Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.138
      1 /*	$NetBSD: kern_synch.c,v 1.138 2003/10/26 20:55:57 fvdl Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. Neither the name of the University nor the names of its contributors
     58  *    may be used to endorse or promote products derived from this software
     59  *    without specific prior written permission.
     60  *
     61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     71  * SUCH DAMAGE.
     72  *
     73  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.138 2003/10/26 20:55:57 fvdl Exp $");
     78 
     79 #include "opt_ddb.h"
     80 #include "opt_ktrace.h"
     81 #include "opt_kstack.h"
     82 #include "opt_lockdebug.h"
     83 #include "opt_multiprocessor.h"
     84 #include "opt_perfctrs.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/callout.h>
     89 #include <sys/proc.h>
     90 #include <sys/kernel.h>
     91 #include <sys/buf.h>
     92 #if defined(PERFCTRS)
     93 #include <sys/pmc.h>
     94 #endif
     95 #include <sys/signalvar.h>
     96 #include <sys/resourcevar.h>
     97 #include <sys/sched.h>
     98 #include <sys/sa.h>
     99 #include <sys/savar.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 #ifdef KTRACE
    104 #include <sys/ktrace.h>
    105 #endif
    106 
    107 #include <machine/cpu.h>
    108 
    109 int	lbolt;			/* once a second sleep address */
    110 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    111 
    112 /*
    113  * The global scheduler state.
    114  */
    115 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    116 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    117 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    118 
    119 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    120 
    121 void schedcpu(void *);
    122 void updatepri(struct lwp *);
    123 void endtsleep(void *);
    124 
    125 __inline void awaken(struct lwp *);
    126 
    127 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
    128 
    129 
    130 
    131 /*
    132  * Force switch among equal priority processes every 100ms.
    133  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    134  */
    135 /* ARGSUSED */
    136 void
    137 roundrobin(struct cpu_info *ci)
    138 {
    139 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    140 
    141 	spc->spc_rrticks = rrticks;
    142 
    143 	if (curlwp != NULL) {
    144 		if (spc->spc_flags & SPCF_SEENRR) {
    145 			/*
    146 			 * The process has already been through a roundrobin
    147 			 * without switching and may be hogging the CPU.
    148 			 * Indicate that the process should yield.
    149 			 */
    150 			spc->spc_flags |= SPCF_SHOULDYIELD;
    151 		} else
    152 			spc->spc_flags |= SPCF_SEENRR;
    153 	}
    154 	need_resched(curcpu());
    155 }
    156 
    157 /*
    158  * Constants for digital decay and forget:
    159  *	90% of (p_estcpu) usage in 5 * loadav time
    160  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    161  *          Note that, as ps(1) mentions, this can let percentages
    162  *          total over 100% (I've seen 137.9% for 3 processes).
    163  *
    164  * Note that hardclock updates p_estcpu and p_cpticks independently.
    165  *
    166  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    167  * That is, the system wants to compute a value of decay such
    168  * that the following for loop:
    169  * 	for (i = 0; i < (5 * loadavg); i++)
    170  * 		p_estcpu *= decay;
    171  * will compute
    172  * 	p_estcpu *= 0.1;
    173  * for all values of loadavg:
    174  *
    175  * Mathematically this loop can be expressed by saying:
    176  * 	decay ** (5 * loadavg) ~= .1
    177  *
    178  * The system computes decay as:
    179  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    180  *
    181  * We wish to prove that the system's computation of decay
    182  * will always fulfill the equation:
    183  * 	decay ** (5 * loadavg) ~= .1
    184  *
    185  * If we compute b as:
    186  * 	b = 2 * loadavg
    187  * then
    188  * 	decay = b / (b + 1)
    189  *
    190  * We now need to prove two things:
    191  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    192  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    193  *
    194  * Facts:
    195  *         For x close to zero, exp(x) =~ 1 + x, since
    196  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    197  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    198  *         For x close to zero, ln(1+x) =~ x, since
    199  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    200  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    201  *         ln(.1) =~ -2.30
    202  *
    203  * Proof of (1):
    204  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    205  *	solving for factor,
    206  *      ln(factor) =~ (-2.30/5*loadav), or
    207  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    208  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    209  *
    210  * Proof of (2):
    211  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    212  *	solving for power,
    213  *      power*ln(b/(b+1)) =~ -2.30, or
    214  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    215  *
    216  * Actual power values for the implemented algorithm are as follows:
    217  *      loadav: 1       2       3       4
    218  *      power:  5.68    10.32   14.94   19.55
    219  */
    220 
    221 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    222 #define	loadfactor(loadav)	(2 * (loadav))
    223 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    224 
    225 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    226 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    227 
    228 /*
    229  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    230  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    231  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    232  *
    233  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    234  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    235  *
    236  * If you dont want to bother with the faster/more-accurate formula, you
    237  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    238  * (more general) method of calculating the %age of CPU used by a process.
