kern_synch.c revision 1.121 1 /* $NetBSD: kern_synch.c,v 1.121 2003/01/15 07:12:20 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.121 2003/01/15 07:12:20 thorpej Exp $");
82
83 #include "opt_ddb.h"
84 #include "opt_ktrace.h"
85 #include "opt_kstack.h"
86 #include "opt_lockdebug.h"
87 #include "opt_multiprocessor.h"
88 #include "opt_perfctrs.h"
89
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/callout.h>
93 #include <sys/proc.h>
94 #include <sys/kernel.h>
95 #include <sys/buf.h>
96 #if defined(PERFCTRS)
97 #include <sys/pmc.h>
98 #endif
99 #include <sys/signalvar.h>
100 #include <sys/resourcevar.h>
101 #include <sys/sched.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #ifdef KTRACE
106 #include <sys/ktrace.h>
107 #endif
108
109 #include <machine/cpu.h>
110
111 int lbolt; /* once a second sleep address */
112 int rrticks; /* number of hardclock ticks per roundrobin() */
113
114 /*
115 * The global scheduler state.
116 */
117 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
118 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
119 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
120
121 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
122
123 void schedcpu(void *);
124 void updatepri(struct proc *);
125 void endtsleep(void *);
126
127 __inline void awaken(struct proc *);
128
129 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
130
131 /*
132 * Force switch among equal priority processes every 100ms.
133 * Called from hardclock every hz/10 == rrticks hardclock ticks.
134 */
135 /* ARGSUSED */
136 void
137 roundrobin(struct cpu_info *ci)
138 {
139 struct schedstate_percpu *spc = &ci->ci_schedstate;
140
141 spc->spc_rrticks = rrticks;
142
143 if (curproc != NULL) {
144 if (spc->spc_flags & SPCF_SEENRR) {
145 /*
146 * The process has already been through a roundrobin
147 * without switching and may be hogging the CPU.
148 * Indicate that the process should yield.
149 */
150 spc->spc_flags |= SPCF_SHOULDYIELD;
151 } else
152 spc->spc_flags |= SPCF_SEENRR;
153 }
154 need_resched(curcpu());
155 }
156
157 /*
158 * Constants for digital decay and forget:
159 * 90% of (p_estcpu) usage in 5 * loadav time
160 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
161 * Note that, as ps(1) mentions, this can let percentages
162 * total over 100% (I've seen 137.9% for 3 processes).
163 *
164 * Note that hardclock updates p_estcpu and p_cpticks independently.
165 *
166 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
167 * That is, the system wants to compute a value of decay such
168 * that the following for loop:
169 * for (i = 0; i < (5 * loadavg); i++)
170 * p_estcpu *= decay;
171 * will compute
172 * p_estcpu *= 0.1;
173 * for all values of loadavg:
174 *
175 * Mathematically this loop can be expressed by saying:
176 * decay ** (5 * loadavg) ~= .1
177 *
178 * The system computes decay as:
179 * decay = (2 * loadavg) / (2 * loadavg + 1)
180 *
181 * We wish to prove that the system's computation of decay
182 * will always fulfill the equation:
183 * decay ** (5 * loadavg) ~= .1
184 *
185 * If we compute b as:
186 * b = 2 * loadavg
187 * then
188 * decay = b / (b + 1)
189 *
190 * We now need to prove two things:
191 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
192 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
193 *
194 * Facts:
195 * For x close to zero, exp(x) =~ 1 + x, since
196 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
197 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
198 * For x close to zero, ln(1+x) =~ x, since
199 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
200 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
201 * ln(.1) =~ -2.30
202 *
203 * Proof of (1):
204 * Solve (factor)**(power) =~ .1 given power (5*loadav):
205 * solving for factor,
206 * ln(factor) =~ (-2.30/5*loadav), or
207 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
208 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
209 *
210 * Proof of (2):
211 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
212 * solving for power,
213 * power*ln(b/(b+1)) =~ -2.30, or
214 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
215 *
216 * Actual power values for the implemented algorithm are as follows:
217 * loadav: 1 2 3 4
218 * power: 5.68 10.32 14.94 19.55
219 */
220
221 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
222 #define loadfactor(loadav) (2 * (loadav))
223 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
224
225 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
226 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
227
228 /*
229 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
230 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
231 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
232 *
233 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
234 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
235 *
236 * If you dont want to bother with the faster/more-accurate formula, you
237 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
238 * (more general) method of calculating the %age of CPU used by a process.
