  *
    181  * If we compute b as:
    182  * 	b = 2 * loadavg
    183  * then
    184  * 	decay = b / (b + 1)
    185  *
    186  * We now need to prove two things:
    187  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    188  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    189  *
    190  * Facts:
    191  *         For x close to zero, exp(x) =~ 1 + x, since
    192  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    193  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    194  *         For x close to zero, ln(1+x) =~ x, since
    195  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    196  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    197  *         ln(.1) =~ -2.30
    198  *
    199  * Proof of (1):
    200  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    201  *	solving for factor,
    202  *      ln(factor) =~ (-2.30/5*loadav), or
    203  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    204  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    205  *
    206  * Proof of (2):
    207  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    208  *	solving for power,
    209  *      power*ln(b/(b+1)) =~ -2.30, or
    210  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    211  *
    212  * Actual power values for the implemented algorithm are as follows:
    213  *      loadav: 1       2       3       4
    214  *      power:  5.68    10.32   14.94   19.55
    215  */
    216 
    217 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    218 #define	loadfactor(loadav)	(2 * (loadav))
    219 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    220 
    221 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    222 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    223 
    224 /*
    225  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    226  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    227  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    228  *
    229  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    230  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    231  *
    232  * If you dont want to bother with the faster/more-accurate formula, you
    233  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    234  * (more general) method of calculating the %age of CPU used by a process.
    235  */
    236 #define	CCPU_SHIFT	11
    237 
    238 /*
    239  * Recompute process priorities, every hz ticks.
    240  */
    241 /* ARGSUSED */
    242 void
    243 schedcpu(void *arg)
    244 {
    245 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    246 	struct proc *p;
    247 	int s, s1;
    248 	unsigned int newcpu;
    249 	int clkhz;
    250 
    251 	proclist_lock_read();
    252 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    253 		/*
    254 		 * Increment time in/out of memory and sleep time
    255 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    256 		 * (remember them?) overflow takes 45 days.
    257 		 */
    258 		p->p_swtime++;
    259 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    260 			p->p_slptime++;
    261 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    262 		/*
    263 		 * If the process has slept the entire second,
    264 		 * stop recalculating its priority until it wakes up.
    265 		 */
    266 		if (p->p_slptime > 1)
    267 			continue;
    268 		s = splstatclock();	/* prevent state changes */
    269 		/*
    270 		 * p_pctcpu is only for ps.
    271 		 */
    272 		clkhz = stathz != 0 ? stathz : hz;
    273 #if	(FSHIFT >= CCPU_SHIFT)
    274 		p->p_pctcpu += (clkhz == 100)?
    275 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    276                 	100 * (((fixpt_t) p->p_cpticks)
    277 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    278 #else
    279 		p->p_pctcpu += ((FSCALE - ccpu) *
    280 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    281 #endif
    282 		p->p_cpticks = 0;
    283 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    284 		p->p_estcpu = newcpu;
    285 		SCHED_LOCK(s1);
    286 		resetpriority(p);
    287 		if (p->p_priority >= PUSER) {
    288 			if (p->p_stat == SRUN &&
    289 			    (p->p_flag & P_INMEM) &&
    290 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    291 				remrunqueue(p);
    292 				p->p_priority = p->p_usrpri;
    293 				setrunqueue(p);
    294 			} else
    295 				p->p_priority = p->p_usrpri;
    296 		}
    297 		SCHED_UNLOCK(s1);
    298 		splx(s);
    299 	}
    300 	proclist_unlock_read();
    301 	uvm_meter();
    302 	wakeup((caddr_t)&lbolt);
    303 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    304 }
    305 
    306 /*
    307  * Recalculate the priority of a process after it has slept for a while.
    308  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    309  * least six times the loadfactor will decay p_estcpu to zero.