    239  */
    240 #define	CCPU_SHIFT	11
    241 
    242 /*
    243  * Recompute process priorities, every hz ticks.
    244  */
    245 /* ARGSUSED */
    246 void
    247 schedcpu(void *arg)
    248 {
    249 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    250 	struct lwp *l;
    251 	struct proc *p;
    252 	int s, minslp;
    253 	unsigned int newcpu;
    254 	int clkhz;
    255 
    256 	proclist_lock_read();
    257 	LIST_FOREACH(p, &allproc, p_list) {
    258 		/*
    259 		 * Increment time in/out of memory and sleep time
    260 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    261 		 * (remember them?) overflow takes 45 days.
    262 		 */
    263 		minslp = 2;
    264 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    265 			l->l_swtime++;
    266 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    267 			    l->l_stat == LSSUSPENDED) {
    268 				l->l_slptime++;
    269 				minslp = min(minslp, l->l_slptime);
    270 			} else
    271 				minslp = 0;
    272 		}
    273 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    274 		/*
    275 		 * If the process has slept the entire second,
    276 		 * stop recalculating its priority until it wakes up.
    277 		 */
    278 		if (minslp > 1)
    279 			continue;
    280 		s = splstatclock();	/* prevent state changes */
    281 		/*
    282 		 * p_pctcpu is only for ps.
    283 		 */
    284 		clkhz = stathz != 0 ? stathz : hz;
    285 #if	(FSHIFT >= CCPU_SHIFT)
    286 		p->p_pctcpu += (clkhz == 100)?
    287 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    288                 	100 * (((fixpt_t) p->p_cpticks)
    289 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    290 #else
    291 		p->p_pctcpu += ((FSCALE - ccpu) *
    292 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    293 #endif
    294 		p->p_cpticks = 0;
    295 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    296 		p->p_estcpu = newcpu;
    297 		splx(s);	/* Done with the process CPU ticks update */
    298 		SCHED_LOCK(s);
    299 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    300 			if (l->l_slptime > 1)
    301 				continue;
    302 			resetpriority(l);
    303 			if (l->l_priority >= PUSER) {
    304 				if (l->l_stat == LSRUN &&
    305 				    (l->l_flag & L_INMEM) &&
    306 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    307 					remrunqueue(l);
    308 					l->l_priority = l->l_usrpri;
    309 					setrunqueue(l);
    310 				} else
    311 					l->l_priority = l->l_usrpri;
    312 			}
    313 		}
    314 		SCHED_UNLOCK(s);
    315 	}
    316 	proclist_unlock_read();
    317 	uvm_meter();
    318 	wakeup((caddr_t)&lbolt);
    319 	callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
    320 }
    321 
    322 /*
    323  * Recalculate the priority of a process after it has slept for a while.
    324  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    325  * least six times the loadfactor will decay p_estcpu to zero.
    326  */
    327 void
    328 updatepri(struct lwp *l)
    329 {
    330 	struct proc *p = l->l_proc;
    331 	unsigned int newcpu;
    332 	fixpt_t loadfac;
    333 
    334 	SCHED_ASSERT_LOCKED();
    335 
    336 	newcpu = p->p_estcpu;
    337 	loadfac = loadfactor(averunnable.ldavg[0]);
    338 
    339 	if (l->l_slptime > 5 * loadfac)
    340 		p->p_estcpu = 0; /* XXX NJWLWP */
    341 	else {
    342 		l->l_slptime--;	/* the first time was done in schedcpu */
    343 		while (newcpu && --l->l_slptime)
    344 			newcpu = (int) decay_cpu(loadfac, newcpu);
    345 		p->p_estcpu = newcpu;
    346 	}
    347 	resetpriority(l);
    348 }
    349 
    350 /*
    351  * During autoconfiguration or after a panic, a sleep will simply
    352  * lower the priority briefly to allow interrupts, then return.
    353  * The priority to be used (safepri) is machine-dependent, thus this
    354  * value is initialized and maintained in the machine-dependent layers.
    355  * This priority will typically be 0, or the lowest priority
    356  * that is safe for use on the interrupt stack; it can be made
    357  * higher to block network software interrupts after panics.
    358  */
    359 int safepri;
    360 
    361 /*
    362  * General sleep call.  Suspends the current process until a wakeup is
    363  * performed on the specified identifier.  The process will then be made
    364  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    365  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    366  * before and after sleeping, else signals are not checked.  Returns 0 if
    367  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    368  * signal needs to be delivered, ERESTART is returned if the current system
    369  * call should be restarted if possible, and EINTR is returned if the system
    370  * call should be interrupted by the signal (return EINTR).
    371  *
    372  * The interlock is held until the scheduler_slock is acquired.  The
    373  * interlock will be locked before returning back to the caller
    374  * unless the PNORELOCK flag is specified, in which case the
    375  * interlock will always be unlocked upon return.