239 */
240 #define CCPU_SHIFT 11
241
242 /*
243 * Recompute process priorities, every hz ticks.
244 */
245 /* ARGSUSED */
246 void
247 schedcpu(void *arg)
248 {
249 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
250 struct proc *p;
251 int s;
252 unsigned int newcpu;
253 int clkhz;
254
255 proclist_lock_read();
256 LIST_FOREACH(p, &allproc, p_list) {
257 /*
258 * Increment time in/out of memory and sleep time
259 * (if sleeping). We ignore overflow; with 16-bit int's
260 * (remember them?) overflow takes 45 days.
261 */
262 p->p_swtime++;
263 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
264 p->p_slptime++;
265 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
266 /*
267 * If the process has slept the entire second,
268 * stop recalculating its priority until it wakes up.
269 */
270 if (p->p_slptime > 1)
271 continue;
272 s = splstatclock(); /* prevent state changes */
273 /*
274 * p_pctcpu is only for ps.
275 */
276 clkhz = stathz != 0 ? stathz : hz;
277 #if (FSHIFT >= CCPU_SHIFT)
278 p->p_pctcpu += (clkhz == 100)?
279 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
280 100 * (((fixpt_t) p->p_cpticks)
281 << (FSHIFT - CCPU_SHIFT)) / clkhz;
282 #else
283 p->p_pctcpu += ((FSCALE - ccpu) *
284 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
285 #endif
286 p->p_cpticks = 0;
287 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
288 p->p_estcpu = newcpu;
289 splx(s); /* Done with the process CPU ticks update */
290 SCHED_LOCK(s);
291 resetpriority(p);
292 if (p->p_priority >= PUSER) {
293 if (p->p_stat == SRUN &&
294 (p->p_flag & P_INMEM) &&
295 (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
296 remrunqueue(p);
297 p->p_priority = p->p_usrpri;
298 setrunqueue(p);
299 } else
300 p->p_priority = p->p_usrpri;
301 }
302 SCHED_UNLOCK(s);
303 }
304 proclist_unlock_read();
305 uvm_meter();
306 wakeup((caddr_t)&lbolt);
307 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
308 }
309
310 /*
311 * Recalculate the priority of a process after it has slept for a while.
312 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
313 * least six times the loadfactor will decay p_estcpu to zero.
314 */
315 void
316 updatepri(struct proc *p)
317 {
318 unsigned int newcpu;
319 fixpt_t loadfac;
320
321 SCHED_ASSERT_LOCKED();
322
323 newcpu = p->p_estcpu;
324 loadfac = loadfactor(averunnable.ldavg[0]);
325
326 if (p->p_slptime > 5 * loadfac)
327 p->p_estcpu = 0;
328 else {
329 p->p_slptime--; /* the first time was done in schedcpu */
330 while (newcpu && --p->p_slptime)
331 newcpu = (int) decay_cpu(loadfac, newcpu);
332 p->p_estcpu = newcpu;
333 }
334 resetpriority(p);
335 }
336
337 /*
338 * During autoconfiguration or after a panic, a sleep will simply
339 * lower the priority briefly to allow interrupts, then return.
340 * The priority to be used (safepri) is machine-dependent, thus this
341 * value is initialized and maintained in the machine-dependent layers.
342 * This priority will typically be 0, or the lowest priority
343 * that is safe for use on the interrupt stack; it can be made
344 * higher to block network software interrupts after panics.
