kern_synch.c revision 1.115 1 /* $NetBSD: kern_synch.c,v 1.115 2002/11/03 13:59:12 nisimura Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.115 2002/11/03 13:59:12 nisimura Exp $");
82
83 #include "opt_ddb.h"
84 #include "opt_ktrace.h"
85 #include "opt_kstack.h"
86 #include "opt_lockdebug.h"
87 #include "opt_multiprocessor.h"
88 #include "opt_perfctrs.h"
89
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/callout.h>
93 #include <sys/proc.h>
94 #include <sys/kernel.h>
95 #include <sys/buf.h>
96 #if defined(PERFCTRS)
97 #include <sys/pmc.h>
98 #endif
99 #include <sys/signalvar.h>
100 #include <sys/resourcevar.h>
101 #include <sys/sched.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #ifdef KTRACE
106 #include <sys/ktrace.h>
107 #endif
108
109 #include <machine/cpu.h>
110
111 int lbolt; /* once a second sleep address */
112 int rrticks; /* number of hardclock ticks per roundrobin() */
113
114 /*
115 * The global scheduler state.
116 */
117 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
118 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
119 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
120
121 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
122
123 void schedcpu(void *);
124 void updatepri(struct proc *);
125 void endtsleep(void *);
126
127 __inline void awaken(struct proc *);
128
129 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
130
131 /*
132 * Force switch among equal priority processes every 100ms.
133 * Called from hardclock every hz/10 == rrticks hardclock ticks.
134 */
135 /* ARGSUSED */
136 void
137 roundrobin(struct cpu_info *ci)
138 {
139 struct schedstate_percpu *spc = &ci->ci_schedstate;
140
141 spc->spc_rrticks = rrticks;
142
143 if (curproc != NULL) {
144 if (spc->spc_flags & SPCF_SEENRR) {
145 /*
146 * The process has already been through a roundrobin
147 * without switching and may be hogging the CPU.
148 * Indicate that the process should yield.
149 */
150 spc->spc_flags |= SPCF_SHOULDYIELD;
151 } else
152 spc->spc_flags |= SPCF_SEENRR;
153 }
154 need_resched(curcpu());
155 }
156
157 /*
158 * Constants for digital decay and forget:
159 * 90% of (p_estcpu) usage in 5 * loadav time
160 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
161 * Note that, as ps(1) mentions, this can let percentages
162 * total over 100% (I've seen 137.9% for 3 processes).
163 *
164 * Note that hardclock updates p_estcpu and p_cpticks independently.
165 *
166 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
167 * That is, the system wants to compute a value of decay such
168 * that the following for loop:
169 * for (i = 0; i < (5 * loadavg); i++)
170 * p_estcpu *= decay;
171 * will compute
172 * p_estcpu *= 0.1;
173 * for all values of loadavg:
174 *
175 * Mathematically this loop can be expressed by saying:
176 * decay ** (5 * loadavg) ~= .1
177 *
178 * The system computes decay as:
179 * decay = (2 * loadavg) / (2 * loadavg + 1)
180 *
181 * We wish to prove that the system's computation of decay
182 * will always fulfill the equation:
183 * decay ** (5 * loadavg) ~= .1
184 *
185 * If we compute b as:
186 * b = 2 * loadavg
187 * then
188 * decay = b / (b + 1)
189 *
190 * We now need to prove two things:
191 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
192 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
193 *
194 * Facts:
195 * For x close to zero, exp(x) =~ 1 + x, since
196 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
197 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
198 * For x close to zero, ln(1+x) =~ x, since
199 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
200 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
201 * ln(.1) =~ -2.30
202 *
203 * Proof of (1):
204 * Solve (factor)**(power) =~ .1 given power (5*loadav):
205 * solving for factor,
206 * ln(factor) =~ (-2.30/5*loadav), or
207 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
208 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
209 *
210 * Proof of (2):
211 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
212 * solving for power,
213 * power*ln(b/(b+1)) =~ -2.30, or
214 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
215 *
216 * Actual power values for the implemented algorithm are as follows:
217 * loadav: 1 2 3 4
218 * power: 5.68 10.32 14.94 19.55
219 */
220
221 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
222 #define loadfactor(loadav) (2 * (loadav))
223 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
224
225 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
226 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
227
228 /*
229 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
230 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
231 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
232 *
233 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
234 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
235 *
236 * If you dont want to bother with the faster/more-accurate formula, you
237 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
238 * (more general) method of calculating the %age of CPU used by a process.
