kern_synch.c revision 1.122 1 /* $NetBSD: kern_synch.c,v 1.122 2003/01/18 10:06:30 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
78 */
79
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.122 2003/01/18 10:06:30 thorpej Exp $");
82
83 #include "opt_ddb.h"
84 #include "opt_ktrace.h"
85 #include "opt_kstack.h"
86 #include "opt_lockdebug.h"
87 #include "opt_multiprocessor.h"
88 #include "opt_perfctrs.h"
89
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/callout.h>
93 #include <sys/proc.h>
94 #include <sys/kernel.h>
95 #include <sys/buf.h>
96 #if defined(PERFCTRS)
97 #include <sys/pmc.h>
98 #endif
99 #include <sys/signalvar.h>
100 #include <sys/resourcevar.h>
101 #include <sys/sched.h>
102 #include <sys/sa.h>
103 #include <sys/savar.h>
104
105 #include <uvm/uvm_extern.h>
106
107 #ifdef KTRACE
108 #include <sys/ktrace.h>
109 #endif
110
111 #include <machine/cpu.h>
112
113 int lbolt; /* once a second sleep address */
114 int rrticks; /* number of hardclock ticks per roundrobin() */
115
116 /*
117 * The global scheduler state.
118 */
119 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
120 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
121 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
122
123 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
124
125 void schedcpu(void *);
126 void updatepri(struct lwp *);
127 void endtsleep(void *);
128
129 __inline void awaken(struct lwp *);
130
131 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
132
133
134
135 /*
136 * Force switch among equal priority processes every 100ms.
137 * Called from hardclock every hz/10 == rrticks hardclock ticks.
138 */
139 /* ARGSUSED */
140 void
141 roundrobin(struct cpu_info *ci)
142 {
143 struct schedstate_percpu *spc = &ci->ci_schedstate;
144
145 spc->spc_rrticks = rrticks;
146
147 if (curlwp != NULL) {
148 if (spc->spc_flags & SPCF_SEENRR) {
149 /*
150 * The process has already been through a roundrobin
151 * without switching and may be hogging the CPU.
152 * Indicate that the process should yield.
153 */
154 spc->spc_flags |= SPCF_SHOULDYIELD;
155 } else
156 spc->spc_flags |= SPCF_SEENRR;
157 }
158 need_resched(curcpu());
159 }
160
161 /*
162 * Constants for digital decay and forget:
163 * 90% of (p_estcpu) usage in 5 * loadav time
164 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
165 * Note that, as ps(1) mentions, this can let percentages
166 * total over 100% (I've seen 137.9% for 3 processes).
167 *
168 * Note that hardclock updates p_estcpu and p_cpticks independently.
169 *
170 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
171 * That is, the system wants to compute a value of decay such
172 * that the following for loop:
173 * for (i = 0; i < (5 * loadavg); i++)
174 * p_estcpu *= decay;
175 * will compute
176 * p_estcpu *= 0.1;
177 * for all values of loadavg:
178 *
179 * Mathematically this loop can be expressed by saying:
180 * decay ** (5 * loadavg) ~= .1
181 *
182 * The system computes decay as:
183 * decay = (2 * loadavg) / (2 * loadavg + 1)
184 *
185 * We wish to prove that the system's computation of decay
186 * will always fulfill the equation:
187 * decay ** (5 * loadavg) ~= .1
188 *
189 * If we compute b as:
190 * b = 2 * loadavg
191 * then
192 * decay = b / (b + 1)
193 *
194 * We now need to prove two things:
195 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
196 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
197 *
198 * Facts:
199 * For x close to zero, exp(x) =~ 1 + x, since
200 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
201 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
202 * For x close to zero, ln(1+x) =~ x, since
203 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
204 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
205 * ln(.1) =~ -2.30
206 *
207 * Proof of (1):
208 * Solve (factor)**(power) =~ .1 given power (5*loadav):
209 * solving for factor,
210 * ln(factor) =~ (-2.30/5*loadav), or
211 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
212 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
213 *
214 * Proof of (2):
215 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
216 * solving for power,
217 * power*ln(b/(b+1)) =~ -2.30, or
218 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
219 *
220 * Actual power values for the implemented algorithm are as follows:
221 * loadav: 1 2 3 4
222 * power: 5.68 10.32 14.94 19.55
223 */
224
225 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
226 #define loadfactor(loadav) (2 * (loadav))
227 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
228
229 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
230 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
231
232 /*
233 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
234 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
235 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
236 *
237 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
238 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
239 *
240 * If you dont want to bother with the faster/more-accurate formula, you
241 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
242 * (more general) method of calculating the %age of CPU used by a process.
