Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.117
      1 /*	$NetBSD: kern_synch.c,v 1.117 2002/12/21 23:52:06 gmcgarry Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. All advertising materials mentioning features or use of this software
     58  *    must display the following acknowledgement:
     59  *	This product includes software developed by the University of
     60  *	California, Berkeley and its contributors.
     61  * 4. Neither the name of the University nor the names of its contributors
     62  *    may be used to endorse or promote products derived from this software
     63  *    without specific prior written permission.
     64  *
     65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75  * SUCH DAMAGE.
     76  *
     77  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     78  */
     79 
     80 #include <sys/cdefs.h>
     81 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.117 2002/12/21 23:52:06 gmcgarry Exp $");
     82 
     83 #include "opt_ddb.h"
     84 #include "opt_ktrace.h"
     85 #include "opt_kstack.h"
     86 #include "opt_lockdebug.h"
     87 #include "opt_multiprocessor.h"
     88 #include "opt_perfctrs.h"
     89 
     90 #include <sys/param.h>
     91 #include <sys/systm.h>
     92 #include <sys/callout.h>
     93 #include <sys/proc.h>
     94 #include <sys/kernel.h>
     95 #include <sys/buf.h>
     96 #if defined(PERFCTRS)
     97 #include <sys/pmc.h>
     98 #endif
     99 #include <sys/signalvar.h>
    100 #include <sys/resourcevar.h>
    101 #include <sys/sched.h>
    102 
    103 #include <uvm/uvm_extern.h>
    104 
    105 #ifdef KTRACE
    106 #include <sys/ktrace.h>
    107 #endif
    108 
    109 #include <machine/cpu.h>
    110 
    111 int	lbolt;			/* once a second sleep address */
    112 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    113 
    114 /*
    115  * The global scheduler state.
    116  */
    117 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    118 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    119 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    120 
    121 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    122 
    123 void schedcpu(void *);
    124 void updatepri(struct proc *);
    125 void endtsleep(void *);
    126 
    127 __inline void awaken(struct proc *);
    128 
    129 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    130 
    131 /*
    132  * Force switch among equal priority processes every 100ms.
    133  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    134  */
    135 /* ARGSUSED */
    136 void
    137 roundrobin(struct cpu_info *ci)
    138 {
    139 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    140 
    141 	spc->spc_rrticks = rrticks;
    142 
    143 	if (curproc != NULL) {
    144 		if (spc->spc_flags & SPCF_SEENRR) {
    145 			/*
    146 			 * The process has already been through a roundrobin
    147 			 * without switching and may be hogging the CPU.
    148 			 * Indicate that the process should yield.
    149 			 */
    150 			spc->spc_flags |= SPCF_SHOULDYIELD;
    151 		} else
    152 			spc->spc_flags |= SPCF_SEENRR;
    153 	}
    154 	need_resched(curcpu());
    155 }
    156 
    157 /*
    158  * Constants for digital decay and forget:
    159  *	90% of (p_estcpu) usage in 5 * loadav time
    160  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    161  *          Note that, as ps(1) mentions, this can let percentages
    162  *          total over 100% (I've seen 137.9% for 3 processes).
    163  *
    164  * Note that hardclock updates p_estcpu and p_cpticks independently.
    165  *
    166  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    167  * That is, the system wants to compute a value of decay such
    168  * that the following for loop:
    169  * 	for (i = 0; i < (5 * loadavg); i++)
    170  * 		p_estcpu *= decay;
    171  * will compute
    172  * 	p_estcpu *= 0.1;
    173  * for all values of loadavg:
    174  *
    175  * Mathematically this loop can be expressed by saying:
    176  * 	decay ** (5 * loadavg) ~= .1
    177  *
    178  * The system computes decay as:
    179  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    180  *
    181  * We wish to prove that the system's computation of decay
    182  * will always fulfill the equation:
    183  * 	decay ** (5 * loadavg) ~= .1
    184  *
    185  * If we compute b as:
    186  * 	b = 2 * loadavg
    187  * then
    188  * 	decay = b / (b + 1)
    189  *
    190  * We now need to prove two things:
    191  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    192  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    193  *
    194  * Facts:
    195  *         For x close to zero, exp(x) =~ 1 + x, since
    196  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    197  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    198  *         For x close to zero, ln(1+x) =~ x, since
    199  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    200  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    201  *         ln(.1) =~ -2.30
    202  *
    203  * Proof of (1):
    204  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    205  *	solving for factor,
    206  *      ln(factor) =~ (-2.30/5*loadav), or
    207  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    208  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    209  *
    210  * Proof of (2):
    211  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    212  *	solving for power,
    213  *      power*ln(b/(b+1)) =~ -2.30, or
    214  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    215  *
    216  * Actual power values for the implemented algorithm are as follows:
    217  *      loadav: 1       2       3       4
    218  *      power:  5.68    10.32   14.94   19.55
    219  */
    220 
    221 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    222 #define	loadfactor(loadav)	(2 * (loadav))
    223 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    224 
    225 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    226 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    227 
    228 /*
    229  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    230  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    231  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    232  *
    233  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    234  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    235  *
    236  * If you dont want to bother with the faster/more-accurate formula, you
    237  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    238  * (more general) method of calculating the %age of CPU used by a process.