345 */
346 int safepri;
347
348 /*
349 * General sleep call. Suspends the current process until a wakeup is
350 * performed on the specified identifier. The process will then be made
351 * runnable with the specified priority. Sleeps at most timo/hz seconds
352 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
353 * before and after sleeping, else signals are not checked. Returns 0 if
354 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
355 * signal needs to be delivered, ERESTART is returned if the current system
356 * call should be restarted if possible, and EINTR is returned if the system
357 * call should be interrupted by the signal (return EINTR).
358 *
359 * The interlock is held until the scheduler_slock is acquired. The
360 * interlock will be locked before returning back to the caller
361 * unless the PNORELOCK flag is specified, in which case the
362 * interlock will always be unlocked upon return.
363 */
364 int
365 ltsleep(void *ident, int priority, const char *wmesg, int timo,
366 __volatile struct simplelock *interlock)
367 {
368 struct proc *p = curproc;
369 struct slpque *qp;
370 int sig, s;
371 int catch = priority & PCATCH;
372 int relock = (priority & PNORELOCK) == 0;
373
374 /*
375 * XXXSMP
376 * This is probably bogus. Figure out what the right
377 * thing to do here really is.
378 * Note that not sleeping if ltsleep is called with curproc == NULL
379 * in the shutdown case is disgusting but partly necessary given
380 * how shutdown (barely) works.
381 */
382 if (cold || (doing_shutdown && (panicstr || (p == NULL)))) {
383 /*
384 * After a panic, or during autoconfiguration,
385 * just give interrupts a chance, then just return;
386 * don't run any other procs or panic below,
387 * in case this is the idle process and already asleep.
388 */
389 s = splhigh();
390 splx(safepri);
391 splx(s);
392 if (interlock != NULL && relock == 0)
393 simple_unlock(interlock);
394 return (0);
395 }
396
397 KASSERT(p != NULL);
398 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
399
400 #ifdef KTRACE
401 if (KTRPOINT(p, KTR_CSW))
402 ktrcsw(p, 1, 0);
403 #endif
404
405 SCHED_LOCK(s);
406
407 #ifdef DIAGNOSTIC
408 if (ident == NULL)
409 panic("ltsleep: ident == NULL");
410 if (p->p_stat != SONPROC)
411 panic("ltsleep: p_stat %d != SONPROC", p->p_stat);
412 if (p->p_back != NULL)
413 panic("ltsleep: p_back != NULL");
414 #endif
415
416 p->p_wchan = ident;
417 p->p_wmesg = wmesg;
418 p->p_slptime = 0;
419 p->p_priority = priority & PRIMASK;
420
421 qp = SLPQUE(ident);
422 if (qp->sq_head == 0)
423 qp->sq_head = p;
424 else
425 *qp->sq_tailp = p;
426 *(qp->sq_tailp = &p->p_forw) = 0;
427
428 if (timo)
429 callout_reset(&p->p_tsleep_ch, timo, endtsleep, p);
430
431 /*
432 * We can now release the interlock; the scheduler_slock
433 * is held, so a thread can't get in to do wakeup() before
434 * we do the switch.
435 *
436 * XXX We leave the code block here, after inserting ourselves
437 * on the sleep queue, because we might want a more clever
438 * data structure for the sleep queues at some point.
439 */
440 if (interlock != NULL)
441 simple_unlock(interlock);
442
443 /*
444 * We put ourselves on the sleep queue and start our timeout
445 * before calling CURSIG, as we could stop there, and a wakeup
446 * or a SIGCONT (or both) could occur while we were stopped.
447 * A SIGCONT would cause us to be marked as SSLEEP
448 * without resuming us, thus we must be ready for sleep
449 * when CURSIG is called. If the wakeup happens while we're
450 * stopped, p->p_wchan will be 0 upon return from CURSIG.