    376  */
    377 int
    378 ltsleep(const void *ident, int priority, const char *wmesg, int timo,
    379     __volatile struct simplelock *interlock)
    380 {
    381 	struct lwp *l = curlwp;
    382 	struct proc *p = l ? l->l_proc : NULL;
    383 	struct slpque *qp;
    384 	int sig, s;
    385 	int catch = priority & PCATCH;
    386 	int relock = (priority & PNORELOCK) == 0;
    387 	int exiterr = (priority & PNOEXITERR) == 0;
    388 
    389 	/*
    390 	 * XXXSMP
    391 	 * This is probably bogus.  Figure out what the right
    392 	 * thing to do here really is.
    393 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    394 	 * in the shutdown case is disgusting but partly necessary given
    395 	 * how shutdown (barely) works.
    396 	 */
    397 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    398 		/*
    399 		 * After a panic, or during autoconfiguration,
    400 		 * just give interrupts a chance, then just return;
    401 		 * don't run any other procs or panic below,
    402 		 * in case this is the idle process and already asleep.
    403 		 */
    404 		s = splhigh();
    405 		splx(safepri);
    406 		splx(s);
    407 		if (interlock != NULL && relock == 0)
    408 			simple_unlock(interlock);
    409 		return (0);
    410 	}
    411 
    412 	KASSERT(p != NULL);
    413 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    414 
    415 #ifdef KTRACE
    416 	if (KTRPOINT(p, KTR_CSW))
    417 		ktrcsw(p, 1, 0);
    418 #endif
    419 
    420 	SCHED_LOCK(s);
    421 
    422 #ifdef DIAGNOSTIC
    423 	if (ident == NULL)
    424 		panic("ltsleep: ident == NULL");
    425 	if (l->l_stat != LSONPROC)
    426 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    427 	if (l->l_back != NULL)
    428 		panic("ltsleep: p_back != NULL");
    429 #endif
    430 
    431 	l->l_wchan = ident;
    432 	l->l_wmesg = wmesg;
    433 	l->l_slptime = 0;
    434 	l->l_priority = priority & PRIMASK;
    435 
    436 	qp = SLPQUE(ident);
    437 	if (qp->sq_head == 0)
    438 		qp->sq_head = l;
    439 	else {
    440 		*qp->sq_tailp = l;
    441 	}
    442 	*(qp->sq_tailp = &l->l_forw) = 0;
    443 
    444 	if (timo)
    445 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    446 
    447 	/*
    448 	 * We can now release the interlock; the scheduler_slock
    449 	 * is held, so a thread can't get in to do wakeup() before
    450 	 * we do the switch.
    451 	 *
    452 	 * XXX We leave the code block here, after inserting ourselves
    453 	 * on the sleep queue, because we might want a more clever
    454 	 * data structure for the sleep queues at some point.
    455 	 */
    456 	if (interlock != NULL)
    457 		simple_unlock(interlock);
    458 
    459 	/*
    460 	 * We put ourselves on the sleep queue and start our timeout
    461 	 * before calling CURSIG, as we could stop there, and a wakeup
    462 	 * or a SIGCONT (or both) could occur while we were stopped.
    463 	 * A SIGCONT would cause us to be marked as SSLEEP
    464 	 * without resuming us, thus we must be ready for sleep
    465 	 * when CURSIG is called.  If the wakeup happens while we're
    466 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    467 	 */
    468 	if (catch) {
    469 		l->l_flag |= L_SINTR;
    470 		if (((sig = CURSIG(l)) != 0) ||
    471 		    ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
    472 			if (l->l_wchan != NULL)
    473 				unsleep(l);
    474 			l->l_stat = LSONPROC;
    475 			SCHED_UNLOCK(s);
    476 			goto resume;
    477 		}
    478 		if (l->l_wchan == NULL) {
    479 			catch = 0;
    480 			SCHED_UNLOCK(s);
    481 			goto resume;
    482 		}
    483 	} else
    484 		sig = 0;
    485 	l->l_stat = LSSLEEP;
    486 	p->p_nrlwps--;
    487 	p->p_stats->p_ru.ru_nvcsw++;
    488 	SCHED_ASSERT_LOCKED();
    489 	if (l->l_flag & L_SA)
    490 		sa_switch(l, SA_UPCALL_BLOCKED);
    491 	else
    492 		mi_switch(l, NULL);
    493 
    494 #if	defined(DDB) && !defined(GPROF)
    495 	/* handy breakpoint location after process "wakes" */
    496 	__asm(".globl bpendtsleep ; bpendtsleep:");
    497 #endif
    498 	/*
    499 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    500 	 * either setrunnable() or awaken().