243 */
244 #define CCPU_SHIFT 11
245
246 /*
247 * Recompute process priorities, every hz ticks.
248 */
249 /* ARGSUSED */
250 void
251 schedcpu(void *arg)
252 {
253 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
254 struct lwp *l;
255 struct proc *p;
256 int s, minslp;
257 unsigned int newcpu;
258 int clkhz;
259
260 proclist_lock_read();
261 LIST_FOREACH(p, &allproc, p_list) {
262 /*
263 * Increment time in/out of memory and sleep time
264 * (if sleeping). We ignore overflow; with 16-bit int's
265 * (remember them?) overflow takes 45 days.
266 */
267 minslp = 2;
268 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
269 l->l_swtime++;
270 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
271 l->l_stat == LSSUSPENDED) {
272 l->l_slptime++;
273 minslp = min(minslp, l->l_slptime);
274 } else
275 minslp = 0;
276 }
277 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
278 /*
279 * If the process has slept the entire second,
280 * stop recalculating its priority until it wakes up.
281 */
282 if (minslp > 1)
283 continue;
284 s = splstatclock(); /* prevent state changes */
285 /*
286 * p_pctcpu is only for ps.
287 */
288 clkhz = stathz != 0 ? stathz : hz;
289 #if (FSHIFT >= CCPU_SHIFT)
290 p->p_pctcpu += (clkhz == 100)?
291 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
292 100 * (((fixpt_t) p->p_cpticks)
293 << (FSHIFT - CCPU_SHIFT)) / clkhz;
294 #else
295 p->p_pctcpu += ((FSCALE - ccpu) *
296 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
297 #endif
298 p->p_cpticks = 0;
299 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
300 p->p_estcpu = newcpu;
301 splx(s); /* Done with the process CPU ticks update */
302 SCHED_LOCK(s);
303 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
304 if (l->l_slptime > 1)
305 continue;
306 resetpriority(l);
307 if (l->l_priority >= PUSER) {
308 if (l->l_stat == LSRUN &&
309 (l->l_flag & L_INMEM) &&
310 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
311 remrunqueue(l);
312 l->l_priority = l->l_usrpri;
313 setrunqueue(l);
314 } else
315 l->l_priority = l->l_usrpri;
316 }
317 }
318 SCHED_UNLOCK(s);
319 }
320 proclist_unlock_read();
321 uvm_meter();
322 wakeup((caddr_t)&lbolt);
323 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
324 }
325
326 /*
327 * Recalculate the priority of a process after it has slept for a while.
328 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
329 * least six times the loadfactor will decay p_estcpu to zero.
330 */
331 void
332 updatepri(struct lwp *l)
333 {
334 struct proc *p = l->l_proc;
335 unsigned int newcpu;
336 fixpt_t loadfac;
337
338 SCHED_ASSERT_LOCKED();
339
340 newcpu = p->p_estcpu;
341 loadfac = loadfactor(averunnable.ldavg[0]);
342
343 if (l->l_slptime > 5 * loadfac)
344 p->p_estcpu = 0; /* XXX NJWLWP */
345 else {
346 l->l_slptime--; /* the first time was done in schedcpu */
347 while (newcpu && --l->l_slptime)
348 newcpu = (int) decay_cpu(loadfac, newcpu);
349 p->p_estcpu = newcpu;
350 }
351 resetpriority(l);
352 }
353
354 /*
355 * During autoconfiguration or after a panic, a sleep will simply
356 * lower the priority briefly to allow interrupts, then return.
357 * The priority to be used (safepri) is machine-dependent, thus this
358 * value is initialized and maintained in the machine-dependent layers.
359 * This priority will typically be 0, or the lowest priority
360 * that is safe for use on the interrupt stack; it can be made
361 * higher to block network software interrupts after panics.