239 */
240 #define CCPU_SHIFT 11
241
242 /*
243 * Recompute process priorities, every hz ticks.
244 */
245 /* ARGSUSED */
246 void
247 schedcpu(void *arg)
248 {
249 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
250 struct proc *p;
251 int s, s1;
252 unsigned int newcpu;
253 int clkhz;
254
255 proclist_lock_read();
256 LIST_FOREACH(p, &allproc, p_list) {
257 /*
258 * Increment time in/out of memory and sleep time
259 * (if sleeping). We ignore overflow; with 16-bit int's
260 * (remember them?) overflow takes 45 days.
261 */
262 p->p_swtime++;
263 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
264 p->p_slptime++;
265 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
266 /*
267 * If the process has slept the entire second,
268 * stop recalculating its priority until it wakes up.
269 */
270 if (p->p_slptime > 1)
271 continue;
272 s = splstatclock(); /* prevent state changes */
273 /*
274 * p_pctcpu is only for ps.
275 */
276 clkhz = stathz != 0 ? stathz : hz;
277 #if (FSHIFT >= CCPU_SHIFT)
278 p->p_pctcpu += (clkhz == 100)?
279 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
280 100 * (((fixpt_t) p->p_cpticks)
281 << (FSHIFT - CCPU_SHIFT)) / clkhz;
282 #else
283 p->p_pctcpu += ((FSCALE - ccpu) *
284 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
285 #endif
286 p->p_cpticks = 0;
287 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
288 p->p_estcpu = newcpu;
289 SCHED_LOCK(s1);
290 resetpriority(p);
291 if (p->p_priority >= PUSER) {
292 if (p->p_stat == SRUN &&
293 (p->p_flag & P_INMEM) &&
294 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
295 remrunqueue(p);
296 p->p_priority = p->p_usrpri;
297 setrunqueue(p);
298 } else
299 p->p_priority = p->p_usrpri;
300 }
301 SCHED_UNLOCK(s1);
302 splx(s);
303 }
304 proclist_unlock_read();
305 uvm_meter();
306 wakeup((caddr_t)&lbolt);
307 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
308 }
309
310 /*
311 * Recalculate the priority of a process after it has slept for a while.
312 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
313 * least six times the loadfactor will decay p_estcpu to zero.
314 */
315 void
316 updatepri(struct proc *p)
317 {
318 unsigned int newcpu;
319 fixpt_t loadfac;
320
321 SCHED_ASSERT_LOCKED();
322
323 newcpu = p->p_estcpu;
324 loadfac = loadfactor(averunnable.ldavg[0]);
325
326 if (p->p_slptime > 5 * loadfac)
327 p->p_estcpu = 0;
328 else {
329 p->p_slptime--; /* the first time was done in schedcpu */
330 while (newcpu && --p->p_slptime)
331 newcpu = (int) decay_cpu(loadfac, newcpu);
332 p->p_estcpu = newcpu;
333 }
334 resetpriority(p);
335 }
336
337 /*
338 * During autoconfiguration or after a panic, a sleep will simply
339 * lower the priority briefly to allow interrupts, then return.
340 * The priority to be used (safepri) is machine-dependent, thus this
341 * value is initialized and maintained in the machine-dependent layers.
342 * This priority will typically be 0, or the lowest priority
343 * that is safe for use on the interrupt stack; it can be made
344 * higher to block network software interrupts after panics.
345 */
346 int safepri;
347
348 /*
349 * General sleep call. Suspends the current process until a wakeup is
350 * performed on the specified identifier. The process will then be made
351 * runnable with the specified priority. Sleeps at most timo/hz seconds
352 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
353 * before and after sleeping, else signals are not checked. Returns 0 if
354 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
355 * signal needs to be delivered, ERESTART is returned if the current system
356 * call should be restarted if possible, and EINTR is returned if the system
357 * call should be interrupted by the signal (return EINTR).
358 *
359 * The interlock is held until the scheduler_slock is acquired. The
360 * interlock will be locked before returning back to the caller
361 * unless the PNORELOCK flag is specified, in which case the
362 * interlock will always be unlocked upon return.