451 */
452 if (catch) {
453 p->p_flag |= P_SINTR;
454 if ((sig = CURSIG(p)) != 0) {
455 if (p->p_wchan != NULL)
456 unsleep(p);
457 p->p_stat = SONPROC;
458 SCHED_UNLOCK(s);
459 goto resume;
460 }
461 if (p->p_wchan == NULL) {
462 catch = 0;
463 SCHED_UNLOCK(s);
464 goto resume;
465 }
466 } else
467 sig = 0;
468 p->p_stat = SSLEEP;
469 p->p_stats->p_ru.ru_nvcsw++;
470
471 SCHED_ASSERT_LOCKED();
472 mi_switch(p, NULL);
473
474 #if defined(DDB) && !defined(GPROF)
475 /* handy breakpoint location after process "wakes" */
476 __asm(".globl bpendtsleep ; bpendtsleep:");
477 #endif
478
479 SCHED_ASSERT_UNLOCKED();
480 splx(s);
481
482 resume:
483 KDASSERT(p->p_cpu != NULL);
484 KDASSERT(p->p_cpu == curcpu());
485 p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
486
487 p->p_flag &= ~P_SINTR;
488 if (p->p_flag & P_TIMEOUT) {
489 p->p_flag &= ~P_TIMEOUT;
490 if (sig == 0) {
491 #ifdef KTRACE
492 if (KTRPOINT(p, KTR_CSW))
493 ktrcsw(p, 0, 0);
494 #endif
495 if (relock && interlock != NULL)
496 simple_lock(interlock);
497 return (EWOULDBLOCK);
498 }
499 } else if (timo)
500 callout_stop(&p->p_tsleep_ch);
501 if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
502 #ifdef KTRACE
503 if (KTRPOINT(p, KTR_CSW))
504 ktrcsw(p, 0, 0);
505 #endif
506 if (relock && interlock != NULL)
507 simple_lock(interlock);
508 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
509 return (EINTR);
510 return (ERESTART);
511 }
512 #ifdef KTRACE
513 if (KTRPOINT(p, KTR_CSW))
514 ktrcsw(p, 0, 0);
515 #endif
516 if (relock && interlock != NULL)
517 simple_lock(interlock);
518 return (0);
519 }
520
521 /*
522 * Implement timeout for tsleep.
523 * If process hasn't been awakened (wchan non-zero),
524 * set timeout flag and undo the sleep. If proc
525 * is stopped, just unsleep so it will remain stopped.
526 */
527 void
528 endtsleep(void *arg)
529 {
530 struct proc *p;
531 int s;
532
533 p = (struct proc *)arg;
534
535 SCHED_LOCK(s);
536 if (p->p_wchan) {
537 if (p->p_stat == SSLEEP)
538 setrunnable(p);
539 else
540 unsleep(p);
541 p->p_flag |= P_TIMEOUT;
542 }
543 SCHED_UNLOCK(s);
544 }
545
546 /*
547 * Remove a process from its wait queue
548 */
549 void
550 unsleep(struct proc *p)
551 {
552 struct slpque *qp;
553 struct proc **hp;
554
555 SCHED_ASSERT_LOCKED();
556
557 if (p->p_wchan) {
558 hp = &(qp = SLPQUE(p->p_wchan))->sq_head;
559 while (*hp != p)
560 hp = &(*hp)->p_forw;
561 *hp = p->p_forw;
562 if (qp->sq_tailp == &p->p_forw)
563 qp->sq_tailp = hp;
564 p->p_wchan = 0;
565 }
566 }
567
568 /*
569 * Optimized-for-wakeup() version of setrunnable().
570 */
571 __inline void
572 awaken(struct proc *p)
573 {
574
575 SCHED_ASSERT_LOCKED();
576
577 if (p->p_slptime > 1)
578 updatepri(p);
579 p->p_slptime = 0;
580 p->p_stat = SRUN;
581
582 /*
583 * Since curpriority is a user priority, p->p_priority
584 * is always better than curpriority on the last CPU on
585 * which it ran.
586 *
587 * XXXSMP See affinity comment in resched_proc().