362 */
363 int safepri;
364
365 /*
366 * General sleep call. Suspends the current process until a wakeup is
367 * performed on the specified identifier. The process will then be made
368 * runnable with the specified priority. Sleeps at most timo/hz seconds
369 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
370 * before and after sleeping, else signals are not checked. Returns 0 if
371 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
372 * signal needs to be delivered, ERESTART is returned if the current system
373 * call should be restarted if possible, and EINTR is returned if the system
374 * call should be interrupted by the signal (return EINTR).
375 *
376 * The interlock is held until the scheduler_slock is acquired. The
377 * interlock will be locked before returning back to the caller
378 * unless the PNORELOCK flag is specified, in which case the
379 * interlock will always be unlocked upon return.
380 */
381 int
382 ltsleep(void *ident, int priority, const char *wmesg, int timo,
383 __volatile struct simplelock *interlock)
384 {
385 struct lwp *l = curlwp;
386 struct proc *p = l->l_proc;
387 struct slpque *qp;
388 int sig, s;
389 int catch = priority & PCATCH;
390 int relock = (priority & PNORELOCK) == 0;
391 int exiterr = (priority & PNOEXITERR) == 0;
392
393 /*
394 * XXXSMP
395 * This is probably bogus. Figure out what the right
396 * thing to do here really is.
397 * Note that not sleeping if ltsleep is called with curlwp == NULL
398 * in the shutdown case is disgusting but partly necessary given
399 * how shutdown (barely) works.
400 */
401 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
402 /*
403 * After a panic, or during autoconfiguration,
404 * just give interrupts a chance, then just return;
405 * don't run any other procs or panic below,
406 * in case this is the idle process and already asleep.
407 */
408 s = splhigh();
409 splx(safepri);
410 splx(s);
411 if (interlock != NULL && relock == 0)
412 simple_unlock(interlock);
413 return (0);
414 }
415
416 KASSERT(p != NULL);
417 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
418
419 #ifdef KTRACE
420 if (KTRPOINT(p, KTR_CSW))
421 ktrcsw(p, 1, 0);
422 #endif
423
424 SCHED_LOCK(s);
425
426 #ifdef DIAGNOSTIC
427 if (ident == NULL)
428 panic("ltsleep: ident == NULL");
429 if (l->l_stat != LSONPROC)
430 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
431 if (l->l_back != NULL)
432 panic("ltsleep: p_back != NULL");
433 #endif
434
435 l->l_wchan = ident;
436 l->l_wmesg = wmesg;
437 l->l_slptime = 0;
438 l->l_priority = priority & PRIMASK;
439
440 qp = SLPQUE(ident);
441 if (qp->sq_head == 0)
442 qp->sq_head = l;
443 else {
444 *qp->sq_tailp = l;
445 }
446 *(qp->sq_tailp = &l->l_forw) = 0;
447
448 if (timo)
449 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
450
451 /*
452 * We can now release the interlock; the scheduler_slock
453 * is held, so a thread can't get in to do wakeup() before
454 * we do the switch.
455 *
456 * XXX We leave the code block here, after inserting ourselves
457 * on the sleep queue, because we might want a more clever
458 * data structure for the sleep queues at some point.
459 */
460 if (interlock != NULL)
461 simple_unlock(interlock);
462
463 /*
464 * We put ourselves on the sleep queue and start our timeout
465 * before calling CURSIG, as we could stop there, and a wakeup
466 * or a SIGCONT (or both) could occur while we were stopped.
467 * A SIGCONT would cause us to be marked as SSLEEP
468 * without resuming us, thus we must be ready for sleep
469 * when CURSIG is called. If the wakeup happens while we're
470 * stopped, p->p_wchan will be 0 upon return from CURSIG.
471 */
472 if (catch) {
473 l->l_flag |= L_SINTR;
474 if ((sig = CURSIG(l)) != 0) {
475 if (l->l_wchan != NULL)
476 unsleep(l);
477 l->l_stat = LSONPROC;
478 SCHED_UNLOCK(s);
479 goto resume;
480 }
481 if (l->l_wchan == NULL) {
482 catch = 0;
483 SCHED_UNLOCK(s);
484 goto resume;
485 }
486 } else
487 sig = 0;
488 l->l_stat = LSSLEEP;
489 p->p_nrlwps--;
490 p->p_stats->p_ru.ru_nvcsw++;
491 SCHED_ASSERT_LOCKED();
492 if (l->l_flag & L_SA)
493 sa_switch(l, SA_UPCALL_BLOCKED);
494 else
495 mi_switch(l, NULL);
496
497 #if defined(DDB) && !defined(GPROF)
498 /* handy breakpoint location after process "wakes" */
499 __asm(".globl bpendtsleep ; bpendtsleep:");
500 #endif
501 /*
502 * p->p_nrlwps is incremented by whoever made us runnable again,
503 * either setrunnable() or awaken().
