kern_synch.c revision 1.138 1 /* $NetBSD: kern_synch.c,v 1.138 2003/10/26 20:55:57 fvdl Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.138 2003/10/26 20:55:57 fvdl Exp $");
78
79 #include "opt_ddb.h"
80 #include "opt_ktrace.h"
81 #include "opt_kstack.h"
82 #include "opt_lockdebug.h"
83 #include "opt_multiprocessor.h"
84 #include "opt_perfctrs.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #include <sys/buf.h>
92 #if defined(PERFCTRS)
93 #include <sys/pmc.h>
94 #endif
95 #include <sys/signalvar.h>
96 #include <sys/resourcevar.h>
97 #include <sys/sched.h>
98 #include <sys/sa.h>
99 #include <sys/savar.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #ifdef KTRACE
104 #include <sys/ktrace.h>
105 #endif
106
107 #include <machine/cpu.h>
108
109 int lbolt; /* once a second sleep address */
110 int rrticks; /* number of hardclock ticks per roundrobin() */
111
112 /*
113 * The global scheduler state.
114 */
115 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
116 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
117 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
118
119 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
120
121 void schedcpu(void *);
122 void updatepri(struct lwp *);
123 void endtsleep(void *);
124
125 __inline void awaken(struct lwp *);
126
127 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
128
129
130
131 /*
132 * Force switch among equal priority processes every 100ms.
133 * Called from hardclock every hz/10 == rrticks hardclock ticks.
134 */
135 /* ARGSUSED */
136 void
137 roundrobin(struct cpu_info *ci)
138 {
139 struct schedstate_percpu *spc = &ci->ci_schedstate;
140
141 spc->spc_rrticks = rrticks;
142
143 if (curlwp != NULL) {
144 if (spc->spc_flags & SPCF_SEENRR) {
145 /*
146 * The process has already been through a roundrobin
147 * without switching and may be hogging the CPU.
148 * Indicate that the process should yield.
149 */
150 spc->spc_flags |= SPCF_SHOULDYIELD;
151 } else
152 spc->spc_flags |= SPCF_SEENRR;
153 }
154 need_resched(curcpu());
155 }
156
157 /*
158 * Constants for digital decay and forget:
159 * 90% of (p_estcpu) usage in 5 * loadav time
160 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
161 * Note that, as ps(1) mentions, this can let percentages
162 * total over 100% (I've seen 137.9% for 3 processes).
163 *
164 * Note that hardclock updates p_estcpu and p_cpticks independently.
165 *
166 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
167 * That is, the system wants to compute a value of decay such
168 * that the following for loop:
169 * for (i = 0; i < (5 * loadavg); i++)
170 * p_estcpu *= decay;
171 * will compute
172 * p_estcpu *= 0.1;
173 * for all values of loadavg:
174 *
175 * Mathematically this loop can be expressed by saying:
176 * decay ** (5 * loadavg) ~= .1
177 *
178 * The system computes decay as:
179 * decay = (2 * loadavg) / (2 * loadavg + 1)
180 *
181 * We wish to prove that the system's computation of decay
182 * will always fulfill the equation:
183 * decay ** (5 * loadavg) ~= .1
184 *
185 * If we compute b as:
186 * b = 2 * loadavg
187 * then
188 * decay = b / (b + 1)
189 *
190 * We now need to prove two things:
191 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
192 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
193 *
194 * Facts:
195 * For x close to zero, exp(x) =~ 1 + x, since
196 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
197 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
198 * For x close to zero, ln(1+x) =~ x, since
199 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
200 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
201 * ln(.1) =~ -2.30
202 *
203 * Proof of (1):
204 * Solve (factor)**(power) =~ .1 given power (5*loadav):
205 * solving for factor,
206 * ln(factor) =~ (-2.30/5*loadav), or
207 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
208 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
209 *
210 * Proof of (2):
211 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
212 * solving for power,
213 * power*ln(b/(b+1)) =~ -2.30, or
214 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
215 *
216 * Actual power values for the implemented algorithm are as follows:
217 * loadav: 1 2 3 4
218 * power: 5.68 10.32 14.94 19.55
219 */
220
221 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
222 #define loadfactor(loadav) (2 * (loadav))
223 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
224
225 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
226 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
227
228 /*
229 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
230 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
231 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
232 *
233 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
234 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
235 *
236 * If you dont want to bother with the faster/more-accurate formula, you
237 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
238 * (more general) method of calculating the %age of CPU used by a process.
239 */
240 #define CCPU_SHIFT 11
241
242 /*
243 * Recompute process priorities, every hz ticks.