    239  */
    240 #define	CCPU_SHIFT	11
    241 
    242 /*
    243  * Recompute process priorities, every hz ticks.
    244  */
    245 /* ARGSUSED */
    246 void
    247 schedcpu(void *arg)
    248 {
    249 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    250 	struct proc *p;
    251 	int s, s1;
    252 	unsigned int newcpu;
    253 	int clkhz;
    254 
    255 	proclist_lock_read();
    256 	LIST_FOREACH(p, &allproc, p_list) {
    257 		/*
    258 		 * Increment time in/out of memory and sleep time
    259 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    260 		 * (remember them?) overflow takes 45 days.
    261 		 */
    262 		p->p_swtime++;
    263 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
    264 			p->p_slptime++;
    265 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    266 		/*
    267 		 * If the process has slept the entire second,
    268 		 * stop recalculating its priority until it wakes up.
    269 		 */
    270 		if (p->p_slptime > 1)
    271 			continue;
    272 		s = splstatclock();	/* prevent state changes */
    273 		/*
    274 		 * p_pctcpu is only for ps.
    275 		 */
    276 		clkhz = stathz != 0 ? stathz : hz;
    277 #if	(FSHIFT >= CCPU_SHIFT)
    278 		p->p_pctcpu += (clkhz == 100)?
    279 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    280                 	100 * (((fixpt_t) p->p_cpticks)
    281 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    282 #else
    283 		p->p_pctcpu += ((FSCALE - ccpu) *
    284 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    285 #endif
    286 		p->p_cpticks = 0;
    287 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    288 		p->p_estcpu = newcpu;
    289 		SCHED_LOCK(s1);
    290 		resetpriority(p);
    291 		if (p->p_priority >= PUSER) {
    292 			if (p->p_stat == SRUN &&
    293 			    (p->p_flag & P_INMEM) &&
    294 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
    295 				remrunqueue(p);
    296 				p->p_priority = p->p_usrpri;
    297 				setrunqueue(p);
    298 			} else
    299 				p->p_priority = p->p_usrpri;
    300 		}
    301 		SCHED_UNLOCK(s1);
    302 		splx(s);
    303 	}
    304 	proclist_unlock_read();
    305 	uvm_meter();
    306 	wakeup((caddr_t)&lbolt);
    307 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    308 }
    309 
    310 /*
    311  * Recalculate the priority of a process after it has slept for a while.
    312  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    313  * least six times the loadfactor will decay p_estcpu to zero.
    314  */
    315 void
    316 updatepri(struct proc *p)
    317 {
    318 	unsigned int newcpu;
    319 	fixpt_t loadfac;
    320 
    321 	SCHED_ASSERT_LOCKED();
    322 
    323 	newcpu = p->p_estcpu;
    324 	loadfac = loadfactor(averunnable.ldavg[0]);
    325 
    326 	if (p->p_slptime > 5 * loadfac)
    327 		p->p_estcpu = 0;
    328 	else {
    329 		p->p_slptime--;	/* the first time was done in schedcpu */
    330 		while (newcpu && --p->p_slptime)
    331 			newcpu = (int) decay_cpu(loadfac, newcpu);
    332 		p->p_estcpu = newcpu;
    333 	}
    334 	resetpriority(p);
    335 }
    336 
    337 /*
    338  * During autoconfiguration or after a panic, a sleep will simply
    339  * lower the priority briefly to allow interrupts, then return.
    340  * The priority to be used (safepri) is machine-dependent, thus this
    341  * value is initialized and maintained in the machine-dependent layers.