588 */
589 if (p->p_flag & P_INMEM) {
590 setrunqueue(p);
591 KASSERT(p->p_cpu != NULL);
592 need_resched(p->p_cpu);
593 } else
594 sched_wakeup(&proc0);
595 }
596
597 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
598 void
599 sched_unlock_idle(void)
600 {
601
602 simple_unlock(&sched_lock);
603 }
604
605 void
606 sched_lock_idle(void)
607 {
608
609 simple_lock(&sched_lock);
610 }
611 #endif /* MULTIPROCESSOR || LOCKDEBUG */
612
613 /*
614 * Make all processes sleeping on the specified identifier runnable.
615 */
616
617 void
618 wakeup(void *ident)
619 {
620 int s;
621
622 SCHED_ASSERT_UNLOCKED();
623
624 SCHED_LOCK(s);
625 sched_wakeup(ident);
626 SCHED_UNLOCK(s);
627 }
628
629 void
630 sched_wakeup(void *ident)
631 {
632 struct slpque *qp;
633 struct proc *p, **q;
634
635 SCHED_ASSERT_LOCKED();
636
637 qp = SLPQUE(ident);
638 restart:
639 for (q = &qp->sq_head; (p = *q) != NULL; ) {
640 #ifdef DIAGNOSTIC
641 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
642 panic("wakeup");
643 #endif
644 if (p->p_wchan == ident) {
645 p->p_wchan = 0;
646 *q = p->p_forw;
647 if (qp->sq_tailp == &p->p_forw)
648 qp->sq_tailp = q;
649 if (p->p_stat == SSLEEP) {
650 awaken(p);
651 goto restart;
652 }
653 } else
654 q = &p->p_forw;
655 }
656 }
657
658 /*
659 * Make the highest priority process first in line on the specified
660 * identifier runnable.
661 */
662 void
663 wakeup_one(void *ident)
664 {
665 struct slpque *qp;
666 struct proc *p, **q;
667 struct proc *best_sleepp, **best_sleepq;
668 struct proc *best_stopp, **best_stopq;
669 int s;
670
671 best_sleepp = best_stopp = NULL;
672 best_sleepq = best_stopq = NULL;
673
674 SCHED_LOCK(s);
675
676 qp = SLPQUE(ident);
677
678 for (q = &qp->sq_head; (p = *q) != NULL; q = &p->p_forw) {
679 #ifdef DIAGNOSTIC
680 if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
681 panic("wakeup_one");
682 #endif
683 if (p->p_wchan == ident) {
684 if (p->p_stat == SSLEEP) {
685 if (best_sleepp == NULL ||
686 p->p_priority < best_sleepp->p_priority) {
687 best_sleepp = p;
688 best_sleepq = q;
689 }
690 } else {
691 if (best_stopp == NULL ||
692 p->p_priority < best_stopp->p_priority) {
693 best_stopp = p;
694 best_stopq = q;
695 }
696 }
697 }
698 }
699
700 /*
701 * Consider any SSLEEP process higher than the highest priority SSTOP
702 * process.
703 */
704 if (best_sleepp != NULL) {
705 p = best_sleepp;
706 q = best_sleepq;
707 } else {
708 p = best_stopp;
709 q = best_stopq;
710 }
711
712 if (p != NULL) {
713 p->p_wchan = NULL;
714 *q = p->p_forw;
715 if (qp->sq_tailp == &p->p_forw)
716 qp->sq_tailp = q;
717 if (p->p_stat == SSLEEP)
718 awaken(p);
719 }
720 SCHED_UNLOCK(s);
721 }
722
723 /*
724 * General yield call. Puts the current process back on its run queue and
725 * performs a voluntary context switch. Should only be called when the
726 * current process explicitly requests it (eg sched_yield(2) in compat code).
727 */
728 void
729 yield(void)
730 {
731 struct proc *p = curproc;
732 int s;
733
734 SCHED_LOCK(s);
735 p->p_priority = p->p_usrpri;
736 p->p_stat = SRUN;
737 setrunqueue(p);
738 p->p_stats->p_ru.ru_nvcsw++;
739 mi_switch(p, NULL);
740 SCHED_ASSERT_UNLOCKED();
741 splx(s);
742 }
743
744 /*
745 * General preemption call. Puts the current process back on its run queue
746 * and performs an involuntary context switch. If a process is supplied,
747 * we switch to that process. Otherwise, we use the normal process selection
748 * criteria.