504 */
505
506 SCHED_ASSERT_UNLOCKED();
507 splx(s);
508
509 resume:
510 KDASSERT(l->l_cpu != NULL);
511 KDASSERT(l->l_cpu == curcpu());
512 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
513
514 l->l_flag &= ~L_SINTR;
515 if (l->l_flag & L_TIMEOUT) {
516 l->l_flag &= ~L_TIMEOUT;
517 if (sig == 0) {
518 #ifdef KTRACE
519 if (KTRPOINT(p, KTR_CSW))
520 ktrcsw(p, 0, 0);
521 #endif
522 if (relock && interlock != NULL)
523 simple_lock(interlock);
524 return (EWOULDBLOCK);
525 }
526 } else if (timo)
527 callout_stop(&l->l_tsleep_ch);
528 if (catch && (sig != 0 || (sig = CURSIG(l)) != 0)) {
529 #ifdef KTRACE
530 if (KTRPOINT(p, KTR_CSW))
531 ktrcsw(p, 0, 0);
532 #endif
533 if (relock && interlock != NULL)
534 simple_lock(interlock);
535 if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
536 return (EINTR);
537 return (ERESTART);
538 }
539 /* XXXNJW this is very much a kluge.
540 * revisit. a better way of preventing looping/hanging syscalls like
541 * wait4() and _lwp_wait() from wedging an exiting process
542 * would be preferred.
543 */
544 if (catch && ((p->p_flag & P_WEXIT) && exiterr))
545 return (EINTR);
546 #ifdef KTRACE
547 if (KTRPOINT(p, KTR_CSW))
548 ktrcsw(p, 0, 0);
549 #endif
550 if (relock && interlock != NULL)
551 simple_lock(interlock);
552 return (0);
553 }
554
555 /*
556 * Implement timeout for tsleep.
557 * If process hasn't been awakened (wchan non-zero),
558 * set timeout flag and undo the sleep. If proc
559 * is stopped, just unsleep so it will remain stopped.
560 */
561 void
562 endtsleep(void *arg)
563 {
564 struct lwp *l;
565 int s;
566
567 l = (struct lwp *)arg;
568 SCHED_LOCK(s);
569 if (l->l_wchan) {
570 if (l->l_stat == LSSLEEP)
571 setrunnable(l);
572 else
573 unsleep(l);
574 l->l_flag |= L_TIMEOUT;
575 }
576 SCHED_UNLOCK(s);
577 }
578
579 /*
580 * Remove a process from its wait queue
581 */
582 void
583 unsleep(struct lwp *l)
584 {
585 struct slpque *qp;
586 struct lwp **hp;
587
588 SCHED_ASSERT_LOCKED();
589
590 if (l->l_wchan) {
591 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
592 while (*hp != l)
593 hp = &(*hp)->l_forw;
594 *hp = l->l_forw;
595 if (qp->sq_tailp == &l->l_forw)
596 qp->sq_tailp = hp;
597 l->l_wchan = 0;
598 }
599 }
600
601 /*
602 * Optimized-for-wakeup() version of setrunnable().
603 */
604 __inline void
605 awaken(struct lwp *l)
606 {
607
608 SCHED_ASSERT_LOCKED();
609
610 if (l->l_slptime > 1)
611 updatepri(l);
612 l->l_slptime = 0;
613 l->l_stat = LSRUN;
614 l->l_proc->p_nrlwps++;
615 /*
616 * Since curpriority is a user priority, p->p_priority
617 * is always better than curpriority on the last CPU on
618 * which it ran.
619 *
620 * XXXSMP See affinity comment in resched_proc().
