kern_synch.c revision 1.136 1 /* $NetBSD: kern_synch.c,v 1.136 2003/08/07 16:31:50 agc Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.136 2003/08/07 16:31:50 agc Exp $");
78
79 #include "opt_ddb.h"
80 #include "opt_ktrace.h"
81 #include "opt_kstack.h"
82 #include "opt_lockdebug.h"
83 #include "opt_multiprocessor.h"
84 #include "opt_perfctrs.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #include <sys/buf.h>
92 #if defined(PERFCTRS)
93 #include <sys/pmc.h>
94 #endif
95 #include <sys/signalvar.h>
96 #include <sys/resourcevar.h>
97 #include <sys/sched.h>
98 #include <sys/sa.h>
99 #include <sys/savar.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #ifdef KTRACE
104 #include <sys/ktrace.h>
105 #endif
106
107 #include <machine/cpu.h>
108
109 int lbolt; /* once a second sleep address */
110 int rrticks; /* number of hardclock ticks per roundrobin() */
111
112 /*
113 * The global scheduler state.
114 */
115 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
116 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
117 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
118
119 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
120
121 void schedcpu(void *);
122 void updatepri(struct lwp *);
123 void endtsleep(void *);
124
125 __inline void awaken(struct lwp *);
126
127 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
128
129
130
131 /*
132 * Force switch among equal priority processes every 100ms.
133 * Called from hardclock every hz/10 == rrticks hardclock ticks.
134 */
135 /* ARGSUSED */
136 void
137 roundrobin(struct cpu_info *ci)
138 {
139 struct schedstate_percpu *spc = &ci->ci_schedstate;
140
141 spc->spc_rrticks = rrticks;
142
143 if (curlwp != NULL) {
144 if (spc->spc_flags & SPCF_SEENRR) {
145 /*
146 * The process has already been through a roundrobin
147 * without switching and may be hogging the CPU.
148 * Indicate that the process should yield.
149 */
150 spc->spc_flags |= SPCF_SHOULDYIELD;
151 } else
152 spc->spc_flags |= SPCF_SEENRR;
153 }
154 need_resched(curcpu());
155 }
156
157 /*
158 * Constants for digital decay and forget:
159 * 90% of (p_estcpu) usage in 5 * loadav time
160 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
161 * Note that, as ps(1) mentions, this can let percentages
162 * total over 100% (I've seen 137.9% for 3 processes).
163 *
164 * Note that hardclock updates p_estcpu and p_cpticks independently.
165 *
166 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
167 * That is, the system wants to compute a value of decay such
168 * that the following for loop:
169 * for (i = 0; i < (5 * loadavg); i++)
170 * p_estcpu *= decay;
171 * will compute
172 * p_estcpu *= 0.1;
173 * for all values of loadavg:
174 *
175 * Mathematically this loop can be expressed by saying:
176 * decay ** (5 * loadavg) ~= .1
177 *
178 * The system computes decay as:
179 * decay = (2 * loadavg) / (2 * loadavg + 1)
180 *
181 * We wish to prove that the system's computation of decay
182 * will always fulfill the equation:
183 * decay ** (5 * loadavg) ~= .1
184 *
185 * If we compute b as:
186 * b = 2 * loadavg
187 * then
188 * decay = b / (b + 1)
189 *
190 * We now need to prove two things:
191 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
192 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
193 *
194 * Facts:
195 * For x close to zero, exp(x) =~ 1 + x, since
196 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
197 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
198 * For x close to zero, ln(1+x) =~ x, since
199 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
200 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
201 * ln(.1) =~ -2.30
202 *
203 * Proof of (1):
204 * Solve (factor)**(power) =~ .1 given power (5*loadav):
205 * solving for factor,
206 * ln(factor) =~ (-2.30/5*loadav), or
207 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
208 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
209 *
210 * Proof of (2):
211 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
212 * solving for power,
213 * power*ln(b/(b+1)) =~ -2.30, or
214 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
215 *
216 * Actual power values for the implemented algorithm are as follows:
217 * loadav: 1 2 3 4
218 * power: 5.68 10.32 14.94 19.55
219 */
220
221 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
222 #define loadfactor(loadav) (2 * (loadav))
223 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
224
225 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
226 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
227
228 /*
229 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
230 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
231 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
232 *
233 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
234 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
235 *
236 * If you dont want to bother with the faster/more-accurate formula, you
237 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
238 * (more general) method of calculating the %age of CPU used by a process.