244 */
245 /* ARGSUSED */
246 void
247 schedcpu(void *arg)
248 {
249 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
250 struct lwp *l;
251 struct proc *p;
252 int s, minslp;
253 unsigned int newcpu;
254 int clkhz;
255
256 proclist_lock_read();
257 LIST_FOREACH(p, &allproc, p_list) {
258 /*
259 * Increment time in/out of memory and sleep time
260 * (if sleeping). We ignore overflow; with 16-bit int's
261 * (remember them?) overflow takes 45 days.
262 */
263 minslp = 2;
264 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
265 l->l_swtime++;
266 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
267 l->l_stat == LSSUSPENDED) {
268 l->l_slptime++;
269 minslp = min(minslp, l->l_slptime);
270 } else
271 minslp = 0;
272 }
273 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
274 /*
275 * If the process has slept the entire second,
276 * stop recalculating its priority until it wakes up.
277 */
278 if (minslp > 1)
279 continue;
280 s = splstatclock(); /* prevent state changes */
281 /*
282 * p_pctcpu is only for ps.
283 */
284 clkhz = stathz != 0 ? stathz : hz;
285 #if (FSHIFT >= CCPU_SHIFT)
286 p->p_pctcpu += (clkhz == 100)?
287 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
288 100 * (((fixpt_t) p->p_cpticks)
289 << (FSHIFT - CCPU_SHIFT)) / clkhz;
290 #else
291 p->p_pctcpu += ((FSCALE - ccpu) *
292 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
293 #endif
294 p->p_cpticks = 0;
295 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
296 p->p_estcpu = newcpu;
297 splx(s); /* Done with the process CPU ticks update */
298 SCHED_LOCK(s);
299 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
300 if (l->l_slptime > 1)
301 continue;
302 resetpriority(l);
303 if (l->l_priority >= PUSER) {
304 if (l->l_stat == LSRUN &&
305 (l->l_flag & L_INMEM) &&
306 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
307 remrunqueue(l);
308 l->l_priority = l->l_usrpri;
309 setrunqueue(l);
310 } else
311 l->l_priority = l->l_usrpri;
312 }
313 }
314 SCHED_UNLOCK(s);
315 }
316 proclist_unlock_read();
317 uvm_meter();
318 wakeup((caddr_t)&lbolt);
319 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
320 }
321
322 /*
323 * Recalculate the priority of a process after it has slept for a while.
324 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
325 * least six times the loadfactor will decay p_estcpu to zero.
326 */
327 void
328 updatepri(struct lwp *l)
329 {
330 struct proc *p = l->l_proc;
331 unsigned int newcpu;
332 fixpt_t loadfac;
333
334 SCHED_ASSERT_LOCKED();
335
336 newcpu = p->p_estcpu;
337 loadfac = loadfactor(averunnable.ldavg[0]);
338
339 if (l->l_slptime > 5 * loadfac)
340 p->p_estcpu = 0; /* XXX NJWLWP */
341 else {
342 l->l_slptime--; /* the first time was done in schedcpu */
343 while (newcpu && --l->l_slptime)
344 newcpu = (int) decay_cpu(loadfac, newcpu);
345 p->p_estcpu = newcpu;
346 }
347 resetpriority(l);
348 }
349
350 /*
351 * During autoconfiguration or after a panic, a sleep will simply
352 * lower the priority briefly to allow interrupts, then return.
353 * The priority to be used (safepri) is machine-dependent, thus this
354 * value is initialized and maintained in the machine-dependent layers.
355 * This priority will typically be 0, or the lowest priority
356 * that is safe for use on the interrupt stack; it can be made
357 * higher to block network software interrupts after panics.
358 */
359 int safepri;
360
361 /*
362 * General sleep call. Suspends the current process until a wakeup is
363 * performed on the specified identifier. The process will then be made
364 * runnable with the specified priority. Sleeps at most timo/hz seconds
365 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
366 * before and after sleeping, else signals are not checked. Returns 0 if
367 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
368 * signal needs to be delivered, ERESTART is returned if the current system
369 * call should be restarted if possible, and EINTR is returned if the system
370 * call should be interrupted by the signal (return EINTR).
371 *
372 * The interlock is held until the scheduler_slock is acquired. The
373 * interlock will be locked before returning back to the caller
374 * unless the PNORELOCK flag is specified, in which case the
375 * interlock will always be unlocked upon return.