363 */
364 int
365 ltsleep(void *ident, int priority, const char *wmesg, int timo,
366 __volatile struct simplelock *interlock)
367 {
368 struct proc *p = curproc;
369 struct slpque *qp;
370 int sig, s;
371 int catch = priority & PCATCH;
372 int relock = (priority & PNORELOCK) == 0;
373
374 /*
375 * XXXSMP
376 * This is probably bogus. Figure out what the right
377 * thing to do here really is.
378 * Note that not sleeping if ltsleep is called with curproc == NULL
379 * in the shutdown case is disgusting but partly necessary given
380 * how shutdown (barely) works.
381 */
382 if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
383 /*
384 * After a panic, or during autoconfiguration,
385 * just give interrupts a chance, then just return;
386 * don't run any other procs or panic below,
387 * in case this is the idle process and already asleep.
388 */
389 s = splhigh();
390 splx(safepri);
391 splx(s);
392 if (interlock != NULL && relock == 0)
393 simple_unlock(interlock);
394 return (0);
395 }
396
397 KASSERT(p != NULL);
398 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
399
400 #ifdef KTRACE
401 if (KTRPOINT(p, KTR_CSW))
402 ktrcsw(p, 1, 0);
403 #endif
404
405 SCHED_LOCK(s);
406
407 #ifdef DIAGNOSTIC
408 if (ident == NULL)
409 panic("ltsleep: ident == NULL");
410 if (p->p_stat != SONPROC)
411 panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
412 if (p->p_back != NULL)
413 panic("ltsleep: p_back != NULL");
414 #endif
415
416 p->p_wchan = ident;
417 p->p_wmesg = wmesg;
418 p->p_slptime = 0;
419 p->p_priority = priority & PRIMASK;
420
421 qp = SLPQUE(ident);
422 if (qp->sq_head == 0)
423 qp->sq_head = p;
424 else
425 *qp->sq_tailp = p;
426 *(qp->sq_tailp = &p->p_forw) = 0;
427
428 if (timo)
429 callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
430
431 /*
432 * We can now release the interlock; the scheduler_slock
433 * is held, so a thread can't get in to do wakeup() before
434 * we do the switch.
435 *
436 * XXX We leave the code block here, after inserting ourselves
437 * on the sleep queue, because we might want a more clever
438 * data structure for the sleep queues at some point.
439 */
440 if (interlock != NULL)
441 simple_unlock(interlock);
442
443 /*
444 * We put ourselves on the sleep queue and start our timeout
445 * before calling CURSIG, as we could stop there, and a wakeup
446 * or a SIGCONT (or both) could occur while we were stopped.
447 * A SIGCONT would cause us to be marked as SSLEEP
448 * without resuming us, thus we must be ready for sleep
449 * when CURSIG is called. If the wakeup happens while we're
450 * stopped, p->p_wchan will be 0 upon return from CURSIG.
451 */
452 if (catch) {
453 p->p_flag |= P_SINTR;
454 if ((sig = CURSIG(p)) != 0) {
455 if (p->p_wchan != NULL)
456 unsleep(p);
457 p->p_stat = SONPROC;
458 SCHED_UNLOCK(s);
459 goto resume;
460 }
461 if (p->p_wchan == NULL) {
462 catch = 0;
463 SCHED_UNLOCK(s);
464 goto resume;
465 }
466 } else
467 sig = 0;
468 p->p_stat = SSLEEP;
469 p->p_stats->p_ru.ru_nvcsw++;
470
471 SCHED_ASSERT_LOCKED();
472 mi_switch(p, NULL);
473
474 #if defined(DDB) && !defined(GPROF)
475 /* handy breakpoint location after process "wakes" */
476 __asm(".globl bpendtsleep ; bpendtsleep:");
477 #endif
478
479 SCHED_ASSERT_UNLOCKED();
480 splx(s);
481
482 resume:
483 KDASSERT(p->p_cpu != NULL);
484 KDASSERT(p->p_cpu == curcpu());
485 p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
486
487 p->p_flag &= ~P_SINTR;
488 if (p->p_flag & P_TIMEOUT) {
489 p->p_flag &= ~P_TIMEOUT;
490 if (sig == 0) {
491 #ifdef KTRACE
492 if (KTRPOINT(p, KTR_CSW))
493 ktrcsw(p, 0, 0);
494 #endif
495 if (relock && interlock != NULL)
496 simple_lock(interlock);
497 return (EWOULDBLOCK);
498 }
499 } else if (timo)
500 callout_stop(&p->p_tsleep_ch);
501 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
502 #ifdef KTRACE
503 if (KTRPOINT(p, KTR_CSW))
504 ktrcsw(p, 0, 0);
505 #endif
506 if (relock && interlock != NULL)
507 simple_lock(interlock);
508 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
509 return (EINTR);
510 return (ERESTART);
511 }
512 #ifdef KTRACE
513 if (KTRPOINT(p, KTR_CSW))
514 ktrcsw(p, 0, 0);
515 #endif
516 if (relock && interlock != NULL)
517 simple_lock(interlock);
518 return (0);
519 }
520
521 /*
522 * Implement timeout for tsleep.