    501 	 */
    502 
    503 	SCHED_ASSERT_UNLOCKED();
    504 	splx(s);
    505 
    506  resume:
    507 	KDASSERT(l->l_cpu != NULL);
    508 	KDASSERT(l->l_cpu == curcpu());
    509 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    510 
    511 	l->l_flag &= ~L_SINTR;
    512 	if (l->l_flag & L_TIMEOUT) {
    513 		l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
    514 		if (sig == 0) {
    515 #ifdef KTRACE
    516 			if (KTRPOINT(p, KTR_CSW))
    517 				ktrcsw(p, 0, 0);
    518 #endif
    519 			if (relock && interlock != NULL)
    520 				simple_lock(interlock);
    521 			return (EWOULDBLOCK);
    522 		}
    523 	} else if (timo)
    524 		callout_stop(&l->l_tsleep_ch);
    525 
    526 	if (catch) {
    527 		const int cancelled = l->l_flag & L_CANCELLED;
    528 		l->l_flag &= ~L_CANCELLED;
    529 		if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
    530 #ifdef KTRACE
    531 			if (KTRPOINT(p, KTR_CSW))
    532 				ktrcsw(p, 0, 0);
    533 #endif
    534 			if (relock && interlock != NULL)
    535 				simple_lock(interlock);
    536 			/*
    537 			 * If this sleep was canceled, don't let the syscall
    538 			 * restart.
    539 			 */
    540 			if (cancelled ||
    541 			    (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    542 				return (EINTR);
    543 			return (ERESTART);
    544 		}
    545 	}
    546 
    547 #ifdef KTRACE
    548 	if (KTRPOINT(p, KTR_CSW))
    549 		ktrcsw(p, 0, 0);
    550 #endif
    551 	if (relock && interlock != NULL)
    552 		simple_lock(interlock);
    553 
    554 	/* XXXNJW this is very much a kluge.
    555 	 * revisit. a better way of preventing looping/hanging syscalls like
    556 	 * wait4() and _lwp_wait() from wedging an exiting process
    557 	 * would be preferred.
    558 	 */
    559 	if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
    560 		return (EINTR);
    561 	return (0);
    562 }
    563 
    564 /*
    565  * Implement timeout for tsleep.
    566  * If process hasn't been awakened (wchan non-zero),
    567  * set timeout flag and undo the sleep.  If proc
    568  * is stopped, just unsleep so it will remain stopped.
    569  */
    570 void
    571 endtsleep(void *arg)
    572 {
    573 	struct lwp *l;
    574 	int s;
    575 
    576 	l = (struct lwp *)arg;
    577 	SCHED_LOCK(s);
    578 	if (l->l_wchan) {
    579 		if (l->l_stat == LSSLEEP)
    580 			setrunnable(l);
    581 		else
    582 			unsleep(l);
    583 		l->l_flag |= L_TIMEOUT;
    584 	}
    585 	SCHED_UNLOCK(s);
    586 }
    587 
    588 /*
    589  * Remove a process from its wait queue
    590  */
    591 void
    592 unsleep(struct lwp *l)
    593 {
    594 	struct slpque *qp;
    595 	struct lwp **hp;
    596 
    597 	SCHED_ASSERT_LOCKED();
    598 
    599 	if (l->l_wchan) {
    600 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    601 		while (*hp != l)
    602 			hp = &(*hp)->l_forw;
    603 		*hp = l->l_forw;
    604 		if (qp->sq_tailp == &l->l_forw)
    605 			qp->sq_tailp = hp;
    606 		l->l_wchan = 0;
    607 	}
    608 }
    609 
    610 /*
    611  * Optimized-for-wakeup() version of setrunnable().
    612  */
    613 __inline void
    614 awaken(struct lwp *l)
    615 {
    616 
    617 	SCHED_ASSERT_LOCKED();
    618 
    619 	if (l->l_slptime > 1)
    620 		updatepri(l);
    621 	l->l_slptime = 0;
    622 	l->l_stat = LSRUN;
    623 	l->l_proc->p_nrlwps++;
    624 	/*
    625 	 * Since curpriority is a user priority, p->p_priority
    626 	 * is always better than curpriority on the last CPU on
    627 	 * which it ran.
    628 	 *
    629 	 * XXXSMP See affinity comment in resched_proc().
    630 	 */
    631 	if (l->l_flag & L_INMEM) {
    632 		setrunqueue(l);
    633 		if (l->l_flag & L_SA)
    634 			l->l_proc->p_sa->sa_woken = l;
    635 		KASSERT(l->l_cpu != NULL);
    636 		need_resched(l->l_cpu);
    637 	} else
    638 		sched_wakeup(&proc0);
    639 }
    640 
    641 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    642 void
    643 sched_unlock_idle(void)
    644 {
    645 
    646 	simple_unlock(&sched_lock);
    647 }
    648 
    649 void
    650 sched_lock_idle(void)
    651 {
    652 
    653 	simple_lock(&sched_lock);
    654 }
    655 #endif /* MULTIPROCESSOR || LOCKDEBUG */
    656 
    657 /*
    658  * Make all processes sleeping on the specified identifier runnable.