621 */
622 if (l->l_flag & L_INMEM) {
623 setrunqueue(l);
624 if (l->l_flag & L_SA)
625 l->l_proc->p_sa->sa_woken = l;
626 KASSERT(l->l_cpu != NULL);
627 need_resched(l->l_cpu);
628 } else
629 sched_wakeup(&proc0);
630 }
631
632 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
633 void
634 sched_unlock_idle(void)
635 {
636
637 simple_unlock(&sched_lock);
638 }
639
640 void
641 sched_lock_idle(void)
642 {
643
644 simple_lock(&sched_lock);
645 }
646 #endif /* MULTIPROCESSOR || LOCKDEBUG */
647
648 /*
649 * Make all processes sleeping on the specified identifier runnable.
650 */
651
652 void
653 wakeup(void *ident)
654 {
655 int s;
656
657 SCHED_ASSERT_UNLOCKED();
658
659 SCHED_LOCK(s);
660 sched_wakeup(ident);
661 SCHED_UNLOCK(s);
662 }
663
664 void
665 sched_wakeup(void *ident)
666 {
667 struct slpque *qp;
668 struct lwp *l, **q;
669
670 SCHED_ASSERT_LOCKED();
671
672 qp = SLPQUE(ident);
673 restart:
674 for (q = &qp->sq_head; (l = *q) != NULL; ) {
675 #ifdef DIAGNOSTIC
676 if (l->l_back || (l->l_stat != LSSLEEP &&
677 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
678 panic("wakeup");
679 #endif
680 if (l->l_wchan == ident) {
681 l->l_wchan = 0;
682 *q = l->l_forw;
683 if (qp->sq_tailp == &l->l_forw)
684 qp->sq_tailp = q;
685 if (l->l_stat == LSSLEEP) {
686 awaken(l);
687 goto restart;
688 }
689 } else
690 q = &l->l_forw;
691 }
692 }
693
694 /*
695 * Make the highest priority process first in line on the specified
696 * identifier runnable.
697 */
698 void
699 wakeup_one(void *ident)
700 {
701 struct slpque *qp;
702 struct lwp *l, **q;
703 struct lwp *best_sleepp, **best_sleepq;
704 struct lwp *best_stopp, **best_stopq;
705 int s;
706
707 best_sleepp = best_stopp = NULL;
708 best_sleepq = best_stopq = NULL;
709
710 SCHED_LOCK(s);
711
712 qp = SLPQUE(ident);
713
714 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
715 #ifdef DIAGNOSTIC
716 if (l->l_back || (l->l_stat != LSSLEEP &&
717 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
718 panic("wakeup_one");
719 #endif
720 if (l->l_wchan == ident) {
721 if (l->l_stat == LSSLEEP) {
722 if (best_sleepp == NULL ||
723 l->l_priority < best_sleepp->l_priority) {
724 best_sleepp = l;
725 best_sleepq = q;
726 }
727 } else {
728 if (best_stopp == NULL ||
729 l->l_priority < best_stopp->l_priority) {
730 best_stopp = l;
731 best_stopq = q;
732 }
733 }
734 }
735 }
736
737 /*
738 * Consider any SSLEEP process higher than the highest priority SSTOP
739 * process.
740 */
741 if (best_sleepp != NULL) {
742 l = best_sleepp;
743 q = best_sleepq;
744 } else {
745 l = best_stopp;
746 q = best_stopq;
747 }
748
749 if (l != NULL) {
750 l->l_wchan = NULL;
751 *q = l->l_forw;
752 if (qp->sq_tailp == &l->l_forw)
753 qp->sq_tailp = q;
754 if (l->l_stat == LSSLEEP)
755 awaken(l);
756 }
757 SCHED_UNLOCK(s);
758 }
759
760 /*
761 * General yield call. Puts the current process back on its run queue and
762 * performs a voluntary context switch. Should only be called when the
763 * current process explicitly requests it (eg sched_yield(2) in compat code).
764 */
765 void
766 yield(void)
767 {
768 struct lwp *l = curlwp;
769 int s;
770
771 SCHED_LOCK(s);
772 l->l_priority = l->l_usrpri;
773 l->l_stat = LSRUN;
774 setrunqueue(l);
775 l->l_proc->p_stats->p_ru.ru_nvcsw++;
776 mi_switch(l, NULL);
777 SCHED_ASSERT_UNLOCKED();
778 splx(s);
779 }
780
781 /*
782 * General preemption call. Puts the current process back on its run queue
783 * and performs an involuntary context switch. If a process is supplied,
784 * we switch to that process. Otherwise, we use the normal process selection
785 * criteria.