239 */
240 #define CCPU_SHIFT 11
241
242 /*
243 * Recompute process priorities, every hz ticks.
244 */
245 /* ARGSUSED */
246 void
247 schedcpu(void *arg)
248 {
249 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
250 struct lwp *l;
251 struct proc *p;
252 int s, minslp;
253 unsigned int newcpu;
254 int clkhz;
255
256 proclist_lock_read();
257 LIST_FOREACH(p, &allproc, p_list) {
258 /*
259 * Increment time in/out of memory and sleep time
260 * (if sleeping). We ignore overflow; with 16-bit int's
261 * (remember them?) overflow takes 45 days.
262 */
263 minslp = 2;
264 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
265 l->l_swtime++;
266 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
267 l->l_stat == LSSUSPENDED) {
268 l->l_slptime++;
269 minslp = min(minslp, l->l_slptime);
270 } else
271 minslp = 0;
272 }
273 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
274 /*
275 * If the process has slept the entire second,
276 * stop recalculating its priority until it wakes up.
277 */
278 if (minslp > 1)
279 continue;
280 s = splstatclock(); /* prevent state changes */
281 /*
282 * p_pctcpu is only for ps.
283 */
284 clkhz = stathz != 0 ? stathz : hz;
285 #if (FSHIFT >= CCPU_SHIFT)
286 p->p_pctcpu += (clkhz == 100)?
287 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
288 100 * (((fixpt_t) p->p_cpticks)
289 << (FSHIFT - CCPU_SHIFT)) / clkhz;
290 #else
291 p->p_pctcpu += ((FSCALE - ccpu) *
292 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
293 #endif
294 p->p_cpticks = 0;
295 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
296 p->p_estcpu = newcpu;
297 splx(s); /* Done with the process CPU ticks update */
298 SCHED_LOCK(s);
299 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
300 if (l->l_slptime > 1)
301 continue;
302 resetpriority(l);
303 if (l->l_priority >= PUSER) {
304 if (l->l_stat == LSRUN &&
305 (l->l_flag & L_INMEM) &&
306 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
307 remrunqueue(l);
308 l->l_priority = l->l_usrpri;
309 setrunqueue(l);
310 } else
311 l->l_priority = l->l_usrpri;
312 }
313 }
314 SCHED_UNLOCK(s);
315 }
316 proclist_unlock_read();
317 uvm_meter();
318 wakeup((caddr_t)&lbolt);
319 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
320 }
321
322 /*
323 * Recalculate the priority of a process after it has slept for a while.
324 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
325 * least six times the loadfactor will decay p_estcpu to zero.
326 */
327 void
328 updatepri(struct lwp *l)
329 {
330 struct proc *p = l->l_proc;
331 unsigned int newcpu;
332 fixpt_t loadfac;
333
334 SCHED_ASSERT_LOCKED();
335
336 newcpu = p->p_estcpu;
337 loadfac = loadfactor(averunnable.ldavg[0]);
338
339 if (l->l_slptime > 5 * loadfac)
340 p->p_estcpu = 0; /* XXX NJWLWP */
341 else {
342 l->l_slptime--; /* the first time was done in schedcpu */
343 while (newcpu && --l->l_slptime)
344 newcpu = (int) decay_cpu(loadfac, newcpu);
345 p->p_estcpu = newcpu;
346 }
347 resetpriority(l);
348 }
349
350 /*
351 * During autoconfiguration or after a panic, a sleep will simply
352 * lower the priority briefly to allow interrupts, then return.
353 * The priority to be used (safepri) is machine-dependent, thus this
354 * value is initialized and maintained in the machine-dependent layers.
355 * This priority will typically be 0, or the lowest priority
356 * that is safe for use on the interrupt stack; it can be made
357 * higher to block network software interrupts after panics.
358 */
359 int safepri;
360
361 /*
362 * General sleep call. Suspends the current process until a wakeup is
363 * performed on the specified identifier. The process will then be made
364 * runnable with the specified priority. Sleeps at most timo/hz seconds
365 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
366 * before and after sleeping, else signals are not checked. Returns 0 if
367 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
368 * signal needs to be delivered, ERESTART is returned if the current system
369 * call should be restarted if possible, and EINTR is returned if the system
370 * call should be interrupted by the signal (return EINTR).