    659  */
    660 
    661 void
    662 wakeup(const void *ident)
    663 {
    664 	int s;
    665 
    666 	SCHED_ASSERT_UNLOCKED();
    667 
    668 	SCHED_LOCK(s);
    669 	sched_wakeup(ident);
    670 	SCHED_UNLOCK(s);
    671 }
    672 
    673 void
    674 sched_wakeup(const void *ident)
    675 {
    676 	struct slpque *qp;
    677 	struct lwp *l, **q;
    678 
    679 	SCHED_ASSERT_LOCKED();
    680 
    681 	qp = SLPQUE(ident);
    682  restart:
    683 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    684 #ifdef DIAGNOSTIC
    685 		if (l->l_back || (l->l_stat != LSSLEEP &&
    686 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    687 			panic("wakeup");
    688 #endif
    689 		if (l->l_wchan == ident) {
    690 			l->l_wchan = 0;
    691 			*q = l->l_forw;
    692 			if (qp->sq_tailp == &l->l_forw)
    693 				qp->sq_tailp = q;
    694 			if (l->l_stat == LSSLEEP) {
    695 				awaken(l);
    696 				goto restart;
    697 			}
    698 		} else
    699 			q = &l->l_forw;
    700 	}
    701 }
    702 
    703 /*
    704  * Make the highest priority process first in line on the specified
    705  * identifier runnable.
    706  */
    707 void
    708 wakeup_one(const void *ident)
    709 {
    710 	struct slpque *qp;
    711 	struct lwp *l, **q;
    712 	struct lwp *best_sleepp, **best_sleepq;
    713 	struct lwp *best_stopp, **best_stopq;
    714 	int s;
    715 
    716 	best_sleepp = best_stopp = NULL;
    717 	best_sleepq = best_stopq = NULL;
    718 
    719 	SCHED_LOCK(s);
    720 
    721 	qp = SLPQUE(ident);
    722 
    723 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    724 #ifdef DIAGNOSTIC
    725 		if (l->l_back || (l->l_stat != LSSLEEP &&
    726 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    727 			panic("wakeup_one");
    728 #endif
    729 		if (l->l_wchan == ident) {
    730 			if (l->l_stat == LSSLEEP) {
    731 				if (best_sleepp == NULL ||
    732 				    l->l_priority < best_sleepp->l_priority) {
    733 					best_sleepp = l;
    734 					best_sleepq = q;
    735 				}
    736 			} else {
    737 				if (best_stopp == NULL ||
    738 				    l->l_priority < best_stopp->l_priority) {
    739 				    	best_stopp = l;
    740 					best_stopq = q;
    741 				}
    742 			}
    743 		}
    744 	}
    745 
    746 	/*
    747 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    748 	 * process.
    749 	 */
    750 	if (best_sleepp != NULL) {
    751 		l = best_sleepp;
    752 		q = best_sleepq;
    753 	} else {
    754 		l = best_stopp;
    755 		q = best_stopq;
    756 	}
    757 
    758 	if (l != NULL) {
    759 		l->l_wchan = NULL;
    760 		*q = l->l_forw;
    761 		if (qp->sq_tailp == &l->l_forw)
    762 			qp->sq_tailp = q;
    763 		if (l->l_stat == LSSLEEP)
    764 			awaken(l);
    765 	}
    766 	SCHED_UNLOCK(s);
    767 }
    768 
    769 /*
    770  * General yield call.  Puts the current process back on its run queue and
    771  * performs a voluntary context switch.  Should only be called when the
    772  * current process explicitly requests it (eg sched_yield(2) in compat code).
    773  */
    774 void
    775 yield(void)
    776 {
    777 	struct lwp *l = curlwp;
    778 	int s;
    779 
    780 	SCHED_LOCK(s);
    781 	l->l_priority = l->l_usrpri;
    782 	l->l_stat = LSRUN;
    783 	setrunqueue(l);
    784 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    785 	mi_switch(l, NULL);
    786 	SCHED_ASSERT_UNLOCKED();
    787 	splx(s);
    788 }
    789 
    790 /*
    791  * General preemption call.  Puts the current process back on its run queue
    792  * and performs an involuntary context switch.  If a process is supplied,
    793  * we switch to that process.  Otherwise, we use the normal process selection
    794  * criteria.
    795  */
    796 
    797 void
    798 preempt(int more)
    799 {
    800 	struct lwp *l = curlwp;
    801 	int r, s;
    802 /* XXXUPSXXX Not needed for SMP patch */
    803 #if 0
    804 	/* XXX Until the preempt() bug is fixed. */
    805 	if (more && (l->l_proc->p_flag & P_SA)) {
    806 		l->l_cpu->ci_schedstate.spc_flags &= ~SPCF_SWITCHCLEAR;
    807 		return;
    808 	}
    809 #endif
    810 
    811 	SCHED_LOCK(s);
    812 	l->l_priority = l->l_usrpri;
    813 	l->l_stat = LSRUN;
    814 	setrunqueue(l);
    815 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
    816 	r = mi_switch(l, NULL);
    817 	SCHED_ASSERT_UNLOCKED();
    818 	splx(s);
    819 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    820 		sa_preempt(l);
    821 }
    822 
    823 /*
    824  * The machine independent parts of context switch.