786 */
787
788 void
789 preempt(int more)
790 {
791 struct lwp *l = curlwp;
792 int r, s;
793
794 SCHED_LOCK(s);
795 l->l_priority = l->l_usrpri;
796 l->l_stat = LSRUN;
797 setrunqueue(l);
798 l->l_proc->p_stats->p_ru.ru_nivcsw++;
799 r = mi_switch(l, NULL);
800 SCHED_ASSERT_UNLOCKED();
801 splx(s);
802 if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
803 sa_preempt(l);
804 }
805
806 /*
807 * The machine independent parts of context switch.
808 * Must be called at splsched() (no higher!) and with
809 * the sched_lock held.
810 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
811 * the next lwp.
812 *
813 * Returns 1 if another process was actually run.
814 */
815 int
816 mi_switch(struct lwp *l, struct lwp *newl)
817 {
818 struct schedstate_percpu *spc;
819 struct rlimit *rlim;
820 long s, u;
821 struct timeval tv;
822 #if defined(MULTIPROCESSOR)
823 int hold_count;
824 #endif
825 struct proc *p = l->l_proc;
826 int retval;
827
828 SCHED_ASSERT_LOCKED();
829
830 #if defined(MULTIPROCESSOR)
831 /*
832 * Release the kernel_lock, as we are about to yield the CPU.
833 * The scheduler lock is still held until cpu_switch()
834 * selects a new process and removes it from the run queue.
835 */
836 if (l->l_flag & L_BIGLOCK)
837 hold_count = spinlock_release_all(&kernel_lock);
838 #endif
839
840 KDASSERT(l->l_cpu != NULL);
841 KDASSERT(l->l_cpu == curcpu());
842
843 spc = &l->l_cpu->ci_schedstate;
844
845 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
846 spinlock_switchcheck();
847 #endif
848 #ifdef LOCKDEBUG
849 simple_lock_switchcheck();
850 #endif
851
852 /*
853 * Compute the amount of time during which the current
854 * process was running.
855 */
856 microtime(&tv);
857 u = p->p_rtime.tv_usec +
858 (tv.tv_usec - spc->spc_runtime.tv_usec);
859 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
860 if (u < 0) {
861 u += 1000000;
862 s--;
863 } else if (u >= 1000000) {
864 u -= 1000000;
865 s++;
866 }
867 p->p_rtime.tv_usec = u;
868 p->p_rtime.tv_sec = s;
869
870 /*
871 * Check if the process exceeds its cpu resource allocation.
872 * If over max, kill it. In any case, if it has run for more
873 * than 10 minutes, reduce priority to give others a chance.
874 */
875 rlim = &p->p_rlimit[RLIMIT_CPU];
876 if (s >= rlim->rlim_cur) {
877 /*
878 * XXXSMP: we're inside the scheduler lock perimeter;
879 * use sched_psignal.
880 */
881 if (s >= rlim->rlim_max)
882 sched_psignal(p, SIGKILL);
883 else {
884 sched_psignal(p, SIGXCPU);
885 if (rlim->rlim_cur < rlim->rlim_max)
886 rlim->rlim_cur += 5;
887 }
888 }
889 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
890 p->p_nice == NZERO) {
891 p->p_nice = autoniceval + NZERO;
892 resetpriority(l);
893 }
894
895 /*
896 * Process is about to yield the CPU; clear the appropriate
897 * scheduling flags.
898 */
899 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
900
901 #ifdef KSTACK_CHECK_MAGIC
902 kstack_check_magic(p);
903 #endif
904
905 /*
906 * If we are using h/w performance counters, save context.
907 */
908 #if PERFCTRS
909 if (PMC_ENABLED(p))
910 pmc_save_context(p);
911 #endif
912
913 /*
914 * Switch to the new current process. When we
915 * run again, we'll return back here.
916 */
917 uvmexp.swtch++;
918 if (newl == NULL) {
919 retval = cpu_switch(l, NULL);
920 } else {
921 remrunqueue(newl);
922 cpu_switchto(l, newl);
923 retval = 0;
924 }
925
926 /*
927 * If we are using h/w performance counters, restore context.