    310  */
    311 void
    312 updatepri(struct proc *p)
    313 {
    314 	unsigned int newcpu;
    315 	fixpt_t loadfac;
    316 
    317 	SCHED_ASSERT_LOCKED();
    318 
    319 	newcpu = p->p_estcpu;
    320 	loadfac = loadfactor(averunnable.ldavg[0]);
    321 
    322 	if (p->p_slptime > 5 * loadfac)
    323 		p->p_estcpu = 0;
    324 	else {
    325 		p->p_slptime--;	/* the first time was done in schedcpu */
    326 		while (newcpu && --p->p_slptime)
    327 			newcpu = (int) decay_cpu(loadfac, newcpu);
    328 		p->p_estcpu = newcpu;
    329 	}
    330 	resetpriority(p);
    331 }
    332 
    333 /*
    334  * During autoconfiguration or after a panic, a sleep will simply
    335  * lower the priority briefly to allow interrupts, then return.
    336  * The priority to be used (safepri) is machine-dependent, thus this
    337  * value is initialized and maintained in the machine-dependent layers.
    338  * This priority will typically be 0, or the lowest priority
    339  * that is safe for use on the interrupt stack; it can be made
    340  * higher to block network software interrupts after panics.
    341  */
    342 int safepri;
    343 
    344 /*
    345  * General sleep call.  Suspends the current process until a wakeup is
    346  * performed on the specified identifier.  The process will then be made
    347  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    348  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    349  * before and after sleeping, else signals are not checked.  Returns 0 if
    350  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    351  * signal needs to be delivered, ERESTART is returned if the current system
    352  * call should be restarted if possible, and EINTR is returned if the system
    353  * call should be interrupted by the signal (return EINTR).
    354  *
    355  * The interlock is held until the scheduler_slock is acquired.  The
    356  * interlock will be locked before returning back to the caller
    357  * unless the PNORELOCK flag is specified, in which case the
    358  * interlock will always be unlocked upon return.
    359  */
    360 int
    361 ltsleep(void *ident, int priority, const char *wmesg, int timo,
    362     __volatile struct simplelock *interlock)
    363 {
    364 	struct proc *p = curproc;
    365 	struct slpque *qp;
    366 	int sig, s;
    367 	int catch = priority & PCATCH;
    368 	int relock = (priority & PNORELOCK) == 0;
    369 
    370 	/*
    371 	 * XXXSMP
    372 	 * This is probably bogus.  Figure out what the right
    373 	 * thing to do here really is.
    374 	 * Note that not sleeping if ltsleep is called with curproc == NULL
    375 	 * in the shutdown case is disgusting but partly necessary given
    376 	 * how shutdown (barely) works.
    377 	 */
    378 	if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
    379 		/*
    380 		 * After a panic, or during autoconfiguration,
    381 		 * just give interrupts a chance, then just return;
    382 		 * don't run any other procs or panic below,
    383 		 * in case this is the idle process and already asleep.
    384 		 */
    385 		s = splhigh();
    386 		splx(safepri);
    387 		splx(s);
    388 		if (interlock != NULL && relock == 0)
    389 			simple_unlock(interlock);
    390 		return (0);
    391 	}
    392 
    393 	KASSERT(p != NULL);
    394 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    395 
    396 #ifdef KTRACE
    397 	if (KTRPOINT(p, KTR_CSW))
    398 		ktrcsw(p, 1, 0);
    399 #endif
    400 
    401 	SCHED_LOCK(s);
    402 
    403 #ifdef DIAGNOSTIC
    404 	if (ident == NULL)
    405 		panic("ltsleep: ident == NULL");
    406 	if (p->p_stat != SONPROC)
    407 		panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
    408 	if (p->p_back != NULL)
    409 		panic("ltsleep: p_back != NULL");
    410 #endif
    411 
    412 	p->p_wchan = ident;
    413 	p->p_wmesg = wmesg;
    414 	p->p_slptime = 0;
    415 	p->p_priority = priority & PRIMASK;
    416 
    417 	qp = SLPQUE(ident);
    418 	if (qp->sq_head == 0)
    419 		qp->sq_head = p;
    420 	else
    421 		*qp->sq_tailp = p;
    422 	*(qp->sq_tailp = &p->p_forw) = 0;
    423 
    424 	if (timo)
    425 		callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
    426 
    427 	/*
    428 	 * We can now release the interlock; the scheduler_slock
    429 	 * is held, so a thread can't get in to do wakeup() before
    430 	 * we do the switch.