523 * If process hasn't been awakened (wchan non-zero),
524 * set timeout flag and undo the sleep. If proc
525 * is stopped, just unsleep so it will remain stopped.
526 */
527 void
528 endtsleep(void *arg)
529 {
530 struct proc *p;
531 int s;
532
533 p = (struct proc *)arg;
534
535 SCHED_LOCK(s);
536 if (p->p_wchan) {
537 if (p->p_stat == SSLEEP)
538 setrunnable(p);
539 else
540 unsleep(p);
541 p->p_flag |= P_TIMEOUT;
542 }
543 SCHED_UNLOCK(s);
544 }
545
546 /*
547 * Remove a process from its wait queue
548 */
549 void
550 unsleep(struct proc *p)
551 {
552 struct slpque *qp;
553 struct proc **hp;
554
555 SCHED_ASSERT_LOCKED();
556
557 if (p->p_wchan) {
558 hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
559 while (*hp != p)
560 hp = &(*hp)->p_forw;
561 *hp = p->p_forw;
562 if (qp->sq_tailp == &p->p_forw)
563 qp->sq_tailp = hp;
564 p->p_wchan = 0;
565 }
566 }
567
568 /*
569 * Optimized-for-wakeup() version of setrunnable().
570 */
571 __inline void
572 awaken(struct proc *p)
573 {
574
575 SCHED_ASSERT_LOCKED();
576
577 if (p->p_slptime > 1)
578 updatepri(p);
579 p->p_slptime = 0;
580 p->p_stat = SRUN;
581
582 /*
583 * Since curpriority is a user priority, p->p_priority
584 * is always better than curpriority.
585 */
586 if (p->p_flag & P_INMEM) {
587 setrunqueue(p);
588 KASSERT(p->p_cpu != NULL);
589 need_resched(p->p_cpu);
590 } else
591 sched_wakeup(&proc0);
592 }
593
594 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
595 void
596 sched_unlock_idle(void)
597 {
598
599 simple_unlock(&sched_lock);
600 }
601
602 void
603 sched_lock_idle(void)
604 {
605
606 simple_lock(&sched_lock);
607 }
608 #endif /* MULTIPROCESSOR || LOCKDEBUG */
609
610 /*
611 * Make all processes sleeping on the specified identifier runnable.
612 */
613
614 void
615 wakeup(void *ident)
616 {
617 int s;
618
619 SCHED_ASSERT_UNLOCKED();
620
621 SCHED_LOCK(s);
622 sched_wakeup(ident);
623 SCHED_UNLOCK(s);
624 }
625
626 void
627 sched_wakeup(void *ident)
628 {
629 struct slpque *qp;
630 struct proc *p, **q;
631
632 SCHED_ASSERT_LOCKED();
633
634 qp = SLPQUE(ident);
635 restart:
636 for (q = &qp->sq_head; (p = *q) != NULL; ) {
637 #ifdef DIAGNOSTIC
638 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
639 panic("wakeup");
640 #endif
641 if (p->p_wchan == ident) {
642 p->p_wchan = 0;
643 *q = p->p_forw;
644 if (qp->sq_tailp == &p->p_forw)
645 qp->sq_tailp = q;
646 if (p->p_stat == SSLEEP) {
647 awaken(p);
648 goto restart;
649 }
650 } else
651 q = &p->p_forw;
652 }
653 }
654
655 /*
656 * Make the highest priority process first in line on the specified
657 * identifier runnable.