928 */
929 #if PERFCTRS
930 if (PMC_ENABLED(p))
931 pmc_restore_context(p);
932 #endif
933
934 /*
935 * Make sure that MD code released the scheduler lock before
936 * resuming us.
937 */
938 SCHED_ASSERT_UNLOCKED();
939
940 /*
941 * We're running again; record our new start time. We might
942 * be running on a new CPU now, so don't use the cache'd
943 * schedstate_percpu pointer.
944 */
945 KDASSERT(l->l_cpu != NULL);
946 KDASSERT(l->l_cpu == curcpu());
947 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
948
949 #if defined(MULTIPROCESSOR)
950 /*
951 * Reacquire the kernel_lock now. We do this after we've
952 * released the scheduler lock to avoid deadlock, and before
953 * we reacquire the interlock.
954 */
955 if (l->l_flag & L_BIGLOCK)
956 spinlock_acquire_count(&kernel_lock, hold_count);
957 #endif
958
959 return retval;
960 }
961
962 /*
963 * Initialize the (doubly-linked) run queues
964 * to be empty.
965 */
966 void
967 rqinit()
968 {
969 int i;
970
971 for (i = 0; i < RUNQUE_NQS; i++)
972 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
973 (struct lwp *)&sched_qs[i];
974 }
975
976 static __inline void
977 resched_proc(struct lwp *l, u_char pri)
978 {
979 struct cpu_info *ci;
980
981 /*
982 * XXXSMP
983 * Since l->l_cpu persists across a context switch,
984 * this gives us *very weak* processor affinity, in
985 * that we notify the CPU on which the process last
986 * ran that it should try to switch.
987 *
988 * This does not guarantee that the process will run on
989 * that processor next, because another processor might
990 * grab it the next time it performs a context switch.
991 *
992 * This also does not handle the case where its last
993 * CPU is running a higher-priority process, but every
994 * other CPU is running a lower-priority process. There
995 * are ways to handle this situation, but they're not
996 * currently very pretty, and we also need to weigh the
997 * cost of moving a process from one CPU to another.
998 *
999 * XXXSMP
1000 * There is also the issue of locking the other CPU's
1001 * sched state, which we currently do not do.
1002 */
1003 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1004 if (pri < ci->ci_schedstate.spc_curpriority)
1005 need_resched(ci);
1006 }
1007
1008 /*
1009 * Change process state to be runnable,
1010 * placing it on the run queue if it is in memory,
1011 * and awakening the swapper if it isn't in memory.
1012 */
1013 void
1014 setrunnable(struct lwp *l)
1015 {
1016 struct proc *p = l->l_proc;
1017
1018 SCHED_ASSERT_LOCKED();
1019
1020 switch (l->l_stat) {
1021 case 0:
1022 case LSRUN:
1023 case LSONPROC:
1024 case LSZOMB:
1025 case LSDEAD:
1026 default:
1027 panic("setrunnable");
1028 case LSSTOP:
1029 /*
1030 * If we're being traced (possibly because someone attached us
1031 * while we were stopped), check for a signal from the debugger.
1032 */
1033 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1034 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1035 CHECKSIGS(p);
1036 }
1037 case LSSLEEP:
1038 unsleep(l); /* e.g. when sending signals */
1039 break;
1040
1041 case LSIDL:
1042 break;
1043 case LSSUSPENDED:
1044 break;
1045 }
1046 l->l_stat = LSRUN;
1047 p->p_nrlwps++;
1048
1049 if (l->l_flag & L_INMEM)
1050 setrunqueue(l);
1051
1052 if (l->l_slptime > 1)
1053 updatepri(l);
1054 l->l_slptime = 0;
1055 if ((l->l_flag & L_INMEM) == 0)
1056 sched_wakeup((caddr_t)&proc0);
1057 else
1058 resched_proc(l, l->l_priority);
1059 }
1060
1061 /*
1062 * Compute the priority of a process when running in user mode.
1063 * Arrange to reschedule if the resulting priority is better
1064 * than that of the current process.
1065 */
1066 void
1067 resetpriority(struct lwp *l)
1068 {
1069 unsigned int newpriority;
1070 struct proc *p = l->l_proc;
1071
1072 SCHED_ASSERT_LOCKED();
1073
1074 newpriority = PUSER + p->p_estcpu +
1075 NICE_WEIGHT * (p->p_nice - NZERO);
1076 newpriority = min(newpriority, MAXPRI);
1077 l->l_usrpri = newpriority;
1078 resched_proc(l, l->l_usrpri);
1079 }
1080
1081 /*
1082 * Recompute priority for all LWPs in a process.