371 *
372 * The interlock is held until the scheduler_slock is acquired. The
373 * interlock will be locked before returning back to the caller
374 * unless the PNORELOCK flag is specified, in which case the
375 * interlock will always be unlocked upon return.
376 */
377 int
378 ltsleep(const void *ident, int priority, const char *wmesg, int timo,
379 __volatile struct simplelock *interlock)
380 {
381 struct lwp *l = curlwp;
382 struct proc *p = l ? l->l_proc : NULL;
383 struct slpque *qp;
384 int sig, s;
385 int catch = priority & PCATCH;
386 int relock = (priority & PNORELOCK) == 0;
387 int exiterr = (priority & PNOEXITERR) == 0;
388
389 /*
390 * XXXSMP
391 * This is probably bogus. Figure out what the right
392 * thing to do here really is.
393 * Note that not sleeping if ltsleep is called with curlwp == NULL
394 * in the shutdown case is disgusting but partly necessary given
395 * how shutdown (barely) works.
396 */
397 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
398 /*
399 * After a panic, or during autoconfiguration,
400 * just give interrupts a chance, then just return;
401 * don't run any other procs or panic below,
402 * in case this is the idle process and already asleep.
403 */
404 s = splhigh();
405 splx(safepri);
406 splx(s);
407 if (interlock != NULL && relock == 0)
408 simple_unlock(interlock);
409 return (0);
410 }
411
412 KASSERT(p != NULL);
413 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
414
415 #ifdef KTRACE
416 if (KTRPOINT(p, KTR_CSW))
417 ktrcsw(p, 1, 0);
418 #endif
419
420 SCHED_LOCK(s);
421
422 #ifdef DIAGNOSTIC
423 if (ident == NULL)
424 panic("ltsleep: ident == NULL");
425 if (l->l_stat != LSONPROC)
426 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
427 if (l->l_back != NULL)
428 panic("ltsleep: p_back != NULL");
429 #endif
430
431 l->l_wchan = ident;
432 l->l_wmesg = wmesg;
433 l->l_slptime = 0;
434 l->l_priority = priority & PRIMASK;
435
436 qp = SLPQUE(ident);
437 if (qp->sq_head == 0)
438 qp->sq_head = l;
439 else {
440 *qp->sq_tailp = l;
441 }
442 *(qp->sq_tailp = &l->l_forw) = 0;
443
444 if (timo)
445 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
446
447 /*
448 * We can now release the interlock; the scheduler_slock
449 * is held, so a thread can't get in to do wakeup() before
450 * we do the switch.
451 *
452 * XXX We leave the code block here, after inserting ourselves
453 * on the sleep queue, because we might want a more clever
454 * data structure for the sleep queues at some point.
455 */
456 if (interlock != NULL)
457 simple_unlock(interlock);
458
459 /*
460 * We put ourselves on the sleep queue and start our timeout
461 * before calling CURSIG, as we could stop there, and a wakeup
462 * or a SIGCONT (or both) could occur while we were stopped.
463 * A SIGCONT would cause us to be marked as SSLEEP
464 * without resuming us, thus we must be ready for sleep
465 * when CURSIG is called. If the wakeup happens while we're
466 * stopped, p->p_wchan will be 0 upon return from CURSIG.
467 */
468 if (catch) {
469 l->l_flag |= L_SINTR;
470 if (((sig = CURSIG(l)) != 0) || (p->p_flag & P_WEXIT)) {
471 if (l->l_wchan != NULL)
472 unsleep(l);
473 l->l_stat = LSONPROC;
474 SCHED_UNLOCK(s);
475 goto resume;
476 }
477 if (l->l_wchan == NULL) {
478 catch = 0;
479 SCHED_UNLOCK(s);
480 goto resume;
481 }
482 } else
483 sig = 0;
484 l->l_stat = LSSLEEP;
485 p->p_nrlwps--;
486 p->p_stats->p_ru.ru_nvcsw++;
487 SCHED_ASSERT_LOCKED();
488 if (l->l_flag & L_SA)
489 sa_switch(l, SA_UPCALL_BLOCKED);
490 else
491 mi_switch(l, NULL);
492
493 #if defined(DDB) && !defined(GPROF)
494 /* handy breakpoint location after process "wakes" */
495 __asm(".globl bpendtsleep ; bpendtsleep:");
496 #endif
497 /*
498 * p->p_nrlwps is incremented by whoever made us runnable again,
499 * either setrunnable() or awaken().