    342  * This priority will typically be 0, or the lowest priority
    343  * that is safe for use on the interrupt stack; it can be made
    344  * higher to block network software interrupts after panics.
    345  */
    346 int safepri;
    347 
    348 /*
    349  * General sleep call.  Suspends the current process until a wakeup is
    350  * performed on the specified identifier.  The process will then be made
    351  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    352  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    353  * before and after sleeping, else signals are not checked.  Returns 0 if
    354  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    355  * signal needs to be delivered, ERESTART is returned if the current system
    356  * call should be restarted if possible, and EINTR is returned if the system
    357  * call should be interrupted by the signal (return EINTR).
    358  *
    359  * The interlock is held until the scheduler_slock is acquired.  The
    360  * interlock will be locked before returning back to the caller
    361  * unless the PNORELOCK flag is specified, in which case the
    362  * interlock will always be unlocked upon return.
    363  */
    364 int
    365 ltsleep(void *ident, int priority, const char *wmesg, int timo,
    366     __volatile struct simplelock *interlock)
    367 {
    368 	struct proc *p = curproc;
    369 	struct slpque *qp;
    370 	int sig, s;
    371 	int catch = priority & PCATCH;
    372 	int relock = (priority & PNORELOCK) == 0;
    373 
    374 	/*
    375 	 * XXXSMP
    376 	 * This is probably bogus.  Figure out what the right
    377 	 * thing to do here really is.
    378 	 * Note that not sleeping if ltsleep is called with curproc == NULL
    379 	 * in the shutdown case is disgusting but partly necessary given
    380 	 * how shutdown (barely) works.
    381 	 */
    382 	if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
    383 		/*
    384 		 * After a panic, or during autoconfiguration,
    385 		 * just give interrupts a chance, then just return;
    386 		 * don't run any other procs or panic below,
    387 		 * in case this is the idle process and already asleep.
    388 		 */
    389 		s = splhigh();
    390 		splx(safepri);
    391 		splx(s);
    392 		if (interlock != NULL && relock == 0)
    393 			simple_unlock(interlock);
    394 		return (0);
    395 	}
    396 
    397 	KASSERT(p != NULL);
    398 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    399 
    400 #ifdef KTRACE
    401 	if (KTRPOINT(p, KTR_CSW))
    402 		ktrcsw(p, 1, 0);
    403 #endif
    404 
    405 	SCHED_LOCK(s);
    406 
    407 #ifdef DIAGNOSTIC
    408 	if (ident == NULL)
    409 		panic("ltsleep: ident == NULL");
    410 	if (p->p_stat != SONPROC)
    411 		panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
    412 	if (p->p_back != NULL)
    413 		panic("ltsleep: p_back != NULL");
    414 #endif
    415 
    416 	p->p_wchan = ident;
    417 	p->p_wmesg = wmesg;
    418 	p->p_slptime = 0;
    419 	p->p_priority = priority & PRIMASK;
    420 
    421 	qp = SLPQUE(ident);
    422 	if (qp->sq_head == 0)
    423 		qp->sq_head = p;
    424 	else
    425 		*qp->sq_tailp = p;
    426 	*(qp->sq_tailp = &p->p_forw) = 0;
    427 
    428 	if (timo)
    429 		callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
    430 
    431 	/*
    432 	 * We can now release the interlock; the scheduler_slock
    433 	 * is held, so a thread can't get in to do wakeup() before
    434 	 * we do the switch.
    435 	 *
    436 	 * XXX We leave the code block here, after inserting ourselves
    437 	 * on the sleep queue, because we might want a more clever
    438 	 * data structure for the sleep queues at some point.
    439 	 */
    440 	if (interlock != NULL)
    441 		simple_unlock(interlock);
    442 
    443 	/*
    444 	 * We put ourselves on the sleep queue and start our timeout
    445 	 * before calling CURSIG, as we could stop there, and a wakeup
    446 	 * or a SIGCONT (or both) could occur while we were stopped.