    431 	 *
    432 	 * XXX We leave the code block here, after inserting ourselves
    433 	 * on the sleep queue, because we might want a more clever
    434 	 * data structure for the sleep queues at some point.
    435 	 */
    436 	if (interlock != NULL)
    437 		simple_unlock(interlock);
    438 
    439 	/*
    440 	 * We put ourselves on the sleep queue and start our timeout
    441 	 * before calling CURSIG, as we could stop there, and a wakeup
    442 	 * or a SIGCONT (or both) could occur while we were stopped.
    443 	 * A SIGCONT would cause us to be marked as SSLEEP
    444 	 * without resuming us, thus we must be ready for sleep
    445 	 * when CURSIG is called.  If the wakeup happens while we're
    446 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    447 	 */
    448 	if (catch) {
    449 		p->p_flag |= P_SINTR;
    450 		if ((sig = CURSIG(p)) != 0) {
    451 			if (p->p_wchan != NULL)
    452 				unsleep(p);
    453 			p->p_stat = SONPROC;
    454 			SCHED_UNLOCK(s);
    455 			goto resume;
    456 		}
    457 		if (p->p_wchan == NULL) {
    458 			catch = 0;
    459 			SCHED_UNLOCK(s);
    460 			goto resume;
    461 		}
    462 	} else
    463 		sig = 0;
    464 	p->p_stat = SSLEEP;
    465 	p->p_stats->p_ru.ru_nvcsw++;
    466 
    467 	SCHED_ASSERT_LOCKED();
    468 	mi_switch(p);
    469 
    470 #if	defined(DDB) && !defined(GPROF)
    471 	/* handy breakpoint location after process "wakes" */
    472 	__asm(".globl bpendtsleep ; bpendtsleep:");
    473 #endif
    474 
    475 	SCHED_ASSERT_UNLOCKED();
    476 	splx(s);
    477 
    478  resume:
    479 	KDASSERT(p->p_cpu != NULL);
    480 	KDASSERT(p->p_cpu == curcpu());
    481 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
    482 
    483 	p->p_flag &= ~P_SINTR;
    484 	if (p->p_flag & P_TIMEOUT) {
    485 		p->p_flag &= ~P_TIMEOUT;
    486 		if (sig == 0) {
    487 #ifdef KTRACE
    488 			if (KTRPOINT(p, KTR_CSW))
    489 				ktrcsw(p, 0, 0);
    490 #endif
    491 			if (relock && interlock != NULL)
    492 				simple_lock(interlock);
    493 			return (EWOULDBLOCK);
    494 		}
    495 	} else if (timo)
    496 		callout_stop(&p->p_tsleep_ch);
    497 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    498 #ifdef KTRACE
    499 		if (KTRPOINT(p, KTR_CSW))
    500 			ktrcsw(p, 0, 0);
    501 #endif
    502 		if (relock && interlock != NULL)
    503 			simple_lock(interlock);
    504 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    505 			return (EINTR);
    506 		return (ERESTART);
    507 	}
    508 #ifdef KTRACE
    509 	if (KTRPOINT(p, KTR_CSW))
    510 		ktrcsw(p, 0, 0);
    511 #endif
    512 	if (relock && interlock != NULL)
    513 		simple_lock(interlock);
    514 	return (0);
    515 }
    516 
    517 /*
    518  * Implement timeout for tsleep.
    519  * If process hasn't been awakened (wchan non-zero),
    520  * set timeout flag and undo the sleep.  If proc
    521  * is stopped, just unsleep so it will remain stopped.