500 */
501
502 SCHED_ASSERT_UNLOCKED();
503 splx(s);
504
505 resume:
506 KDASSERT(l->l_cpu != NULL);
507 KDASSERT(l->l_cpu == curcpu());
508 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
509
510 l->l_flag &= ~L_SINTR;
511 if (l->l_flag & L_TIMEOUT) {
512 l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
513 if (sig == 0) {
514 #ifdef KTRACE
515 if (KTRPOINT(p, KTR_CSW))
516 ktrcsw(p, 0, 0);
517 #endif
518 if (relock && interlock != NULL)
519 simple_lock(interlock);
520 return (EWOULDBLOCK);
521 }
522 } else if (timo)
523 callout_stop(&l->l_tsleep_ch);
524
525 if (catch) {
526 const int cancelled = l->l_flag & L_CANCELLED;
527 l->l_flag &= ~L_CANCELLED;
528 if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
529 #ifdef KTRACE
530 if (KTRPOINT(p, KTR_CSW))
531 ktrcsw(p, 0, 0);
532 #endif
533 if (relock && interlock != NULL)
534 simple_lock(interlock);
535 /*
536 * If this sleep was canceled, don't let the syscall
537 * restart.
538 */
539 if (cancelled ||
540 (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
541 return (EINTR);
542 return (ERESTART);
543 }
544 }
545
546 #ifdef KTRACE
547 if (KTRPOINT(p, KTR_CSW))
548 ktrcsw(p, 0, 0);
549 #endif
550 if (relock && interlock != NULL)
551 simple_lock(interlock);
552
553 /* XXXNJW this is very much a kluge.
554 * revisit. a better way of preventing looping/hanging syscalls like
555 * wait4() and _lwp_wait() from wedging an exiting process
556 * would be preferred.
557 */
558 if (catch && ((p->p_flag & P_WEXIT) && exiterr))
559 return (EINTR);
560 return (0);
561 }
562
563 /*
564 * Implement timeout for tsleep.
565 * If process hasn't been awakened (wchan non-zero),
566 * set timeout flag and undo the sleep. If proc
567 * is stopped, just unsleep so it will remain stopped.
568 */
569 void
570 endtsleep(void *arg)
571 {
572 struct lwp *l;
573 int s;
574
575 l = (struct lwp *)arg;
576 SCHED_LOCK(s);
577 if (l->l_wchan) {
578 if (l->l_stat == LSSLEEP)
579 setrunnable(l);
580 else
581 unsleep(l);
582 l->l_flag |= L_TIMEOUT;
583 }
584 SCHED_UNLOCK(s);
585 }
586
587 /*
588 * Remove a process from its wait queue
589 */
590 void
591 unsleep(struct lwp *l)
592 {
593 struct slpque *qp;
594 struct lwp **hp;
595
596 SCHED_ASSERT_LOCKED();
597
598 if (l->l_wchan) {
599 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
600 while (*hp != l)
601 hp = &(*hp)->l_forw;
602 *hp = l->l_forw;
603 if (qp->sq_tailp == &l->l_forw)
604 qp->sq_tailp = hp;
605 l->l_wchan = 0;
606 }
607 }
608
609 /*
610 * Optimized-for-wakeup() version of setrunnable().
611 */
612 __inline void
613 awaken(struct lwp *l)
614 {
615
616 SCHED_ASSERT_LOCKED();
617
618 if (l->l_slptime > 1)
619 updatepri(l);
620 l->l_slptime = 0;
621 l->l_stat = LSRUN;
622 l->l_proc->p_nrlwps++;
623 /*
624 * Since curpriority is a user priority, p->p_priority
625 * is always better than curpriority on the last CPU on
626 * which it ran.
627 *
628 * XXXSMP See affinity comment in resched_proc().
629 */
630 if (l->l_flag & L_INMEM) {
631 setrunqueue(l);
632 if (l->l_flag & L_SA)
633 l->l_proc->p_sa->sa_woken = l;
634 KASSERT(l->l_cpu != NULL);
635 need_resched(l->l_cpu);
636 } else
637 sched_wakeup(&proc0);
638 }
639
640 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
641 void
642 sched_unlock_idle(void)
643 {
644
645 simple_unlock(&sched_lock);
646 }
647
648 void
649 sched_lock_idle(void)
650 {
651
652 simple_lock(&sched_lock);
653 }
654 #endif /* MULTIPROCESSOR || LOCKDEBUG */
655
656 /*
657 * Make all processes sleeping on the specified identifier runnable.