376 */
377 int
378 ltsleep(const void *ident, int priority, const char *wmesg, int timo,
379 __volatile struct simplelock *interlock)
380 {
381 struct lwp *l = curlwp;
382 struct proc *p = l ? l->l_proc : NULL;
383 struct slpque *qp;
384 int sig, s;
385 int catch = priority & PCATCH;
386 int relock = (priority & PNORELOCK) == 0;
387 int exiterr = (priority & PNOEXITERR) == 0;
388
389 /*
390 * XXXSMP
391 * This is probably bogus. Figure out what the right
392 * thing to do here really is.
393 * Note that not sleeping if ltsleep is called with curlwp == NULL
394 * in the shutdown case is disgusting but partly necessary given
395 * how shutdown (barely) works.
396 */
397 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
398 /*
399 * After a panic, or during autoconfiguration,
400 * just give interrupts a chance, then just return;
401 * don't run any other procs or panic below,
402 * in case this is the idle process and already asleep.
403 */
404 s = splhigh();
405 splx(safepri);
406 splx(s);
407 if (interlock != NULL && relock == 0)
408 simple_unlock(interlock);
409 return (0);
410 }
411
412 KASSERT(p != NULL);
413 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
414
415 #ifdef KTRACE
416 if (KTRPOINT(p, KTR_CSW))
417 ktrcsw(p, 1, 0);
418 #endif
419
420 SCHED_LOCK(s);
421
422 #ifdef DIAGNOSTIC
423 if (ident == NULL)
424 panic("ltsleep: ident == NULL");
425 if (l->l_stat != LSONPROC)
426 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
427 if (l->l_back != NULL)
428 panic("ltsleep: p_back != NULL");
429 #endif
430
431 l->l_wchan = ident;
432 l->l_wmesg = wmesg;
433 l->l_slptime = 0;
434 l->l_priority = priority & PRIMASK;
435
436 qp = SLPQUE(ident);
437 if (qp->sq_head == 0)
438 qp->sq_head = l;
439 else {
440 *qp->sq_tailp = l;
441 }
442 *(qp->sq_tailp = &l->l_forw) = 0;
443
444 if (timo)
445 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
446
447 /*
448 * We can now release the interlock; the scheduler_slock
449 * is held, so a thread can't get in to do wakeup() before
450 * we do the switch.
451 *
452 * XXX We leave the code block here, after inserting ourselves
453 * on the sleep queue, because we might want a more clever
454 * data structure for the sleep queues at some point.
455 */
456 if (interlock != NULL)
457 simple_unlock(interlock);
458
459 /*
460 * We put ourselves on the sleep queue and start our timeout
461 * before calling CURSIG, as we could stop there, and a wakeup
462 * or a SIGCONT (or both) could occur while we were stopped.
463 * A SIGCONT would cause us to be marked as SSLEEP
464 * without resuming us, thus we must be ready for sleep
465 * when CURSIG is called. If the wakeup happens while we're
466 * stopped, p->p_wchan will be 0 upon return from CURSIG.
467 */
468 if (catch) {
469 l->l_flag |= L_SINTR;
470 if (((sig = CURSIG(l)) != 0) ||
471 ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
472 if (l->l_wchan != NULL)
473 unsleep(l);
474 l->l_stat = LSONPROC;
475 SCHED_UNLOCK(s);
476 goto resume;
477 }
478 if (l->l_wchan == NULL) {
479 catch = 0;
480 SCHED_UNLOCK(s);
481 goto resume;
482 }
483 } else
484 sig = 0;
485 l->l_stat = LSSLEEP;
486 p->p_nrlwps--;
487 p->p_stats->p_ru.ru_nvcsw++;
488 SCHED_ASSERT_LOCKED();
489 if (l->l_flag & L_SA)
490 sa_switch(l, SA_UPCALL_BLOCKED);
491 else
492 mi_switch(l, NULL);
493
494 #if defined(DDB) && !defined(GPROF)
495 /* handy breakpoint location after process "wakes" */
496 __asm(".globl bpendtsleep ; bpendtsleep:");
497 #endif
498 /*
499 * p->p_nrlwps is incremented by whoever made us runnable again,
500 * either setrunnable() or awaken().
501 */
502
503 SCHED_ASSERT_UNLOCKED();
504 splx(s);
505
506 resume:
507 KDASSERT(l->l_cpu != NULL);
508 KDASSERT(l->l_cpu == curcpu());
509 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
510
511 l->l_flag &= ~L_SINTR;
512 if (l->l_flag & L_TIMEOUT) {
513 l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
514 if (sig == 0) {
515 #ifdef KTRACE
516 if (KTRPOINT(p, KTR_CSW))
517 ktrcsw(p, 0, 0);
518 #endif
519 if (relock && interlock != NULL)
520 simple_lock(interlock);
521 return (EWOULDBLOCK);
522 }
523 } else if (timo)
524 callout_stop(&l->l_tsleep_ch);
525
526 if (catch) {
527 const int cancelled = l->l_flag & L_CANCELLED;
528 l->l_flag &= ~L_CANCELLED;
529 if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
530 #ifdef KTRACE
531 if (KTRPOINT(p, KTR_CSW))
532 ktrcsw(p, 0, 0);
533 #endif
534 if (relock && interlock != NULL)
535 simple_lock(interlock);
536 /*
537 * If this sleep was canceled, don't let the syscall
538 * restart.