    522  */
    523 void
    524 endtsleep(void *arg)
    525 {
    526 	struct proc *p;
    527 	int s;
    528 
    529 	p = (struct proc *)arg;
    530 
    531 	SCHED_LOCK(s);
    532 	if (p->p_wchan) {
    533 		if (p->p_stat == SSLEEP)
    534 			setrunnable(p);
    535 		else
    536 			unsleep(p);
    537 		p->p_flag |= P_TIMEOUT;
    538 	}
    539 	SCHED_UNLOCK(s);
    540 }
    541 
    542 /*
    543  * Remove a process from its wait queue
    544  */
    545 void
    546 unsleep(struct proc *p)
    547 {
    548 	struct slpque *qp;
    549 	struct proc **hp;
    550 
    551 	SCHED_ASSERT_LOCKED();
    552 
    553 	if (p->p_wchan) {
    554 		hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
    555 		while (*hp != p)
    556 			hp = &(*hp)->p_forw;
    557 		*hp = p->p_forw;
    558 		if (qp->sq_tailp == &p->p_forw)
    559 			qp->sq_tailp = hp;
    560 		p->p_wchan = 0;
    561 	}
    562 }
    563 
    564 /*
    565  * Optimized-for-wakeup() version of setrunnable().
    566  */
    567 __inline void
    568 awaken(struct proc *p)
    569 {
    570 
    571 	SCHED_ASSERT_LOCKED();
    572 
    573 	if (p->p_slptime > 1)
    574 		updatepri(p);
    575 	p->p_slptime = 0;
    576 	p->p_stat = SRUN;
    577 
    578 	/*
    579 	 * Since curpriority is a user priority, p->p_priority
    580 	 * is always better than curpriority.
    581 	 */
    582 	if (p->p_flag & P_INMEM) {
    583 		setrunqueue(p);
    584 		KASSERT(p->p_cpu != NULL);
    585 		need_resched(p->p_cpu);
    586 	} else
    587 		sched_wakeup(&proc0);
    588 }
    589 
    590 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    591 void
    592 sched_unlock_idle(void)
    593 {
    594 
    595 	simple_unlock(&sched_lock);
    596 }
    597 
    598 void
    599 sched_lock_idle(void)
    600 {
    601 
    602 	simple_lock(&sched_lock);
    603 }
    604 #endif /* MULTIPROCESSOR || LOCKDEBUG */
    605 
    606 /*
    607  * Make all processes sleeping on the specified identifier runnable.
    608  */
    609 
    610 void
    611 wakeup(void *ident)
    612 {
    613 	int s;
    614 
    615 	SCHED_ASSERT_UNLOCKED();
    616 
    617 	SCHED_LOCK(s);
    618 	sched_wakeup(ident);
    619 	SCHED_UNLOCK(s);
    620 }
    621 
    622 void
    623 sched_wakeup(void *ident)
    624 {
    625 	struct slpque *qp;
    626 	struct proc *p, **q;
    627 
    628 	SCHED_ASSERT_LOCKED();
    629 
    630 	qp = SLPQUE(ident);
    631  restart:
    632 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    633 #ifdef DIAGNOSTIC
    634 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    635 			panic("wakeup");
    636 #endif
    637 		if (p->p_wchan == ident) {
    638 			p->p_wchan = 0;
    639 			*q = p->p_forw;
    640 			if (qp->sq_tailp == &p->p_forw)
    641 				qp->sq_tailp = q;
    642 			if (p->p_stat == SSLEEP) {
    643 				awaken(p);
    644 				goto restart;
    645 			}
    646 		} else
    647 			q = &p->p_forw;
    648 	}
    649 }
    650 
    651 /*
    652  * Make the highest priority process first in line on the specified
    653  * identifier runnable.
    654  */
    655 void
    656 wakeup_one(void *ident)
    657 {
    658 	struct slpque *qp;
    659 	struct proc *p, **q;
    660 	struct proc *best_sleepp, **best_sleepq;
    661 	struct proc *best_stopp, **best_stopq;
    662 	int s;
    663 
    664 	best_sleepp = best_stopp = NULL;
    665 	best_sleepq = best_stopq = NULL;
    666 
    667 	SCHED_LOCK(s);
    668 
    669 	qp = SLPQUE(ident);
    670 
    671 	for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
    672 #ifdef DIAGNOSTIC
    673 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    674 			panic("wakeup_one");
    675 #endif
    676 		if (p->p_wchan == ident) {
    677 			if (p->p_stat == SSLEEP) {
    678 				if (best_sleepp == NULL ||
    679 				    p->p_priority < best_sleepp->p_priority) {
    680 					best_sleepp = p;
    681 					best_sleepq = q;
    682 				}
    683 			} else {
    684 				if (best_stopp == NULL ||
    685 				    p->p_priority < best_stopp->p_priority) {
    686 					best_stopp = p;
    687 					best_stopq = q;
    688 				}
    689 			}
    690 		}
    691 	}
    692 
    693 	/*
    694 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    695 	 * process.