    447 	 * A SIGCONT would cause us to be marked as SSLEEP
    448 	 * without resuming us, thus we must be ready for sleep
    449 	 * when CURSIG is called.  If the wakeup happens while we're
    450 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    451 	 */
    452 	if (catch) {
    453 		p->p_flag |= P_SINTR;
    454 		if ((sig = CURSIG(p)) != 0) {
    455 			if (p->p_wchan != NULL)
    456 				unsleep(p);
    457 			p->p_stat = SONPROC;
    458 			SCHED_UNLOCK(s);
    459 			goto resume;
    460 		}
    461 		if (p->p_wchan == NULL) {
    462 			catch = 0;
    463 			SCHED_UNLOCK(s);
    464 			goto resume;
    465 		}
    466 	} else
    467 		sig = 0;
    468 	p->p_stat = SSLEEP;
    469 	p->p_stats->p_ru.ru_nvcsw++;
    470 
    471 	SCHED_ASSERT_LOCKED();
    472 	mi_switch(p, NULL);
    473 
    474 #if	defined(DDB) && !defined(GPROF)
    475 	/* handy breakpoint location after process "wakes" */
    476 	__asm(".globl bpendtsleep ; bpendtsleep:");
    477 #endif
    478 
    479 	SCHED_ASSERT_UNLOCKED();
    480 	splx(s);
    481 
    482  resume:
    483 	KDASSERT(p->p_cpu != NULL);
    484 	KDASSERT(p->p_cpu == curcpu());
    485 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
    486 
    487 	p->p_flag &= ~P_SINTR;
    488 	if (p->p_flag & P_TIMEOUT) {
    489 		p->p_flag &= ~P_TIMEOUT;
    490 		if (sig == 0) {
    491 #ifdef KTRACE
    492 			if (KTRPOINT(p, KTR_CSW))
    493 				ktrcsw(p, 0, 0);
    494 #endif
    495 			if (relock && interlock != NULL)
    496 				simple_lock(interlock);
    497 			return (EWOULDBLOCK);
    498 		}
    499 	} else if (timo)
    500 		callout_stop(&p->p_tsleep_ch);
    501 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
    502 #ifdef KTRACE
    503 		if (KTRPOINT(p, KTR_CSW))
    504 			ktrcsw(p, 0, 0);
    505 #endif
    506 		if (relock && interlock != NULL)
    507 			simple_lock(interlock);
    508 		if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    509 			return (EINTR);
    510 		return (ERESTART);
    511 	}
    512 #ifdef KTRACE
    513 	if (KTRPOINT(p, KTR_CSW))
    514 		ktrcsw(p, 0, 0);
    515 #endif
    516 	if (relock && interlock != NULL)
    517 		simple_lock(interlock);
    518 	return (0);
    519 }
    520 
    521 /*
    522  * Implement timeout for tsleep.
    523  * If process hasn't been awakened (wchan non-zero),
    524  * set timeout flag and undo the sleep.  If proc
    525  * is stopped, just unsleep so it will remain stopped.
    526  */
    527 void
    528 endtsleep(void *arg)
    529 {
    530 	struct proc *p;
    531 	int s;
    532 
    533 	p = (struct proc *)arg;
    534 
    535 	SCHED_LOCK(s);
    536 	if (p->p_wchan) {
    537 		if (p->p_stat == SSLEEP)
    538 			setrunnable(p);
    539 		else
    540 			unsleep(p);
    541 		p->p_flag |= P_TIMEOUT;
    542 	}
    543 	SCHED_UNLOCK(s);
    544 }
    545 
    546 /*
    547  * Remove a process from its wait queue
    548  */
    549 void
    550 unsleep(struct proc *p)
    551 {
    552 	struct slpque *qp;
    553 	struct proc **hp;
    554 
    555 	SCHED_ASSERT_LOCKED();
    556 
    557 	if (p->p_wchan) {
    558 		hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
    559 		while (*hp != p)
    560 			hp = &(*hp)->p_forw;
    561 		*hp = p->p_forw;
    562 		if (qp->sq_tailp == &p->p_forw)
    563 			qp->sq_tailp = hp;
    564 		p->p_wchan = 0;
    565 	}
    566 }
    567 
    568 /*
    569  * Optimized-for-wakeup() version of setrunnable().
    570  */
    571 __inline void
    572 awaken(struct proc *p)
    573 {
    574 
    575 	SCHED_ASSERT_LOCKED();
    576 
    577 	if (p->p_slptime > 1)
    578 		updatepri(p);
    579 	p->p_slptime = 0;
    580 	p->p_stat = SRUN;
    581 
    582 	/*
    583 	 * Since curpriority is a user priority, p->p_priority
    584 	 * is always better than curpriority.