    825  * Must be called at splsched() (no higher!) and with
    826  * the sched_lock held.
    827  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    828  * the next lwp.
    829  *
    830  * Returns 1 if another process was actually run.
    831  */
    832 int
    833 mi_switch(struct lwp *l, struct lwp *newl)
    834 {
    835 	struct schedstate_percpu *spc;
    836 	struct rlimit *rlim;
    837 	long s, u;
    838 	struct timeval tv;
    839 #if defined(MULTIPROCESSOR)
    840 	int hold_count = 0;	/* XXX: gcc */
    841 #endif
    842 	struct proc *p = l->l_proc;
    843 	int retval;
    844 
    845 	SCHED_ASSERT_LOCKED();
    846 
    847 #if defined(MULTIPROCESSOR)
    848 	/*
    849 	 * Release the kernel_lock, as we are about to yield the CPU.
    850 	 * The scheduler lock is still held until cpu_switch()
    851 	 * selects a new process and removes it from the run queue.
    852 	 */
    853 	if (l->l_flag & L_BIGLOCK)
    854 		hold_count = spinlock_release_all(&kernel_lock);
    855 #endif
    856 
    857 	KDASSERT(l->l_cpu != NULL);
    858 	KDASSERT(l->l_cpu == curcpu());
    859 
    860 	spc = &l->l_cpu->ci_schedstate;
    861 
    862 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    863 	spinlock_switchcheck();
    864 #endif
    865 #ifdef LOCKDEBUG
    866 	simple_lock_switchcheck();
    867 #endif
    868 
    869 	/*
    870 	 * Compute the amount of time during which the current
    871 	 * process was running.
    872 	 */
    873 	microtime(&tv);
    874 	u = p->p_rtime.tv_usec +
    875 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    876 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    877 	if (u < 0) {
    878 		u += 1000000;
    879 		s--;
    880 	} else if (u >= 1000000) {
    881 		u -= 1000000;
    882 		s++;
    883 	}
    884 	p->p_rtime.tv_usec = u;
    885 	p->p_rtime.tv_sec = s;
    886 
    887 	/*
    888 	 * Check if the process exceeds its cpu resource allocation.
    889 	 * If over max, kill it.  In any case, if it has run for more
    890 	 * than 10 minutes, reduce priority to give others a chance.
    891 	 */
    892 	rlim = &p->p_rlimit[RLIMIT_CPU];
    893 	if (s >= rlim->rlim_cur) {
    894 		/*
    895 		 * XXXSMP: we're inside the scheduler lock perimeter;
    896 		 * use sched_psignal.
    897 		 */
    898 		if (s >= rlim->rlim_max)
    899 			sched_psignal(p, SIGKILL);
    900 		else {
    901 			sched_psignal(p, SIGXCPU);
    902 			if (rlim->rlim_cur < rlim->rlim_max)
    903 				rlim->rlim_cur += 5;
    904 		}
    905 	}
    906 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    907 	    p->p_nice == NZERO) {
    908 		p->p_nice = autoniceval + NZERO;
    909 		resetpriority(l);
    910 	}
    911 
    912 	/*
    913 	 * Process is about to yield the CPU; clear the appropriate
    914 	 * scheduling flags.
    915 	 */
    916 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    917 
    918 #ifdef KSTACK_CHECK_MAGIC
    919 	kstack_check_magic(l);
    920 #endif
    921 
    922 	/*
    923 	 * If we are using h/w performance counters, save context.
    924 	 */
    925 #if PERFCTRS
    926 	if (PMC_ENABLED(p))
    927 		pmc_save_context(p);
    928 #endif
    929 
    930 	/*
    931 	 * Switch to the new current process.  When we
    932 	 * run again, we'll return back here.
    933 	 */
    934 	uvmexp.swtch++;
    935 	if (newl == NULL) {
    936 		retval = cpu_switch(l, NULL);
    937 	} else {
    938 		remrunqueue(newl);
    939 		cpu_switchto(l, newl);
    940 		retval = 0;
    941 	}
    942 
    943 	/*
    944 	 * If we are using h/w performance counters, restore context.
    945 	 */
    946 #if PERFCTRS
    947 	if (PMC_ENABLED(p))
    948 		pmc_restore_context(p);
    949 #endif
    950 
    951 	/*
    952 	 * Make sure that MD code released the scheduler lock before
    953 	 * resuming us.
    954 	 */
    955 	SCHED_ASSERT_UNLOCKED();
    956 
    957 	/*
    958 	 * We're running again; record our new start time.  We might
    959 	 * be running on a new CPU now, so don't use the cache'd
    960 	 * schedstate_percpu pointer.