    696 	 */
    697 	if (best_sleepp != NULL) {
    698 		p = best_sleepp;
    699 		q = best_sleepq;
    700 	} else {
    701 		p = best_stopp;
    702 		q = best_stopq;
    703 	}
    704 
    705 	if (p != NULL) {
    706 		p->p_wchan = NULL;
    707 		*q = p->p_forw;
    708 		if (qp->sq_tailp == &p->p_forw)
    709 			qp->sq_tailp = q;
    710 		if (p->p_stat == SSLEEP)
    711 			awaken(p);
    712 	}
    713 	SCHED_UNLOCK(s);
    714 }
    715 
    716 /*
    717  * General yield call.  Puts the current process back on its run queue and
    718  * performs a voluntary context switch.
    719  */
    720 void
    721 yield(void)
    722 {
    723 	struct proc *p = curproc;
    724 	int s;
    725 
    726 	SCHED_LOCK(s);
    727 	p->p_priority = p->p_usrpri;
    728 	p->p_stat = SRUN;
    729 	setrunqueue(p);
    730 	p->p_stats->p_ru.ru_nvcsw++;
    731 	mi_switch(p);
    732 	SCHED_ASSERT_UNLOCKED();
    733 	splx(s);
    734 }
    735 
    736 /*
    737  * General preemption call.  Puts the current process back on its run queue
    738  * and performs an involuntary context switch.  If a process is supplied,
    739  * we switch to that process.  Otherwise, we use the normal process selection
    740  * criteria.
    741  */
    742 void
    743 preempt(struct proc *newp)
    744 {
    745 	struct proc *p = curproc;
    746 	int s;
    747 
    748 	/*
    749 	 * XXX Switching to a specific process is not supported yet.
    750 	 */
    751 	if (newp != NULL)
    752 		panic("preempt: cpu_preempt not yet implemented");
    753 
    754 	SCHED_LOCK(s);
    755 	p->p_priority = p->p_usrpri;
    756 	p->p_stat = SRUN;
    757 	setrunqueue(p);
    758 	p->p_stats->p_ru.ru_nivcsw++;
    759 	mi_switch(p);
    760 	SCHED_ASSERT_UNLOCKED();
    761 	splx(s);
    762 }
    763 
    764 /*
    765  * The machine independent parts of context switch.
    766  * Must be called at splsched() (no higher!) and with
    767  * the sched_lock held.
    768  */
    769 void
    770 mi_switch(struct proc *p)
    771 {
    772 	struct schedstate_percpu *spc;
    773 	struct rlimit *rlim;
    774 	long s, u;
    775 	struct timeval tv;
    776 #if defined(MULTIPROCESSOR)
    777 	int hold_count;
    778 #endif
    779 
    780 	SCHED_ASSERT_LOCKED();
    781 
    782 #if defined(MULTIPROCESSOR)
    783 	/*
    784 	 * Release the kernel_lock, as we are about to yield the CPU.
    785 	 * The scheduler lock is still held until cpu_switch()
    786 	 * selects a new process and removes it from the run queue.
    787 	 */
    788 	if (p->p_flag & P_BIGLOCK)
    789 		hold_count = spinlock_release_all(&kernel_lock);
    790 #endif
    791 
    792 	KDASSERT(p->p_cpu != NULL);
    793 	KDASSERT(p->p_cpu == curcpu());
    794 
    795 	spc = &p->p_cpu->ci_schedstate;
    796 
    797 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    798 	spinlock_switchcheck();
    799 #endif
    800 #ifdef LOCKDEBUG
    801 	simple_lock_switchcheck();
    802 #endif
    803 
    804 	/*
    805 	 * Compute the amount of time during which the current
    806 	 * process was running, and add that to its total so far.