    585 	 */
    586 	if (p->p_flag & P_INMEM) {
    587 		setrunqueue(p);
    588 		KASSERT(p->p_cpu != NULL);
    589 		need_resched(p->p_cpu);
    590 	} else
    591 		sched_wakeup(&proc0);
    592 }
    593 
    594 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    595 void
    596 sched_unlock_idle(void)
    597 {
    598 
    599 	simple_unlock(&sched_lock);
    600 }
    601 
    602 void
    603 sched_lock_idle(void)
    604 {
    605 
    606 	simple_lock(&sched_lock);
    607 }
    608 #endif /* MULTIPROCESSOR || LOCKDEBUG */
    609 
    610 /*
    611  * Make all processes sleeping on the specified identifier runnable.
    612  */
    613 
    614 void
    615 wakeup(void *ident)
    616 {
    617 	int s;
    618 
    619 	SCHED_ASSERT_UNLOCKED();
    620 
    621 	SCHED_LOCK(s);
    622 	sched_wakeup(ident);
    623 	SCHED_UNLOCK(s);
    624 }
    625 
    626 void
    627 sched_wakeup(void *ident)
    628 {
    629 	struct slpque *qp;
    630 	struct proc *p, **q;
    631 
    632 	SCHED_ASSERT_LOCKED();
    633 
    634 	qp = SLPQUE(ident);
    635  restart:
    636 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
    637 #ifdef DIAGNOSTIC
    638 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    639 			panic("wakeup");
    640 #endif
    641 		if (p->p_wchan == ident) {
    642 			p->p_wchan = 0;
    643 			*q = p->p_forw;
    644 			if (qp->sq_tailp == &p->p_forw)
    645 				qp->sq_tailp = q;
    646 			if (p->p_stat == SSLEEP) {
    647 				awaken(p);
    648 				goto restart;
    649 			}
    650 		} else
    651 			q = &p->p_forw;
    652 	}
    653 }
    654 
    655 /*
    656  * Make the highest priority process first in line on the specified
    657  * identifier runnable.
    658  */
    659 void
    660 wakeup_one(void *ident)
    661 {
    662 	struct slpque *qp;
    663 	struct proc *p, **q;
    664 	struct proc *best_sleepp, **best_sleepq;
    665 	struct proc *best_stopp, **best_stopq;
    666 	int s;
    667 
    668 	best_sleepp = best_stopp = NULL;
    669 	best_sleepq = best_stopq = NULL;
    670 
    671 	SCHED_LOCK(s);
    672 
    673 	qp = SLPQUE(ident);
    674 
    675 	for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
    676 #ifdef DIAGNOSTIC
    677 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
    678 			panic("wakeup_one");
    679 #endif
    680 		if (p->p_wchan == ident) {
    681 			if (p->p_stat == SSLEEP) {
    682 				if (best_sleepp == NULL ||
    683 				    p->p_priority < best_sleepp->p_priority) {
    684 					best_sleepp = p;
    685 					best_sleepq = q;
    686 				}
    687 			} else {
    688 				if (best_stopp == NULL ||
    689 				    p->p_priority < best_stopp->p_priority) {
    690 					best_stopp = p;
    691 					best_stopq = q;
    692 				}
    693 			}
    694 		}
    695 	}
    696 
    697 	/*
    698 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    699 	 * process.
    700 	 */
    701 	if (best_sleepp != NULL) {
    702 		p = best_sleepp;
    703 		q = best_sleepq;
    704 	} else {
    705 		p = best_stopp;
    706 		q = best_stopq;
    707 	}
    708 
    709 	if (p != NULL) {
    710 		p->p_wchan = NULL;
    711 		*q = p->p_forw;
    712 		if (qp->sq_tailp == &p->p_forw)
    713 			qp->sq_tailp = q;
    714 		if (p->p_stat == SSLEEP)
    715 			awaken(p);
    716 	}
    717 	SCHED_UNLOCK(s);
    718 }
    719 
    720 /*
    721  * General yield call.  Puts the current process back on its run queue and
    722  * performs a voluntary context switch.  Should only be called when the
    723  * current process explicitly requests it (eg sched_yield(2) in compat code).