    961 	 */
    962 	KDASSERT(l->l_cpu != NULL);
    963 	KDASSERT(l->l_cpu == curcpu());
    964 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    965 
    966 #if defined(MULTIPROCESSOR)
    967 	/*
    968 	 * Reacquire the kernel_lock now.  We do this after we've
    969 	 * released the scheduler lock to avoid deadlock, and before
    970 	 * we reacquire the interlock.
    971 	 */
    972 	if (l->l_flag & L_BIGLOCK)
    973 		spinlock_acquire_count(&kernel_lock, hold_count);
    974 #endif
    975 
    976 	return retval;
    977 }
    978 
    979 /*
    980  * Initialize the (doubly-linked) run queues
    981  * to be empty.
    982  */
    983 void
    984 rqinit()
    985 {
    986 	int i;
    987 
    988 	for (i = 0; i < RUNQUE_NQS; i++)
    989 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    990 		    (struct lwp *)&sched_qs[i];
    991 }
    992 
    993 static __inline void
    994 resched_proc(struct lwp *l, u_char pri)
    995 {
    996 	struct cpu_info *ci;
    997 
    998 	/*
    999 	 * XXXSMP
   1000 	 * Since l->l_cpu persists across a context switch,
   1001 	 * this gives us *very weak* processor affinity, in
   1002 	 * that we notify the CPU on which the process last
   1003 	 * ran that it should try to switch.
   1004 	 *
   1005 	 * This does not guarantee that the process will run on
   1006 	 * that processor next, because another processor might
   1007 	 * grab it the next time it performs a context switch.
   1008 	 *
   1009 	 * This also does not handle the case where its last
   1010 	 * CPU is running a higher-priority process, but every
   1011 	 * other CPU is running a lower-priority process.  There
   1012 	 * are ways to handle this situation, but they're not
   1013 	 * currently very pretty, and we also need to weigh the
   1014 	 * cost of moving a process from one CPU to another.
   1015 	 *
   1016 	 * XXXSMP
   1017 	 * There is also the issue of locking the other CPU's
   1018 	 * sched state, which we currently do not do.
   1019 	 */
   1020 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1021 	if (pri < ci->ci_schedstate.spc_curpriority)
   1022 		need_resched(ci);
   1023 }
   1024 
   1025 /*
   1026  * Change process state to be runnable,
   1027  * placing it on the run queue if it is in memory,
   1028  * and awakening the swapper if it isn't in memory.
   1029  */
   1030 void
   1031 setrunnable(struct lwp *l)
   1032 {
   1033 	struct proc *p = l->l_proc;
   1034 
   1035 	SCHED_ASSERT_LOCKED();
   1036 
   1037 	switch (l->l_stat) {
   1038 	case 0:
   1039 	case LSRUN:
   1040 	case LSONPROC:
   1041 	case LSZOMB:
   1042 	case LSDEAD:
   1043 	default:
   1044 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
   1045 	case LSSTOP:
   1046 		/*
   1047 		 * If we're being traced (possibly because someone attached us
   1048 		 * while we were stopped), check for a signal from the debugger.
   1049 		 */
   1050 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1051 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1052 			CHECKSIGS(p);
   1053 		}
   1054 	case LSSLEEP:
   1055 		unsleep(l);		/* e.g. when sending signals */
   1056 		break;
   1057 
   1058 	case LSIDL:
   1059 		break;
   1060 	case LSSUSPENDED:
   1061 		break;
   1062 	}
   1063 	l->l_stat = LSRUN;
   1064 	p->p_nrlwps++;
   1065 
   1066 	if (l->l_flag & L_INMEM)
   1067 		setrunqueue(l);
   1068 
   1069 	if (l->l_slptime > 1)
   1070 		updatepri(l);
   1071 	l->l_slptime = 0;
   1072 	if ((l->l_flag & L_INMEM) == 0)
   1073 		sched_wakeup((caddr_t)&proc0);
   1074 	else
   1075 		resched_proc(l, l->l_priority);
   1076 }
   1077 
   1078 /*
   1079  * Compute the priority of a process when running in user mode.
   1080  * Arrange to reschedule if the resulting priority is better
   1081  * than that of the current process.
   1082  */
   1083 void
   1084 resetpriority(struct lwp *l)
   1085 {
   1086 	unsigned int newpriority;
   1087 	struct proc *p = l->l_proc;
   1088 
   1089 	SCHED_ASSERT_LOCKED();
   1090 
   1091 	newpriority = PUSER + p->p_estcpu +
   1092 			NICE_WEIGHT * (p->p_nice - NZERO);
   1093 	newpriority = min(newpriority, MAXPRI);
   1094 	l->l_usrpri = newpriority;
   1095 	resched_proc(l, l->l_usrpri);
   1096 }
   1097 
   1098 /*
   1099  * Recompute priority for all LWPs in a process.