    807 	 */
    808 	microtime(&tv);
    809 	u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    810 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    811 	if (u < 0) {
    812 		u += 1000000;
    813 		s--;
    814 	} else if (u >= 1000000) {
    815 		u -= 1000000;
    816 		s++;
    817 	}
    818 	p->p_rtime.tv_usec = u;
    819 	p->p_rtime.tv_sec = s;
    820 
    821 	/*
    822 	 * Check if the process exceeds its cpu resource allocation.
    823 	 * If over max, kill it.  In any case, if it has run for more
    824 	 * than 10 minutes, reduce priority to give others a chance.
    825 	 */
    826 	rlim = &p->p_rlimit[RLIMIT_CPU];
    827 	if (s >= rlim->rlim_cur) {
    828 		/*
    829 		 * XXXSMP: we're inside the scheduler lock perimeter;
    830 		 * use sched_psignal.
    831 		 */
    832 		if (s >= rlim->rlim_max)
    833 			sched_psignal(p, SIGKILL);
    834 		else {
    835 			sched_psignal(p, SIGXCPU);
    836 			if (rlim->rlim_cur < rlim->rlim_max)
    837 				rlim->rlim_cur += 5;
    838 		}
    839 	}
    840 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    841 	    p->p_nice == NZERO) {
    842 		p->p_nice = autoniceval + NZERO;
    843 		resetpriority(p);
    844 	}
    845 
    846 	/*
    847 	 * Process is about to yield the CPU; clear the appropriate
    848 	 * scheduling flags.
    849 	 */
    850 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    851 
    852 #ifdef KSTACK_CHECK_MAGIC
    853 	kstack_check_magic(p);
    854 #endif
    855 
    856 	/*
    857 	 * Pick a new current process and switch to it.  When we
    858 	 * run again, we'll return back here.
    859 	 */
    860 	uvmexp.swtch++;
    861 	cpu_switch(p);
    862 
    863 	/*
    864 	 * Make sure that MD code released the scheduler lock before
    865 	 * resuming us.
    866 	 */
    867 	SCHED_ASSERT_UNLOCKED();
    868 
    869 	/*
    870 	 * We're running again; record our new start time.  We might
    871 	 * be running on a new CPU now, so don't use the cache'd
    872 	 * schedstate_percpu pointer.
    873 	 */
    874 	KDASSERT(p->p_cpu != NULL);
    875 	KDASSERT(p->p_cpu == curcpu());
    876 	microtime(&p->p_cpu->ci_schedstate.spc_runtime);
    877 
    878 #if defined(MULTIPROCESSOR)
    879 	/*
    880 	 * Reacquire the kernel_lock now.  We do this after we've
    881 	 * released the scheduler lock to avoid deadlock, and before
    882 	 * we reacquire the interlock.
    883 	 */
    884 	if (p->p_flag & P_BIGLOCK)
    885 		spinlock_acquire_count(&kernel_lock, hold_count);
    886 #endif
    887 }
    888 
    889 /*
    890  * Initialize the (doubly-linked) run queues
    891  * to be empty.
    892  */
    893 void
    894 rqinit()
    895 {
    896 	int i;
    897 
    898 	for (i = 0; i < RUNQUE_NQS; i++)
    899 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    900 		    (struct proc *)&sched_qs[i];
    901 }
    902 
    903 /*
    904  * Change process state to be runnable,
    905  * placing it on the run queue if it is in memory,
    906  * and awakening the swapper if it isn't in memory.
    907  */
    908 void
    909 setrunnable(struct proc *p)
    910 {
    911 
    912 	SCHED_ASSERT_LOCKED();
    913 
    914 	switch (p->p_stat) {
    915 	case 0:
    916 	case SRUN:
    917 	case SONPROC:
    918 	case SZOMB:
    919 	case SDEAD:
    920 	default:
    921 		panic("setrunnable");
    922 	case SSTOP:
    923 		/*
    924 		 * If we're being traced (possibly because someone attached us
    925 		 * while we were stopped), check for a signal from the debugger.