    724  */
    725 void
    726 yield(void)
    727 {
    728 	struct proc *p = curproc;
    729 	int s;
    730 
    731 	SCHED_LOCK(s);
    732 	p->p_priority = p->p_usrpri;
    733 	p->p_stat = SRUN;
    734 	setrunqueue(p);
    735 	p->p_stats->p_ru.ru_nvcsw++;
    736 	mi_switch(p, NULL);
    737 	SCHED_ASSERT_UNLOCKED();
    738 	splx(s);
    739 }
    740 
    741 /*
    742  * General preemption call.  Puts the current process back on its run queue
    743  * and performs an involuntary context switch.  If a process is supplied,
    744  * we switch to that process.  Otherwise, we use the normal process selection
    745  * criteria.
    746  */
    747 void
    748 preempt(struct proc *newp)
    749 {
    750 	struct proc *p = curproc;
    751 	int s;
    752 
    753 	SCHED_LOCK(s);
    754 	p->p_priority = p->p_usrpri;
    755 	p->p_stat = SRUN;
    756 	setrunqueue(p);
    757 	p->p_stats->p_ru.ru_nivcsw++;
    758 	mi_switch(p, newp);
    759 	SCHED_ASSERT_UNLOCKED();
    760 	splx(s);
    761 }
    762 
    763 /*
    764  * The machine independent parts of context switch.
    765  * Must be called at splsched() (no higher!) and with
    766  * the sched_lock held.
    767  */
    768 void
    769 mi_switch(struct proc *p, struct proc *newp)
    770 {
    771 	struct schedstate_percpu *spc;
    772 	struct rlimit *rlim;
    773 	long s, u;
    774 	struct timeval tv;
    775 #if defined(MULTIPROCESSOR)
    776 	int hold_count;
    777 #endif
    778 
    779 	SCHED_ASSERT_LOCKED();
    780 
    781 #if defined(MULTIPROCESSOR)
    782 	/*
    783 	 * Release the kernel_lock, as we are about to yield the CPU.
    784 	 * The scheduler lock is still held until cpu_switch()
    785 	 * selects a new process and removes it from the run queue.
    786 	 */
    787 	if (p->p_flag & P_BIGLOCK)
    788 		hold_count = spinlock_release_all(&kernel_lock);
    789 #endif
    790 
    791 	KDASSERT(p->p_cpu != NULL);
    792 	KDASSERT(p->p_cpu == curcpu());
    793 	KDASSERT(newp == NULL);
    794 
    795 	spc = &p->p_cpu->ci_schedstate;
    796 
    797 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    798 	spinlock_switchcheck();
    799 #endif
    800 #ifdef LOCKDEBUG
    801 	simple_lock_switchcheck();
    802 #endif
    803 
    804 	/*
    805 	 * Compute the amount of time during which the current
    806 	 * process was running.
    807 	 */
    808 	microtime(&tv);
    809 	u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    810 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    811 	if (u < 0) {
    812 		u += 1000000;
    813 		s--;
    814 	} else if (u >= 1000000) {
    815 		u -= 1000000;
    816 		s++;
    817 	}
    818 	p->p_rtime.tv_usec = u;
    819 	p->p_rtime.tv_sec = s;
    820 
    821 	/*
    822 	 * Check if the process exceeds its cpu resource allocation.
    823 	 * If over max, kill it.  In any case, if it has run for more
    824 	 * than 10 minutes, reduce priority to give others a chance.
    825 	 */
    826 	rlim = &p->p_rlimit[RLIMIT_CPU];
    827 	if (s >= rlim->rlim_cur) {
    828 		/*
    829 		 * XXXSMP: we're inside the scheduler lock perimeter;
    830 		 * use sched_psignal.
    831 		 */
    832 		if (s >= rlim->rlim_max)
    833 			sched_psignal(p, SIGKILL);
    834 		else {
    835 			sched_psignal(p, SIGXCPU);
    836 			if (rlim->rlim_cur < rlim->rlim_max)
    837 				rlim->rlim_cur += 5;
    838 		}
    839 	}
    840 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    841 	    p->p_nice == NZERO) {
    842 		p->p_nice = autoniceval + NZERO;
    843 		resetpriority(p);
    844 	}
    845 
    846 	/*
    847 	 * Process is about to yield the CPU; clear the appropriate
    848 	 * scheduling flags.
    849 	 */
    850 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    851 
    852 #ifdef KSTACK_CHECK_MAGIC
    853 	kstack_check_magic(p);
    854 #endif
    855 
    856 	/*
    857 	 * If we are using h/w performance counters, save context.