539 */
540 if (cancelled ||
541 (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
542 return (EINTR);
543 return (ERESTART);
544 }
545 }
546
547 #ifdef KTRACE
548 if (KTRPOINT(p, KTR_CSW))
549 ktrcsw(p, 0, 0);
550 #endif
551 if (relock && interlock != NULL)
552 simple_lock(interlock);
553
554 /* XXXNJW this is very much a kluge.
555 * revisit. a better way of preventing looping/hanging syscalls like
556 * wait4() and _lwp_wait() from wedging an exiting process
557 * would be preferred.
558 */
559 if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
560 return (EINTR);
561 return (0);
562 }
563
564 /*
565 * Implement timeout for tsleep.
566 * If process hasn't been awakened (wchan non-zero),
567 * set timeout flag and undo the sleep. If proc
568 * is stopped, just unsleep so it will remain stopped.
569 */
570 void
571 endtsleep(void *arg)
572 {
573 struct lwp *l;
574 int s;
575
576 l = (struct lwp *)arg;
577 SCHED_LOCK(s);
578 if (l->l_wchan) {
579 if (l->l_stat == LSSLEEP)
580 setrunnable(l);
581 else
582 unsleep(l);
583 l->l_flag |= L_TIMEOUT;
584 }
585 SCHED_UNLOCK(s);
586 }
587
588 /*
589 * Remove a process from its wait queue
590 */
591 void
592 unsleep(struct lwp *l)
593 {
594 struct slpque *qp;
595 struct lwp **hp;
596
597 SCHED_ASSERT_LOCKED();
598
599 if (l->l_wchan) {
600 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
601 while (*hp != l)
602 hp = &(*hp)->l_forw;
603 *hp = l->l_forw;
604 if (qp->sq_tailp == &l->l_forw)
605 qp->sq_tailp = hp;
606 l->l_wchan = 0;
607 }
608 }
609
610 /*
611 * Optimized-for-wakeup() version of setrunnable().
612 */
613 __inline void
614 awaken(struct lwp *l)
615 {
616
617 SCHED_ASSERT_LOCKED();
618
619 if (l->l_slptime > 1)
620 updatepri(l);
621 l->l_slptime = 0;
622 l->l_stat = LSRUN;
623 l->l_proc->p_nrlwps++;
624 /*
625 * Since curpriority is a user priority, p->p_priority
626 * is always better than curpriority on the last CPU on
627 * which it ran.
628 *
629 * XXXSMP See affinity comment in resched_proc().
630 */
631 if (l->l_flag & L_INMEM) {
632 setrunqueue(l);
633 if (l->l_flag & L_SA)
634 l->l_proc->p_sa->sa_woken = l;
635 KASSERT(l->l_cpu != NULL);
636 need_resched(l->l_cpu);
637 } else
638 sched_wakeup(&proc0);
639 }
640
641 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
642 void
643 sched_unlock_idle(void)
644 {
645
646 simple_unlock(&sched_lock);
647 }
648
649 void
650 sched_lock_idle(void)
651 {
652
653 simple_lock(&sched_lock);
654 }
655 #endif /* MULTIPROCESSOR || LOCKDEBUG */
656
657 /*
658 * Make all processes sleeping on the specified identifier runnable.
659 */
660
661 void
662 wakeup(const void *ident)
663 {
664 int s;
665
666 SCHED_ASSERT_UNLOCKED();
667
668 SCHED_LOCK(s);
669 sched_wakeup(ident);
670 SCHED_UNLOCK(s);
671 }
672
673 void
674 sched_wakeup(const void *ident)
675 {
676 struct slpque *qp;
677 struct lwp *l, **q;
678
679 SCHED_ASSERT_LOCKED();
680
681 qp = SLPQUE(ident);
682 restart:
683 for (q = &qp->sq_head; (l = *q) != NULL; ) {
684 #ifdef DIAGNOSTIC
685 if (l->l_back || (l->l_stat != LSSLEEP &&
686 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
687 panic("wakeup");
688 #endif
689 if (l->l_wchan == ident) {
690 l->l_wchan = 0;
691 *q = l->l_forw;
692 if (qp->sq_tailp == &l->l_forw)
693 qp->sq_tailp = q;
694 if (l->l_stat == LSSLEEP) {
695 awaken(l);
696 goto restart;
697 }
698 } else
699 q = &l->l_forw;
700 }
701 }
702
703 /*
704 * Make the highest priority process first in line on the specified
705 * identifier runnable.