658 */
659
660 void
661 wakeup(const void *ident)
662 {
663 int s;
664
665 SCHED_ASSERT_UNLOCKED();
666
667 SCHED_LOCK(s);
668 sched_wakeup(ident);
669 SCHED_UNLOCK(s);
670 }
671
672 void
673 sched_wakeup(const void *ident)
674 {
675 struct slpque *qp;
676 struct lwp *l, **q;
677
678 SCHED_ASSERT_LOCKED();
679
680 qp = SLPQUE(ident);
681 restart:
682 for (q = &qp->sq_head; (l = *q) != NULL; ) {
683 #ifdef DIAGNOSTIC
684 if (l->l_back || (l->l_stat != LSSLEEP &&
685 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
686 panic("wakeup");
687 #endif
688 if (l->l_wchan == ident) {
689 l->l_wchan = 0;
690 *q = l->l_forw;
691 if (qp->sq_tailp == &l->l_forw)
692 qp->sq_tailp = q;
693 if (l->l_stat == LSSLEEP) {
694 awaken(l);
695 goto restart;
696 }
697 } else
698 q = &l->l_forw;
699 }
700 }
701
702 /*
703 * Make the highest priority process first in line on the specified
704 * identifier runnable.
705 */
706 void
707 wakeup_one(const void *ident)
708 {
709 struct slpque *qp;
710 struct lwp *l, **q;
711 struct lwp *best_sleepp, **best_sleepq;
712 struct lwp *best_stopp, **best_stopq;
713 int s;
714
715 best_sleepp = best_stopp = NULL;
716 best_sleepq = best_stopq = NULL;
717
718 SCHED_LOCK(s);
719
720 qp = SLPQUE(ident);
721
722 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
723 #ifdef DIAGNOSTIC
724 if (l->l_back || (l->l_stat != LSSLEEP &&
725 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
726 panic("wakeup_one");
727 #endif
728 if (l->l_wchan == ident) {
729 if (l->l_stat == LSSLEEP) {
730 if (best_sleepp == NULL ||
731 l->l_priority < best_sleepp->l_priority) {
732 best_sleepp = l;
733 best_sleepq = q;
734 }
735 } else {
736 if (best_stopp == NULL ||
737 l->l_priority < best_stopp->l_priority) {
738 best_stopp = l;
739 best_stopq = q;
740 }
741 }
742 }
743 }
744
745 /*
746 * Consider any SSLEEP process higher than the highest priority SSTOP
747 * process.
748 */
749 if (best_sleepp != NULL) {
750 l = best_sleepp;
751 q = best_sleepq;
752 } else {
753 l = best_stopp;
754 q = best_stopq;
755 }
756
757 if (l != NULL) {
758 l->l_wchan = NULL;
759 *q = l->l_forw;
760 if (qp->sq_tailp == &l->l_forw)
761 qp->sq_tailp = q;
762 if (l->l_stat == LSSLEEP)
763 awaken(l);
764 }
765 SCHED_UNLOCK(s);
766 }
767
768 /*
769 * General yield call. Puts the current process back on its run queue and
770 * performs a voluntary context switch. Should only be called when the
771 * current process explicitly requests it (eg sched_yield(2) in compat code).
772 */
773 void
774 yield(void)
775 {
776 struct lwp *l = curlwp;
777 int s;
778
779 SCHED_LOCK(s);
780 l->l_priority = l->l_usrpri;
781 l->l_stat = LSRUN;
782 setrunqueue(l);
783 l->l_proc->p_stats->p_ru.ru_nvcsw++;
784 mi_switch(l, NULL);
785 SCHED_ASSERT_UNLOCKED();
786 splx(s);
787 }
788
789 /*
790 * General preemption call. Puts the current process back on its run queue
791 * and performs an involuntary context switch. If a process is supplied,
792 * we switch to that process. Otherwise, we use the normal process selection
793 * criteria.