    858 	 */
    859 #if PERFCTRS
    860 	if (PMC_ENABLED(p))
    861 		pmc_save_context(p);
    862 #endif
    863 
    864 	/*
    865 	 * Switch to the new current process.  When we
    866 	 * run again, we'll return back here.
    867 	 */
    868 	uvmexp.swtch++;
    869 	cpu_switch(p, NULL);
    870 
    871 	/*
    872 	 * If we are using h/w performance counters, restore context.
    873 	 */
    874 #if PERFCTRS
    875 	if (PMC_ENABLED(p))
    876 		pmc_restore_context(p);
    877 #endif
    878 
    879 	/*
    880 	 * Make sure that MD code released the scheduler lock before
    881 	 * resuming us.
    882 	 */
    883 	SCHED_ASSERT_UNLOCKED();
    884 
    885 	/*
    886 	 * We're running again; record our new start time.  We might
    887 	 * be running on a new CPU now, so don't use the cache'd
    888 	 * schedstate_percpu pointer.
    889 	 */
    890 	KDASSERT(p->p_cpu != NULL);
    891 	KDASSERT(p->p_cpu == curcpu());
    892 	microtime(&p->p_cpu->ci_schedstate.spc_runtime);
    893 
    894 #if defined(MULTIPROCESSOR)
    895 	/*
    896 	 * Reacquire the kernel_lock now.  We do this after we've
    897 	 * released the scheduler lock to avoid deadlock, and before
    898 	 * we reacquire the interlock.
    899 	 */
    900 	if (p->p_flag & P_BIGLOCK)
    901 		spinlock_acquire_count(&kernel_lock, hold_count);
    902 #endif
    903 }
    904 
    905 /*
    906  * Initialize the (doubly-linked) run queues
    907  * to be empty.
    908  */
    909 void
    910 rqinit()
    911 {
    912 	int i;
    913 
    914 	for (i = 0; i < RUNQUE_NQS; i++)
    915 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    916 		    (struct proc *)&sched_qs[i];
    917 }
    918 
    919 /*
    920  * Change process state to be runnable,
    921  * placing it on the run queue if it is in memory,
    922  * and awakening the swapper if it isn't in memory.
    923  */
    924 void
    925 setrunnable(struct proc *p)
    926 {
    927 
    928 	SCHED_ASSERT_LOCKED();
    929 
    930 	switch (p->p_stat) {
    931 	case 0:
    932 	case SRUN:
    933 	case SONPROC:
    934 	case SZOMB:
    935 	case SDEAD:
    936 	default:
    937 		panic("setrunnable");
    938 	case SSTOP:
    939 		/*
    940 		 * If we're being traced (possibly because someone attached us
    941 		 * while we were stopped), check for a signal from the debugger.
    942 		 */
    943 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
    944 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
    945 			CHECKSIGS(p);
    946 		}
    947 	case SSLEEP:
    948 		unsleep(p);		/* e.g. when sending signals */
    949 		break;
    950 
    951 	case SIDL:
    952 		break;
    953 	}
    954 	p->p_stat = SRUN;
    955 	if (p->p_flag & P_INMEM)
    956 		setrunqueue(p);
    957 
    958 	if (p->p_slptime > 1)
    959 		updatepri(p);
    960 	p->p_slptime = 0;
    961 	if ((p->p_flag & P_INMEM) == 0)
    962 		sched_wakeup((caddr_t)&proc0);
    963 	else if (p->p_priority < curcpu()->ci_schedstate.spc_curpriority) {
    964 		/*
    965 		 * XXXSMP
    966 		 * This is not exactly right.  Since p->p_cpu persists
    967 		 * across a context switch, this gives us some sort
    968 		 * of processor affinity.  But we need to figure out
    969 		 * at what point it's better to reschedule on a different
    970 		 * CPU than the last one.
    971 		 */
    972 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    973 	}
    974 }
    975 
    976 /*
    977  * Compute the priority of a process when running in user mode.
    978  * Arrange to reschedule if the resulting priority is better
    979  * than that of the current process.
    980  */
    981 void
    982 resetpriority(struct proc *p)
    983 {
    984 	unsigned int newpriority;
    985 
    986 	SCHED_ASSERT_LOCKED();
    987 
    988 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
    989 	newpriority = min(newpriority, MAXPRI);
    990 	p->p_usrpri = newpriority;
    991 	if (newpriority < curcpu()->ci_schedstate.spc_curpriority) {
    992 		/*
    993 		 * XXXSMP
    994 		 * Same applies as in setrunnable() above.