749 */
750 void
751 preempt(struct proc *newp)
752 {
753 struct proc *p = curproc;
754 int s;
755
756 SCHED_LOCK(s);
757 p->p_priority = p->p_usrpri;
758 p->p_stat = SRUN;
759 setrunqueue(p);
760 p->p_stats->p_ru.ru_nivcsw++;
761 mi_switch(p, newp);
762 SCHED_ASSERT_UNLOCKED();
763 splx(s);
764 }
765
766 /*
767 * The machine independent parts of context switch.
768 * Must be called at splsched() (no higher!) and with
769 * the sched_lock held.
770 */
771 void
772 mi_switch(struct proc *p, struct proc *newp)
773 {
774 struct schedstate_percpu *spc;
775 struct rlimit *rlim;
776 long s, u;
777 struct timeval tv;
778 #if defined(MULTIPROCESSOR)
779 int hold_count;
780 #endif
781
782 SCHED_ASSERT_LOCKED();
783
784 #if defined(MULTIPROCESSOR)
785 /*
786 * Release the kernel_lock, as we are about to yield the CPU.
787 * The scheduler lock is still held until cpu_switch()
788 * selects a new process and removes it from the run queue.
789 */
790 if (p->p_flag & P_BIGLOCK)
791 hold_count = spinlock_release_all(&kernel_lock);
792 #endif
793
794 KDASSERT(p->p_cpu != NULL);
795 KDASSERT(p->p_cpu == curcpu());
796 KDASSERT(newp == NULL);
797
798 spc = &p->p_cpu->ci_schedstate;
799
800 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
801 spinlock_switchcheck();
802 #endif
803 #ifdef LOCKDEBUG
804 simple_lock_switchcheck();
805 #endif
806
807 /*
808 * Compute the amount of time during which the current
809 * process was running.
810 */
811 microtime(&tv);
812 u = p->p_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
813 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
814 if (u < 0) {
815 u += 1000000;
816 s--;
817 } else if (u >= 1000000) {
818 u -= 1000000;
819 s++;
820 }
821 p->p_rtime.tv_usec = u;
822 p->p_rtime.tv_sec = s;
823
824 /*
825 * Check if the process exceeds its cpu resource allocation.
826 * If over max, kill it. In any case, if it has run for more
827 * than 10 minutes, reduce priority to give others a chance.
828 */
829 rlim = &p->p_rlimit[RLIMIT_CPU];
830 if (s >= rlim->rlim_cur) {
831 /*
832 * XXXSMP: we're inside the scheduler lock perimeter;
833 * use sched_psignal.
834 */
835 if (s >= rlim->rlim_max)
836 sched_psignal(p, SIGKILL);
837 else {
838 sched_psignal(p, SIGXCPU);
839 if (rlim->rlim_cur < rlim->rlim_max)
840 rlim->rlim_cur += 5;
841 }
842 }
843 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
844 p->p_nice == NZERO) {
845 p->p_nice = autoniceval + NZERO;
846 resetpriority(p);
847 }
848
849 /*
850 * Process is about to yield the CPU; clear the appropriate
851 * scheduling flags.
852 */
853 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
854
855 #ifdef KSTACK_CHECK_MAGIC
856 kstack_check_magic(p);
857 #endif
858
859 /*
860 * If we are using h/w performance counters, save context.
861 */
862 #if PERFCTRS
863 if (PMC_ENABLED(p))
864 pmc_save_context(p);
865 #endif
866
867 /*
868 * Switch to the new current process. When we
869 * run again, we'll return back here.
870 */
871 uvmexp.swtch++;
872 cpu_switch(p, NULL);
873
874 /*
875 * If we are using h/w performance counters, restore context.
876 */
877 #if PERFCTRS
878 if (PMC_ENABLED(p))
879 pmc_restore_context(p);
880 #endif
881
882 /*
883 * Make sure that MD code released the scheduler lock before
884 * resuming us.