    926 		 */
    927 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    928 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
    929 			CHECKSIGS(p);
    930 		}
    931 	case SSLEEP:
    932 		unsleep(p);		/* e.g. when sending signals */
    933 		break;
    934 
    935 	case SIDL:
    936 		break;
    937 	}
    938 	p->p_stat = SRUN;
    939 	if (p->p_flag & P_INMEM)
    940 		setrunqueue(p);
    941 
    942 	if (p->p_slptime > 1)
    943 		updatepri(p);
    944 	p->p_slptime = 0;
    945 	if ((p->p_flag & P_INMEM) == 0)
    946 		sched_wakeup((caddr_t)&proc0);
    947 	else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
    948 		/*
    949 		 * XXXSMP
    950 		 * This is not exactly right.  Since p->p_cpu persists
    951 		 * across a context switch, this gives us some sort
    952 		 * of processor affinity.  But we need to figure out
    953 		 * at what point it's better to reschedule on a different
    954 		 * CPU than the last one.
    955 		 */
    956 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    957 	}
    958 }
    959 
    960 /*
    961  * Compute the priority of a process when running in user mode.
    962  * Arrange to reschedule if the resulting priority is better
    963  * than that of the current process.
    964  */
    965 void
    966 resetpriority(struct proc *p)
    967 {
    968 	unsigned int newpriority;
    969 
    970 	SCHED_ASSERT_LOCKED();
    971 
    972 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
    973 	newpriority = min(newpriority, MAXPRI);
    974 	p->p_usrpri = newpriority;
    975 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
    976 		/*
    977 		 * XXXSMP
    978 		 * Same applies as in setrunnable() above.
    979 		 */
    980 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    981 	}
    982 }
    983 
    984 /*
    985  * We adjust the priority of the current process.  The priority of a process
    986  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
    987  * is increased here.  The formula for computing priorities (in kern_synch.c)
    988  * will compute a different value each time p_estcpu increases. This can
    989  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    990  * queue will not change.  The cpu usage estimator ramps up quite quickly
    991  * when the process is running (linearly), and decays away exponentially, at
    992  * a rate which is proportionally slower when the system is busy.  The basic
    993  * principle is that the system will 90% forget that the process used a lot
    994  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    995  * processes which haven't run much recently, and to round-robin among other
    996  * processes.
    997  */
    998 
    999 void
   1000 schedclock(struct proc *p)
   1001 {
   1002 	int s;
   1003 
   1004 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1005 
   1006 	SCHED_LOCK(s);
   1007 	resetpriority(p);
   1008 	SCHED_UNLOCK(s);
   1009 
   1010 	if (p->p_priority >= PUSER)
   1011 		p->p_priority = p->p_usrpri;
   1012 }
   1013 
   1014 void
   1015 suspendsched()
   1016 {
   1017 	struct proc *p;
   1018 	int s;
   1019 
   1020 	/*
   1021 	 * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
   1022 	 */
   1023 	proclist_lock_read();
   1024 	SCHED_LOCK(s);
   1025 	for (p = LIST_FIRST(&allproc); p != NULL; p = LIST_NEXT(p, p_list)) {
   1026 		if ((p->p_flag & P_SYSTEM) != 0)
   1027 			continue;
   1028 		switch (p->p_stat) {
   1029 		case SRUN:
   1030 			if ((p->p_flag & P_INMEM) != 0)
   1031 				remrunqueue(p);
   1032 			/* FALLTHROUGH */
   1033 		case SSLEEP:
   1034 			p->p_stat = SSTOP;
   1035 			break;
   1036 		case SONPROC:
   1037 			/*
   1038 			 * XXX SMP: we need to deal with processes on
   1039 			 * others CPU !
   1040 			 */
   1041 			break;
   1042 		default:
   1043 			break;
   1044 		}
   1045 	}
   1046 	SCHED_UNLOCK(s);
   1047 	proclist_unlock_read();
   1048 }
   1049