658 */
659 void
660 wakeup_one(void *ident)
661 {
662 struct slpque *qp;
663 struct proc *p, **q;
664 struct proc *best_sleepp, **best_sleepq;
665 struct proc *best_stopp, **best_stopq;
666 int s;
667
668 best_sleepp = best_stopp = NULL;
669 best_sleepq = best_stopq = NULL;
670
671 SCHED_LOCK(s);
672
673 qp = SLPQUE(ident);
674
675 for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
676 #ifdef DIAGNOSTIC
677 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
678 panic("wakeup_one");
679 #endif
680 if (p->p_wchan == ident) {
681 if (p->p_stat == SSLEEP) {
682 if (best_sleepp == NULL ||
683 p->p_priority < best_sleepp->p_priority) {
684 best_sleepp = p;
685 best_sleepq = q;
686 }
687 } else {
688 if (best_stopp == NULL ||
689 p->p_priority < best_stopp->p_priority) {
690 best_stopp = p;
691 best_stopq = q;
692 }
693 }
694 }
695 }
696
697 /*
698 * Consider any SSLEEP process higher than the highest priority SSTOP
699 * process.
700 */
701 if (best_sleepp != NULL) {
702 p = best_sleepp;
703 q = best_sleepq;
704 } else {
705 p = best_stopp;
706 q = best_stopq;
707 }
708
709 if (p != NULL) {
710 p->p_wchan = NULL;
711 *q = p->p_forw;
712 if (qp->sq_tailp == &p->p_forw)
713 qp->sq_tailp = q;
714 if (p->p_stat == SSLEEP)
715 awaken(p);
716 }
717 SCHED_UNLOCK(s);
718 }
719
720 /*
721 * General yield call. Puts the current process back on its run queue and
722 * performs a voluntary context switch.
723 */
724 void
725 yield(void)
726 {
727 struct proc *p = curproc;
728 int s;
729
730 SCHED_LOCK(s);
731 p->p_priority = p->p_usrpri;
732 p->p_stat = SRUN;
733 setrunqueue(p);
734 p->p_stats->p_ru.ru_nvcsw++;
735 mi_switch(p, NULL);
736 SCHED_ASSERT_UNLOCKED();
737 splx(s);
738 }
739
740 /*
741 * General preemption call. Puts the current process back on its run queue
742 * and performs an involuntary context switch. If a process is supplied,
743 * we switch to that process. Otherwise, we use the normal process selection
744 * criteria.
745 */
746 void
747 preempt(struct proc *newp)
748 {
749 struct proc *p = curproc;
750 int s;
751
752 SCHED_LOCK(s);
753 p->p_priority = p->p_usrpri;
754 p->p_stat = SRUN;
755 setrunqueue(p);
756 p->p_stats->p_ru.ru_nivcsw++;
757 mi_switch(p, newp);
758 SCHED_ASSERT_UNLOCKED();
759 splx(s);
760 }
761
762 /*
763 * The machine independent parts of context switch.
764 * Must be called at splsched() (no higher!) and with
765 * the sched_lock held.
766 */
767 void
768 mi_switch(struct proc *p, struct proc *newp)
769 {
770 struct schedstate_percpu *spc;
771 struct rlimit *rlim;
772 long s, u;
773 struct timeval tv;
774 #if defined(MULTIPROCESSOR)
775 int hold_count;
776 #endif
777
778 SCHED_ASSERT_LOCKED();
779
780 #if defined(MULTIPROCESSOR)
781 /*
782 * Release the kernel_lock, as we are about to yield the CPU.
783 * The scheduler lock is still held until cpu_switch()
784 * selects a new process and removes it from the run queue.
785 */
786 if (p->p_flag & P_BIGLOCK)
787 hold_count = spinlock_release_all(&kernel_lock);
788 #endif
789
790 KDASSERT(p->p_cpu != NULL);
791 KDASSERT(p->p_cpu == curcpu());
792 KDASSERT(newp == NULL);
793
794 spc = &p->p_cpu->ci_schedstate;
795
796 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
797 spinlock_switchcheck();
798 #endif
799 #ifdef LOCKDEBUG
800 simple_lock_switchcheck();
801 #endif
802
803 /*
804 * Compute the amount of time during which the current
805 * process was running.
806 */
807 microtime(&tv);
808 u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
809 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
810 if (u < 0) {
811 u += 1000000;
812 s--;
813 } else if (u >= 1000000) {
814 u -= 1000000;
815 s++;
816 }
817 p->p_rtime.tv_usec = u;
818 p->p_rtime.tv_sec = s;
819
820 /*
821 * Check if the process exceeds its cpu resource allocation.