794 */
795
796 void
797 preempt(int more)
798 {
799 struct lwp *l = curlwp;
800 int r, s;
801 /* XXXUPSXXX Not needed for SMP patch */
802 #if 0
803 /* XXX Until the preempt() bug is fixed. */
804 if (more && (l->l_proc->p_flag & P_SA)) {
805 l->l_cpu->ci_schedstate.spc_flags &= ~SPCF_SWITCHCLEAR;
806 return;
807 }
808 #endif
809
810 SCHED_LOCK(s);
811 l->l_priority = l->l_usrpri;
812 l->l_stat = LSRUN;
813 setrunqueue(l);
814 l->l_proc->p_stats->p_ru.ru_nivcsw++;
815 r = mi_switch(l, NULL);
816 SCHED_ASSERT_UNLOCKED();
817 splx(s);
818 if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
819 sa_preempt(l);
820 }
821
822 /*
823 * The machine independent parts of context switch.
824 * Must be called at splsched() (no higher!) and with
825 * the sched_lock held.
826 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
827 * the next lwp.
828 *
829 * Returns 1 if another process was actually run.
830 */
831 int
832 mi_switch(struct lwp *l, struct lwp *newl)
833 {
834 struct schedstate_percpu *spc;
835 struct rlimit *rlim;
836 long s, u;
837 struct timeval tv;
838 #if defined(MULTIPROCESSOR)
839 int hold_count;
840 #endif
841 struct proc *p = l->l_proc;
842 int retval;
843
844 SCHED_ASSERT_LOCKED();
845
846 #if defined(MULTIPROCESSOR)
847 /*
848 * Release the kernel_lock, as we are about to yield the CPU.
849 * The scheduler lock is still held until cpu_switch()
850 * selects a new process and removes it from the run queue.
851 */
852 if (l->l_flag & L_BIGLOCK)
853 hold_count = spinlock_release_all(&kernel_lock);
854 #endif
855
856 KDASSERT(l->l_cpu != NULL);
857 KDASSERT(l->l_cpu == curcpu());
858
859 spc = &l->l_cpu->ci_schedstate;
860
861 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
862 spinlock_switchcheck();
863 #endif
864 #ifdef LOCKDEBUG
865 simple_lock_switchcheck();
866 #endif
867
868 /*
869 * Compute the amount of time during which the current
870 * process was running.
871 */
872 microtime(&tv);
873 u = p->p_rtime.tv_usec +
874 (tv.tv_usec - spc->spc_runtime.tv_usec);
875 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
876 if (u < 0) {
877 u += 1000000;
878 s--;
879 } else if (u >= 1000000) {
880 u -= 1000000;
881 s++;
882 }
883 p->p_rtime.tv_usec = u;
884 p->p_rtime.tv_sec = s;
885
886 /*
887 * Check if the process exceeds its cpu resource allocation.
888 * If over max, kill it. In any case, if it has run for more
889 * than 10 minutes, reduce priority to give others a chance.
890 */
891 rlim = &p->p_rlimit[RLIMIT_CPU];
892 if (s >= rlim->rlim_cur) {
893 /*
894 * XXXSMP: we're inside the scheduler lock perimeter;
895 * use sched_psignal.
896 */
897 if (s >= rlim->rlim_max)
898 sched_psignal(p, SIGKILL);
899 else {
900 sched_psignal(p, SIGXCPU);
901 if (rlim->rlim_cur < rlim->rlim_max)
902 rlim->rlim_cur += 5;
903 }
904 }
905 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
906 p->p_nice == NZERO) {
907 p->p_nice = autoniceval + NZERO;
908 resetpriority(l);
909 }
910
911 /*
912 * Process is about to yield the CPU; clear the appropriate
913 * scheduling flags.
914 */
915 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
916
917 #ifdef KSTACK_CHECK_MAGIC
918 kstack_check_magic(l);
919 #endif
920
921 /*
922 * If we are using h/w performance counters, save context.
923 */
924 #if PERFCTRS
925 if (PMC_ENABLED(p))
926 pmc_save_context(p);
927 #endif
928
929 /*
930 * Switch to the new current process. When we
931 * run again, we'll return back here.
932 */
933 uvmexp.swtch++;
934 if (newl == NULL) {
935 retval = cpu_switch(l, NULL);
936 } else {
937 remrunqueue(newl);
938 cpu_switchto(l, newl);
939 retval = 0;
940 }
941
942 /*
943 * If we are using h/w performance counters, restore context.
944 */
945 #if PERFCTRS
946 if (PMC_ENABLED(p))
947 pmc_restore_context(p);
948 #endif
949
950 /*
951 * Make sure that MD code released the scheduler lock before
952 * resuming us.