    995 		 */
    996 		need_resched((p->p_cpu != NULL) ? p->p_cpu : curcpu());
    997 	}
    998 }
    999 
   1000 /*
   1001  * We adjust the priority of the current process.  The priority of a process
   1002  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
   1003  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1004  * will compute a different value each time p_estcpu increases. This can
   1005  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1006  * queue will not change.  The cpu usage estimator ramps up quite quickly
   1007  * when the process is running (linearly), and decays away exponentially, at
   1008  * a rate which is proportionally slower when the system is busy.  The basic
   1009  * principle is that the system will 90% forget that the process used a lot
   1010  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1011  * processes which haven't run much recently, and to round-robin among other
   1012  * processes.
   1013  */
   1014 
   1015 void
   1016 schedclock(struct proc *p)
   1017 {
   1018 	int s;
   1019 
   1020 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1021 
   1022 	SCHED_LOCK(s);
   1023 	resetpriority(p);
   1024 	SCHED_UNLOCK(s);
   1025 
   1026 	if (p->p_priority >= PUSER)
   1027 		p->p_priority = p->p_usrpri;
   1028 }
   1029 
   1030 void
   1031 suspendsched()
   1032 {
   1033 	struct proc *p;
   1034 	int s;
   1035 
   1036 	/*
   1037 	 * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
   1038 	 */
   1039 	proclist_lock_read();
   1040 	SCHED_LOCK(s);
   1041 	LIST_FOREACH(p, &allproc, p_list) {
   1042 		if ((p->p_flag & P_SYSTEM) != 0)
   1043 			continue;
   1044 		switch (p->p_stat) {
   1045 		case SRUN:
   1046 			if ((p->p_flag & P_INMEM) != 0)
   1047 				remrunqueue(p);
   1048 			/* FALLTHROUGH */
   1049 		case SSLEEP:
   1050 			p->p_stat = SSTOP;
   1051 			break;
   1052 		case SONPROC:
   1053 			/*
   1054 			 * XXX SMP: we need to deal with processes on
   1055 			 * others CPU !
   1056 			 */
   1057 			break;
   1058 		default:
   1059 			break;
   1060 		}
   1061 	}
   1062 	SCHED_UNLOCK(s);
   1063 	proclist_unlock_read();
   1064 }
   1065 
   1066 /*
   1067  * Low-level routines to access the run queue.  Optimised assembler
   1068  * routines can override these.
   1069  */
   1070 
   1071 #ifndef __HAVE_MD_RUNQUEUE
   1072 
   1073 /*
   1074  * The primitives that manipulate the run queues.  whichqs tells which
   1075  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1076  * into queues, remrunqueue removes them from queues.  The running process is
   1077  * on no queue, other processes are on a queue related to p->p_priority,
   1078  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1079  * available queues.
   1080  */
   1081 
   1082 void
   1083 setrunqueue(struct proc *p)
   1084 {
   1085 	struct prochd *rq;
   1086 	struct proc *prev;
   1087 	int whichq;
   1088 
   1089 #ifdef DIAGNOSTIC
   1090 	if (p->p_back != NULL || p->p_wchan != NULL || p->p_stat != SRUN)
   1091 		panic("setrunqueue");
   1092 #endif
   1093 	whichq = p->p_priority / 4;
   1094 	sched_whichqs |= (1<<whichq);
   1095 	rq = &sched_qs[whichq];
   1096 	prev = rq->ph_rlink;
   1097 	p->p_forw = (struct proc *)rq;
   1098 	rq->ph_rlink = p;
   1099 	prev->p_forw = p;
   1100 	p->p_back = prev;
   1101 }
   1102 
   1103 void
   1104 remrunqueue(struct proc *p)
   1105 {
   1106 	struct proc *prev, *next;
   1107 	int whichq;
   1108 
   1109 	whichq = p->p_priority / 4;
   1110 #ifdef DIAGNOSTIC
   1111 	if (((sched_whichqs & (1<<whichq)) == 0))
   1112 		panic("remrunqueue");
   1113 #endif
   1114 	prev = p->p_back;
   1115 	p->p_back = NULL;
   1116 	next = p->p_forw;
   1117 	prev->p_forw = next;
   1118 	next->p_back = prev;
   1119 	if (prev == next)
   1120 		sched_whichqs &= ~(1<<whichq);
   1121 }
   1122 
   1123 #endif
   1124