822 * If over max, kill it. In any case, if it has run for more
823 * than 10 minutes, reduce priority to give others a chance.
824 */
825 rlim = &p->p_rlimit[RLIMIT_CPU];
826 if (s >= rlim->rlim_cur) {
827 /*
828 * XXXSMP: we're inside the scheduler lock perimeter;
829 * use sched_psignal.
830 */
831 if (s >= rlim->rlim_max)
832 sched_psignal(p, SIGKILL);
833 else {
834 sched_psignal(p, SIGXCPU);
835 if (rlim->rlim_cur < rlim->rlim_max)
836 rlim->rlim_cur += 5;
837 }
838 }
839 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
840 p->p_nice == NZERO) {
841 p->p_nice = autoniceval + NZERO;
842 resetpriority(p);
843 }
844
845 /*
846 * Process is about to yield the CPU; clear the appropriate
847 * scheduling flags.
848 */
849 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
850
851 #ifdef KSTACK_CHECK_MAGIC
852 kstack_check_magic(p);
853 #endif
854
855 /*
856 * If we are using h/w performance counters, save context.
857 */
858 #if PERFCTRS
859 if (PMC_ENABLED(p))
860 pmc_save_context(p);
861 #endif
862
863 /*
864 * Switch to the new current process. When we
865 * run again, we'll return back here.
866 */
867 uvmexp.swtch++;
868 cpu_switch(p, NULL);
869
870 /*
871 * If we are using h/w performance counters, restore context.
872 */
873 #if PERFCTRS
874 if (PMC_ENABLED(p))
875 pmc_restore_context(p);
876 #endif
877
878 /*
879 * Make sure that MD code released the scheduler lock before
880 * resuming us.
881 */
882 SCHED_ASSERT_UNLOCKED();
883
884 /*
885 * We're running again; record our new start time. We might
886 * be running on a new CPU now, so don't use the cache'd
887 * schedstate_percpu pointer.
888 */
889 KDASSERT(p->p_cpu != NULL);
890 KDASSERT(p->p_cpu == curcpu());
891 microtime(&p->p_cpu->ci_schedstate.spc_runtime);
892
893 #if defined(MULTIPROCESSOR)
894 /*
895 * Reacquire the kernel_lock now. We do this after we've
896 * released the scheduler lock to avoid deadlock, and before
897 * we reacquire the interlock.
898 */
899 if (p->p_flag & P_BIGLOCK)
900 spinlock_acquire_count(&kernel_lock, hold_count);
901 #endif
902 }
903
904 /*
905 * Initialize the (doubly-linked) run queues
906 * to be empty.
907 */
908 void
909 rqinit()
910 {
911 int i;
912
913 for (i = 0; i < RUNQUE_NQS; i++)
914 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
915 (struct proc *)&sched_qs[i];
916 }
917
918 /*
919 * Change process state to be runnable,
920 * placing it on the run queue if it is in memory,
921 * and awakening the swapper if it isn't in memory.
922 */
923 void
924 setrunnable(struct proc *p)
925 {
926
927 SCHED_ASSERT_LOCKED();
928
929 switch (p->p_stat) {
930 case 0:
931 case SRUN:
932 case SONPROC:
933 case SZOMB:
934 case SDEAD:
935 default:
936 panic("setrunnable");
937 case SSTOP:
938 /*
939 * If we're being traced (possibly because someone attached us
940 * while we were stopped), check for a signal from the debugger.
941 */
942 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
943 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
944 CHECKSIGS(p);
945 }
946 case SSLEEP:
947 unsleep(p); /* e.g. when sending signals */
948 break;
949
950 case SIDL:
951 break;
952 }
953 p->p_stat = SRUN;
954 if (p->p_flag & P_INMEM)
955 setrunqueue(p);
956
957 if (p->p_slptime > 1)
958 updatepri(p);
959 p->p_slptime = 0;
960 if ((p->p_flag & P_INMEM) == 0)
961 sched_wakeup((caddr_t)&proc0);
962 else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
963 /*
964 * XXXSMP
965 * This is not exactly right. Since p->p_cpu persists
966 * across a context switch, this gives us some sort
967 * of processor affinity. But we need to figure out
968 * at what point it's better to reschedule on a different
969 * CPU than the last one.
970 */
971 need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
972 }
973 }
974
975 /*
976 * Compute the priority of a process when running in user mode.