885 */
886 SCHED_ASSERT_UNLOCKED();
887
888 /*
889 * We're running again; record our new start time. We might
890 * be running on a new CPU now, so don't use the cache'd
891 * schedstate_percpu pointer.
892 */
893 KDASSERT(p->p_cpu != NULL);
894 KDASSERT(p->p_cpu == curcpu());
895 microtime(&p->p_cpu->ci_schedstate.spc_runtime);
896
897 #if defined(MULTIPROCESSOR)
898 /*
899 * Reacquire the kernel_lock now. We do this after we've
900 * released the scheduler lock to avoid deadlock, and before
901 * we reacquire the interlock.
902 */
903 if (p->p_flag & P_BIGLOCK)
904 spinlock_acquire_count(&kernel_lock, hold_count);
905 #endif
906 }
907
908 /*
909 * Initialize the (doubly-linked) run queues
910 * to be empty.
911 */
912 void
913 rqinit()
914 {
915 int i;
916
917 for (i = 0; i < RUNQUE_NQS; i++)
918 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
919 (struct proc *)&sched_qs[i];
920 }
921
922 static __inline void
923 resched_proc(struct proc *p, u_char pri)
924 {
925 struct cpu_info *ci;
926
927 /*
928 * XXXSMP
929 * Since p->p_cpu persists across a context switch,
930 * this gives us *very weak* processor affinity, in
931 * that we notify the CPU on which the process last
932 * ran that it should try to switch.
933 *
934 * This does not guarantee that the process will run on
935 * that processor next, because another processor might
936 * grab it the next time it performs a context switch.
937 *
938 * This also does not handle the case where its last
939 * CPU is running a higher-priority process, but every
940 * other CPU is running a lower-priority process. There
941 * are ways to handle this situation, but they're not
942 * currently very pretty, and we also need to weigh the
943 * cost of moving a process from one CPU to another.
944 *
945 * XXXSMP
946 * There is also the issue of locking the other CPU's
947 * sched state, which we currently do not do.
948 */
949 ci = (p->p_cpu != NULL) ? p->p_cpu : curcpu();
950 if (pri < ci->ci_schedstate.spc_curpriority)
951 need_resched(ci);
952 }
953
954 /*
955 * Change process state to be runnable,
956 * placing it on the run queue if it is in memory,
957 * and awakening the swapper if it isn't in memory.
958 */
959 void
960 setrunnable(struct proc *p)
961 {
962
963 SCHED_ASSERT_LOCKED();
964
965 switch (p->p_stat) {
966 case 0:
967 case SRUN:
968 case SONPROC:
969 case SZOMB:
970 case SDEAD:
971 default:
972 panic("setrunnable");
973 case SSTOP:
974 /*
975 * If we're being traced (possibly because someone attached us
976 * while we were stopped), check for a signal from the debugger.
977 */
978 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
979 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
980 CHECKSIGS(p);
981 }
982 case SSLEEP:
983 unsleep(p); /* e.g. when sending signals */
984 break;
985
986 case SIDL:
987 break;
988 }
989 p->p_stat = SRUN;
990 if (p->p_flag & P_INMEM)
991 setrunqueue(p);
992
993 if (p->p_slptime > 1)
994 updatepri(p);
995 p->p_slptime = 0;
996 if ((p->p_flag & P_INMEM) == 0)
997 sched_wakeup((caddr_t)&proc0);
998 else
999 resched_proc(p, p->p_priority);
1000 }
1001
1002 /*
1003 * Compute the priority of a process when running in user mode.
1004 * Arrange to reschedule if the resulting priority is better
1005 * than that of the current process.