   1100  */
   1101 void
   1102 resetprocpriority(struct proc *p)
   1103 {
   1104 	struct lwp *l;
   1105 
   1106 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1107 	    resetpriority(l);
   1108 }
   1109 
   1110 /*
   1111  * We adjust the priority of the current process.  The priority of a process
   1112  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
   1113  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1114  * will compute a different value each time p_estcpu increases. This can
   1115  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1116  * queue will not change.  The cpu usage estimator ramps up quite quickly
   1117  * when the process is running (linearly), and decays away exponentially, at
   1118  * a rate which is proportionally slower when the system is busy.  The basic
   1119  * principle is that the system will 90% forget that the process used a lot
   1120  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1121  * processes which haven't run much recently, and to round-robin among other
   1122  * processes.
   1123  */
   1124 
   1125 void
   1126 schedclock(struct lwp *l)
   1127 {
   1128 	struct proc *p = l->l_proc;
   1129 	int s;
   1130 
   1131 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1132 	SCHED_LOCK(s);
   1133 	resetpriority(l);
   1134 	SCHED_UNLOCK(s);
   1135 
   1136 	if (l->l_priority >= PUSER)
   1137 		l->l_priority = l->l_usrpri;
   1138 }
   1139 
   1140 void
   1141 suspendsched()
   1142 {
   1143 	struct lwp *l;
   1144 	int s;
   1145 
   1146 	/*
   1147 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1148 	 * LSSUSPENDED.
   1149 	 */
   1150 	proclist_lock_read();
   1151 	SCHED_LOCK(s);
   1152 	LIST_FOREACH(l, &alllwp, l_list) {
   1153 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1154 			continue;
   1155 
   1156 		switch (l->l_stat) {
   1157 		case LSRUN:
   1158 			l->l_proc->p_nrlwps--;
   1159 			if ((l->l_flag & L_INMEM) != 0)
   1160 				remrunqueue(l);
   1161 			/* FALLTHROUGH */
   1162 		case LSSLEEP:
   1163 			l->l_stat = LSSUSPENDED;
   1164 			break;
   1165 		case LSONPROC:
   1166 			/*
   1167 			 * XXX SMP: we need to deal with processes on
   1168 			 * others CPU !
   1169 			 */
   1170 			break;
   1171 		default:
   1172 			break;
   1173 		}
   1174 	}
   1175 	SCHED_UNLOCK(s);
   1176 	proclist_unlock_read();
   1177 }
   1178 
   1179 /*
   1180  * Low-level routines to access the run queue.  Optimised assembler
   1181  * routines can override these.
   1182  */
   1183 
   1184 #ifndef __HAVE_MD_RUNQUEUE
   1185 
   1186 /*
   1187  * On some architectures, it's faster to use a MSB ordering for the priorites
   1188  * than the traditional LSB ordering.
   1189  */
   1190 #ifdef __HAVE_BIGENDIAN_BITOPS
   1191 #define	RQMASK(n) (0x80000000 >> (n))
   1192 #else
   1193 #define	RQMASK(n) (0x00000001 << (n))
   1194 #endif
   1195 
   1196 /*
   1197  * The primitives that manipulate the run queues.  whichqs tells which
   1198  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1199  * into queues, remrunqueue removes them from queues.  The running process is
   1200  * on no queue, other processes are on a queue related to p->p_priority,
   1201  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1202  * available queues.
   1203  */
   1204 
   1205 void
   1206 setrunqueue(struct lwp *l)
   1207 {
   1208 	struct prochd *rq;
   1209 	struct lwp *prev;
   1210 	const int whichq = l->l_priority / 4;
   1211 
   1212 #ifdef DIAGNOSTIC
   1213 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1214 		panic("setrunqueue");
   1215 #endif
   1216 	sched_whichqs |= RQMASK(whichq);
   1217 	rq = &sched_qs[whichq];
   1218 	prev = rq->ph_rlink;
   1219 	l->l_forw = (struct lwp *)rq;
   1220 	rq->ph_rlink = l;
   1221 	prev->l_forw = l;
   1222 	l->l_back = prev;
   1223 }
   1224 
   1225 void
   1226 remrunqueue(struct lwp *l)
   1227 {
   1228 	struct lwp *prev, *next;
   1229 	const int whichq = l->l_priority / 4;
   1230 #ifdef DIAGNOSTIC
   1231 	if (((sched_whichqs & RQMASK(whichq)) == 0))
   1232 		panic("remrunqueue");
   1233 #endif
   1234 	prev = l->l_back;
   1235 	l->l_back = NULL;
   1236 	next = l->l_forw;
   1237 	prev->l_forw = next;
   1238 	next->l_back = prev;
   1239 	if (prev == next)
   1240 		sched_whichqs &= ~RQMASK(whichq);
   1241 }
   1242 
   1243 #undef RQMASK
   1244 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1245