953 */
954 SCHED_ASSERT_UNLOCKED();
955
956 /*
957 * We're running again; record our new start time. We might
958 * be running on a new CPU now, so don't use the cache'd
959 * schedstate_percpu pointer.
960 */
961 KDASSERT(l->l_cpu != NULL);
962 KDASSERT(l->l_cpu == curcpu());
963 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
964
965 #if defined(MULTIPROCESSOR)
966 /*
967 * Reacquire the kernel_lock now. We do this after we've
968 * released the scheduler lock to avoid deadlock, and before
969 * we reacquire the interlock.
970 */
971 if (l->l_flag & L_BIGLOCK)
972 spinlock_acquire_count(&kernel_lock, hold_count);
973 #endif
974
975 return retval;
976 }
977
978 /*
979 * Initialize the (doubly-linked) run queues
980 * to be empty.
981 */
982 void
983 rqinit()
984 {
985 int i;
986
987 for (i = 0; i < RUNQUE_NQS; i++)
988 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
989 (struct lwp *)&sched_qs[i];
990 }
991
992 static __inline void
993 resched_proc(struct lwp *l, u_char pri)
994 {
995 struct cpu_info *ci;
996
997 /*
998 * XXXSMP
999 * Since l->l_cpu persists across a context switch,
1000 * this gives us *very weak* processor affinity, in
1001 * that we notify the CPU on which the process last
1002 * ran that it should try to switch.
1003 *
1004 * This does not guarantee that the process will run on
1005 * that processor next, because another processor might
1006 * grab it the next time it performs a context switch.
1007 *
1008 * This also does not handle the case where its last
1009 * CPU is running a higher-priority process, but every
1010 * other CPU is running a lower-priority process. There
1011 * are ways to handle this situation, but they're not
1012 * currently very pretty, and we also need to weigh the
1013 * cost of moving a process from one CPU to another.
1014 *
1015 * XXXSMP
1016 * There is also the issue of locking the other CPU's
1017 * sched state, which we currently do not do.
1018 */
1019 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1020 if (pri < ci->ci_schedstate.spc_curpriority)
1021 need_resched(ci);
1022 }
1023
1024 /*
1025 * Change process state to be runnable,
1026 * placing it on the run queue if it is in memory,
1027 * and awakening the swapper if it isn't in memory.
1028 */
1029 void
1030 setrunnable(struct lwp *l)
1031 {
1032 struct proc *p = l->l_proc;
1033
1034 SCHED_ASSERT_LOCKED();
1035
1036 switch (l->l_stat) {
1037 case 0:
1038 case LSRUN:
1039 case LSONPROC:
1040 case LSZOMB:
1041 case LSDEAD:
1042 default:
1043 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
1044 case LSSTOP:
1045 /*
1046 * If we're being traced (possibly because someone attached us
1047 * while we were stopped), check for a signal from the debugger.
1048 */
1049 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1050 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1051 CHECKSIGS(p);
1052 }
1053 case LSSLEEP:
1054 unsleep(l); /* e.g. when sending signals */
1055 break;
1056
1057 case LSIDL:
1058 break;
1059 case LSSUSPENDED:
1060 break;
1061 }
1062 l->l_stat = LSRUN;
1063 p->p_nrlwps++;
1064
1065 if (l->l_flag & L_INMEM)
1066 setrunqueue(l);
1067
1068 if (l->l_slptime > 1)
1069 updatepri(l);
1070 l->l_slptime = 0;
1071 if ((l->l_flag & L_INMEM) == 0)
1072 sched_wakeup((caddr_t)&proc0);
1073 else
1074 resched_proc(l, l->l_priority);
1075 }
1076
1077 /*
1078 * Compute the priority of a process when running in user mode.
1079 * Arrange to reschedule if the resulting priority is better
1080 * than that of the current process.
1081 */
1082 void
1083 resetpriority(struct lwp *l)
1084 {
1085 unsigned int newpriority;
1086 struct proc *p = l->l_proc;
1087
1088 SCHED_ASSERT_LOCKED();
1089
1090 newpriority = PUSER + p->p_estcpu +
1091 NICE_WEIGHT * (p->p_nice - NZERO);
1092 newpriority = min(newpriority, MAXPRI);
1093 l->l_usrpri = newpriority;
1094 resched_proc(l, l->l_usrpri);
1095 }
1096
1097 /*
1098 * Recompute priority for all LWPs in a process.