977 * Arrange to reschedule if the resulting priority is better
978 * than that of the current process.
979 */
980 void
981 resetpriority(struct proc *p)
982 {
983 unsigned int newpriority;
984
985 SCHED_ASSERT_LOCKED();
986
987 newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
988 newpriority = min(newpriority, MAXPRI);
989 p->p_usrpri = newpriority;
990 if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
991 /*
992 * XXXSMP
993 * Same applies as in setrunnable() above.
994 */
995 need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
996 }
997 }
998
999 /*
1000 * We adjust the priority of the current process. The priority of a process
1001 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1002 * is increased here. The formula for computing priorities (in kern_synch.c)
1003 * will compute a different value each time p_estcpu increases. This can
1004 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1005 * queue will not change. The cpu usage estimator ramps up quite quickly
1006 * when the process is running (linearly), and decays away exponentially, at
1007 * a rate which is proportionally slower when the system is busy. The basic
1008 * principle is that the system will 90% forget that the process used a lot
1009 * of CPU time in 5 * loadav seconds. This causes the system to favor
1010 * processes which haven't run much recently, and to round-robin among other
1011 * processes.
1012 */
1013
1014 void
1015 schedclock(struct proc *p)
1016 {
1017 int s;
1018
1019 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1020
1021 SCHED_LOCK(s);
1022 resetpriority(p);
1023 SCHED_UNLOCK(s);
1024
1025 if (p->p_priority >= PUSER)
1026 p->p_priority = p->p_usrpri;
1027 }
1028
1029 void
1030 suspendsched()
1031 {
1032 struct proc *p;
1033 int s;
1034
1035 /*
1036 * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
1037 */
1038 proclist_lock_read();
1039 SCHED_LOCK(s);
1040 LIST_FOREACH(p, &allproc, p_list) {
1041 if ((p->p_flag & P_SYSTEM) != 0)
1042 continue;
1043 switch (p->p_stat) {
1044 case SRUN:
1045 if ((p->p_flag & P_INMEM) != 0)
1046 remrunqueue(p);
1047 /* FALLTHROUGH */
1048 case SSLEEP:
1049 p->p_stat = SSTOP;
1050 break;
1051 case SONPROC:
1052 /*
1053 * XXX SMP: we need to deal with processes on
1054 * others CPU !
1055 */
1056 break;
1057 default:
1058 break;
1059 }
1060 }
1061 SCHED_UNLOCK(s);
1062 proclist_unlock_read();
1063 }
1064
1065 /*
1066 * Low-level routines to access the run queue. Optimised assembler
1067 * routines can override these.
1068 */
1069
1070 #ifndef __HAVE_MD_RUNQUEUE
1071
1072 /*
1073 * The primitives that manipulate the run queues. whichqs tells which
1074 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1075 * into queues, remrunqueue removes them from queues. The running process is
1076 * on no queue, other processes are on a queue related to p->p_priority,
1077 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1078 * available queues.
1079 */
1080
1081 void
1082 setrunqueue(struct proc *p)
1083 {
1084 struct prochd *rq;
1085 struct proc *prev;
1086 int whichq;
1087
1088 #ifdef DIAGNOSTIC
1089 if (p->p_back != NULL || p->p_wchan != NULL || p->p_stat != SRUN)
1090 panic("setrunqueue");
1091 #endif
1092 whichq = p->p_priority / 4;
1093 sched_whichqs |= (1<<whichq);
1094 rq = &sched_qs[whichq];
1095 prev = rq->ph_rlink;
1096 p->p_forw = (struct proc *)rq;
1097 rq->ph_rlink = p;
1098 prev->p_forw = p;
1099 p->p_back = prev;
1100 }
1101
1102 void
1103 remrunqueue(struct proc *p)
1104 {
1105 struct proc *prev, *next;
1106 int whichq;
1107
1108 whichq = p->p_priority / 4;
1109 #ifdef DIAGNOSTIC
1110 if (((sched_whichqs & (1<<whichq)) == 0))
1111 panic("remrunqueue");
1112 #endif
1113 prev = p->p_back;
1114 p->p_back = NULL;
1115 next = p->p_forw;
1116 prev->p_forw = next;
1117 next->p_back = prev;
1118 if (prev == next)
1119 sched_whichqs &= ~(1<<whichq);
1120 }
1121
1122 #endif
1123