1083 */
1084 void
1085 resetprocpriority(struct proc *p)
1086 {
1087 struct lwp *l;
1088
1089 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1090 resetpriority(l);
1091 }
1092
1093 /*
1094 * We adjust the priority of the current process. The priority of a process
1095 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1096 * is increased here. The formula for computing priorities (in kern_synch.c)
1097 * will compute a different value each time p_estcpu increases. This can
1098 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1099 * queue will not change. The cpu usage estimator ramps up quite quickly
1100 * when the process is running (linearly), and decays away exponentially, at
1101 * a rate which is proportionally slower when the system is busy. The basic
1102 * principle is that the system will 90% forget that the process used a lot
1103 * of CPU time in 5 * loadav seconds. This causes the system to favor
1104 * processes which haven't run much recently, and to round-robin among other
1105 * processes.
1106 */
1107
1108 void
1109 schedclock(struct lwp *l)
1110 {
1111 struct proc *p = l->l_proc;
1112 int s;
1113
1114 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1115 SCHED_LOCK(s);
1116 resetpriority(l);
1117 SCHED_UNLOCK(s);
1118
1119 if (l->l_priority >= PUSER)
1120 l->l_priority = l->l_usrpri;
1121 }
1122
1123 void
1124 suspendsched()
1125 {
1126 struct lwp *l;
1127 int s;
1128
1129 /*
1130 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1131 * LSSUSPENDED.
1132 */
1133 proclist_lock_read();
1134 SCHED_LOCK(s);
1135 LIST_FOREACH(l, &alllwp, l_list) {
1136 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1137 continue;
1138
1139 switch (l->l_stat) {
1140 case LSRUN:
1141 l->l_proc->p_nrlwps--;
1142 if ((l->l_flag & L_INMEM) != 0)
1143 remrunqueue(l);
1144 /* FALLTHROUGH */
1145 case LSSLEEP:
1146 l->l_stat = LSSUSPENDED;
1147 break;
1148 case LSONPROC:
1149 /*
1150 * XXX SMP: we need to deal with processes on
1151 * others CPU !
1152 */
1153 break;
1154 default:
1155 break;
1156 }
1157 }
1158 SCHED_UNLOCK(s);
1159 proclist_unlock_read();
1160 }
1161
1162 /*
1163 * Low-level routines to access the run queue. Optimised assembler
1164 * routines can override these.
1165 */
1166
1167 #ifndef __HAVE_MD_RUNQUEUE
1168
1169 /*
1170 * The primitives that manipulate the run queues. whichqs tells which
1171 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1172 * into queues, remrunqueue removes them from queues. The running process is
1173 * on no queue, other processes are on a queue related to p->p_priority,
1174 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1175 * available queues.
1176 */
1177
1178 void
1179 setrunqueue(struct lwp *l)
1180 {
1181 struct prochd *rq;
1182 struct lwp *prev;
1183 int whichq;
1184
1185 #ifdef DIAGNOSTIC
1186 if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1187 panic("setrunqueue");
1188 #endif
1189 whichq = l->l_priority / 4;
1190 sched_whichqs |= (1<<whichq);
1191 rq = &sched_qs[whichq];
1192 prev = rq->ph_rlink;
1193 l->l_forw = (struct lwp *)rq;
1194 rq->ph_rlink = l;
1195 prev->l_forw = l;
1196 l->l_back = prev;
1197 }
1198
1199 void
1200 remrunqueue(struct lwp *l)
1201 {
1202 struct lwp *prev, *next;
1203 int whichq;
1204
1205 whichq = l->l_priority / 4;
1206 #ifdef DIAGNOSTIC
1207 if (((sched_whichqs & (1<<whichq)) == 0))
1208 panic("remrunqueue");
1209 #endif
1210 prev = l->l_back;
1211 l->l_back = NULL;
1212 next = l->l_forw;
1213 prev->l_forw = next;
1214 next->l_back = prev;
1215 if (prev == next)
1216 sched_whichqs &= ~(1<<whichq);
1217 }
1218
1219 #endif
1220