1099 */
1100 void
1101 resetprocpriority(struct proc *p)
1102 {
1103 struct lwp *l;
1104
1105 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1106 resetpriority(l);
1107 }
1108
1109 /*
1110 * We adjust the priority of the current process. The priority of a process
1111 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1112 * is increased here. The formula for computing priorities (in kern_synch.c)
1113 * will compute a different value each time p_estcpu increases. This can
1114 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1115 * queue will not change. The cpu usage estimator ramps up quite quickly
1116 * when the process is running (linearly), and decays away exponentially, at
1117 * a rate which is proportionally slower when the system is busy. The basic
1118 * principle is that the system will 90% forget that the process used a lot
1119 * of CPU time in 5 * loadav seconds. This causes the system to favor
1120 * processes which haven't run much recently, and to round-robin among other
1121 * processes.
1122 */
1123
1124 void
1125 schedclock(struct lwp *l)
1126 {
1127 struct proc *p = l->l_proc;
1128 int s;
1129
1130 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1131 SCHED_LOCK(s);
1132 resetpriority(l);
1133 SCHED_UNLOCK(s);
1134
1135 if (l->l_priority >= PUSER)
1136 l->l_priority = l->l_usrpri;
1137 }
1138
1139 void
1140 suspendsched()
1141 {
1142 struct lwp *l;
1143 int s;
1144
1145 /*
1146 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1147 * LSSUSPENDED.
1148 */
1149 proclist_lock_read();
1150 SCHED_LOCK(s);
1151 LIST_FOREACH(l, &alllwp, l_list) {
1152 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1153 continue;
1154
1155 switch (l->l_stat) {
1156 case LSRUN:
1157 l->l_proc->p_nrlwps--;
1158 if ((l->l_flag & L_INMEM) != 0)
1159 remrunqueue(l);
1160 /* FALLTHROUGH */
1161 case LSSLEEP:
1162 l->l_stat = LSSUSPENDED;
1163 break;
1164 case LSONPROC:
1165 /*
1166 * XXX SMP: we need to deal with processes on
1167 * others CPU !
1168 */
1169 break;
1170 default:
1171 break;
1172 }
1173 }
1174 SCHED_UNLOCK(s);
1175 proclist_unlock_read();
1176 }
1177
1178 /*
1179 * Low-level routines to access the run queue. Optimised assembler
1180 * routines can override these.
1181 */
1182
1183 #ifndef __HAVE_MD_RUNQUEUE
1184
1185 /*
1186 * On some architectures, it's faster to use a MSB ordering for the priorites
1187 * than the traditional LSB ordering.
1188 */
1189 #ifdef __HAVE_BIGENDIAN_BITOPS
1190 #define RQMASK(n) (0x80000000 >> (n))
1191 #else
1192 #define RQMASK(n) (0x00000001 << (n))
1193 #endif
1194
1195 /*
1196 * The primitives that manipulate the run queues. whichqs tells which
1197 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1198 * into queues, remrunqueue removes them from queues. The running process is
1199 * on no queue, other processes are on a queue related to p->p_priority,
1200 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1201 * available queues.
1202 */
1203
1204 void
1205 setrunqueue(struct lwp *l)
1206 {
1207 struct prochd *rq;
1208 struct lwp *prev;
1209 const int whichq = l->l_priority / 4;
1210
1211 #ifdef DIAGNOSTIC
1212 if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1213 panic("setrunqueue");
1214 #endif
1215 sched_whichqs |= RQMASK(whichq);
1216 rq = &sched_qs[whichq];
1217 prev = rq->ph_rlink;
1218 l->l_forw = (struct lwp *)rq;
1219 rq->ph_rlink = l;
1220 prev->l_forw = l;
1221 l->l_back = prev;
1222 }
1223
1224 void
1225 remrunqueue(struct lwp *l)
1226 {
1227 struct lwp *prev, *next;
1228 const int whichq = l->l_priority / 4;
1229 #ifdef DIAGNOSTIC
1230 if (((sched_whichqs & RQMASK(whichq)) == 0))
1231 panic("remrunqueue");
1232 #endif
1233 prev = l->l_back;
1234 l->l_back = NULL;
1235 next = l->l_forw;
1236 prev->l_forw = next;
1237 next->l_back = prev;
1238 if (prev == next)
1239 sched_whichqs &= ~RQMASK(whichq);
1240 }
1241
1242 #undef RQMASK
1243 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1244