1006 */
1007 void
1008 resetpriority(struct proc *p)
1009 {
1010 unsigned int newpriority;
1011
1012 SCHED_ASSERT_LOCKED();
1013
1014 newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
1015 newpriority = min(newpriority, MAXPRI);
1016 p->p_usrpri = newpriority;
1017 resched_proc(p, p->p_usrpri);
1018 }
1019
1020 /*
1021 * We adjust the priority of the current process. The priority of a process
1022 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1023 * is increased here. The formula for computing priorities (in kern_synch.c)
1024 * will compute a different value each time p_estcpu increases. This can
1025 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1026 * queue will not change. The cpu usage estimator ramps up quite quickly
1027 * when the process is running (linearly), and decays away exponentially, at
1028 * a rate which is proportionally slower when the system is busy. The basic
1029 * principle is that the system will 90% forget that the process used a lot
1030 * of CPU time in 5 * loadav seconds. This causes the system to favor
1031 * processes which haven't run much recently, and to round-robin among other
1032 * processes.
1033 */
1034
1035 void
1036 schedclock(struct proc *p)
1037 {
1038 int s;
1039
1040 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1041
1042 SCHED_LOCK(s);
1043 resetpriority(p);
1044 SCHED_UNLOCK(s);
1045
1046 if (p->p_priority >= PUSER)
1047 p->p_priority = p->p_usrpri;
1048 }
1049
1050 void
1051 suspendsched()
1052 {
1053 struct proc *p;
1054 int s;
1055
1056 /*
1057 * Convert all non-P_SYSTEM SSLEEP or SRUN processes to SSTOP.
1058 */
1059 proclist_lock_read();
1060 SCHED_LOCK(s);
1061 LIST_FOREACH(p, &allproc, p_list) {
1062 if ((p->p_flag & P_SYSTEM) != 0)
1063 continue;
1064 switch (p->p_stat) {
1065 case SRUN:
1066 if ((p->p_flag & P_INMEM) != 0)
1067 remrunqueue(p);
1068 /* FALLTHROUGH */
1069 case SSLEEP:
1070 p->p_stat = SSTOP;
1071 break;
1072 case SONPROC:
1073 /*
1074 * XXX SMP: we need to deal with processes on
1075 * others CPU !
1076 */
1077 break;
1078 default:
1079 break;
1080 }
1081 }
1082 SCHED_UNLOCK(s);
1083 proclist_unlock_read();
1084 }
1085
1086 /*
1087 * Low-level routines to access the run queue. Optimised assembler
1088 * routines can override these.
1089 */
1090
1091 #ifndef __HAVE_MD_RUNQUEUE
1092
1093 /*
1094 * The primitives that manipulate the run queues. whichqs tells which
1095 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1096 * into queues, remrunqueue removes them from queues. The running process is
1097 * on no queue, other processes are on a queue related to p->p_priority,
1098 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1099 * available queues.
1100 */
1101
1102 void
1103 setrunqueue(struct proc *p)
1104 {
1105 struct prochd *rq;
1106 struct proc *prev;
1107 int whichq;
1108
1109 #ifdef DIAGNOSTIC
1110 if (p->p_back != NULL || p->p_wchan != NULL || p->p_stat != SRUN)
1111 panic("setrunqueue");
1112 #endif
1113 whichq = p->p_priority / 4;
1114 sched_whichqs |= (1<<whichq);
1115 rq = &sched_qs[whichq];
1116 prev = rq->ph_rlink;
1117 p->p_forw = (struct proc *)rq;
1118 rq->ph_rlink = p;
1119 prev->p_forw = p;
1120 p->p_back = prev;
1121 }
1122
1123 void
1124 remrunqueue(struct proc *p)
1125 {
1126 struct proc *prev, *next;
1127 int whichq;
1128
1129 whichq = p->p_priority / 4;
1130 #ifdef DIAGNOSTIC
1131 if (((sched_whichqs & (1<<whichq)) == 0))
1132 panic("remrunqueue");
1133 #endif
1134 prev = p->p_back;
1135 p->p_back = NULL;
1136 next = p->p_forw;
1137 prev->p_forw = next;
1138 next->p_back = prev;
1139 if (prev == next)
1140 sched_whichqs &= ~(1<<whichq);
1141 }
1142
1143 #endif
1144