706 */
707 void
708 wakeup_one(const void *ident)
709 {
710 struct slpque *qp;
711 struct lwp *l, **q;
712 struct lwp *best_sleepp, **best_sleepq;
713 struct lwp *best_stopp, **best_stopq;
714 int s;
715
716 best_sleepp = best_stopp = NULL;
717 best_sleepq = best_stopq = NULL;
718
719 SCHED_LOCK(s);
720
721 qp = SLPQUE(ident);
722
723 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
724 #ifdef DIAGNOSTIC
725 if (l->l_back || (l->l_stat != LSSLEEP &&
726 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
727 panic("wakeup_one");
728 #endif
729 if (l->l_wchan == ident) {
730 if (l->l_stat == LSSLEEP) {
731 if (best_sleepp == NULL ||
732 l->l_priority < best_sleepp->l_priority) {
733 best_sleepp = l;
734 best_sleepq = q;
735 }
736 } else {
737 if (best_stopp == NULL ||
738 l->l_priority < best_stopp->l_priority) {
739 best_stopp = l;
740 best_stopq = q;
741 }
742 }
743 }
744 }
745
746 /*
747 * Consider any SSLEEP process higher than the highest priority SSTOP
748 * process.
749 */
750 if (best_sleepp != NULL) {
751 l = best_sleepp;
752 q = best_sleepq;
753 } else {
754 l = best_stopp;
755 q = best_stopq;
756 }
757
758 if (l != NULL) {
759 l->l_wchan = NULL;
760 *q = l->l_forw;
761 if (qp->sq_tailp == &l->l_forw)
762 qp->sq_tailp = q;
763 if (l->l_stat == LSSLEEP)
764 awaken(l);
765 }
766 SCHED_UNLOCK(s);
767 }
768
769 /*
770 * General yield call. Puts the current process back on its run queue and
771 * performs a voluntary context switch. Should only be called when the
772 * current process explicitly requests it (eg sched_yield(2) in compat code).
773 */
774 void
775 yield(void)
776 {
777 struct lwp *l = curlwp;
778 int s;
779
780 SCHED_LOCK(s);
781 l->l_priority = l->l_usrpri;
782 l->l_stat = LSRUN;
783 setrunqueue(l);
784 l->l_proc->p_stats->p_ru.ru_nvcsw++;
785 mi_switch(l, NULL);
786 SCHED_ASSERT_UNLOCKED();
787 splx(s);
788 }
789
790 /*
791 * General preemption call. Puts the current process back on its run queue
792 * and performs an involuntary context switch. If a process is supplied,
793 * we switch to that process. Otherwise, we use the normal process selection
794 * criteria.
795 */
796
797 void
798 preempt(int more)
799 {
800 struct lwp *l = curlwp;
801 int r, s;
802 /* XXXUPSXXX Not needed for SMP patch */
803 #if 0
804 /* XXX Until the preempt() bug is fixed. */
805 if (more && (l->l_proc->p_flag & P_SA)) {
806 l->l_cpu->ci_schedstate.spc_flags &= ~SPCF_SWITCHCLEAR;
807 return;
808 }
809 #endif
810
811 SCHED_LOCK(s);
812 l->l_priority = l->l_usrpri;
813 l->l_stat = LSRUN;
814 setrunqueue(l);
815 l->l_proc->p_stats->p_ru.ru_nivcsw++;
816 r = mi_switch(l, NULL);
817 SCHED_ASSERT_UNLOCKED();
818 splx(s);
819 if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
820 sa_preempt(l);
821 }
822
823 /*
824 * The machine independent parts of context switch.
825 * Must be called at splsched() (no higher!) and with
826 * the sched_lock held.
827 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
828 * the next lwp.
829 *
830 * Returns 1 if another process was actually run.
831 */
832 int
833 mi_switch(struct lwp *l, struct lwp *newl)
834 {
835 struct schedstate_percpu *spc;
836 struct rlimit *rlim;
837 long s, u;
838 struct timeval tv;
839 #if defined(MULTIPROCESSOR)
840 int hold_count = 0; /* XXX: gcc */
841 #endif
842 struct proc *p = l->l_proc;
843 int retval;
844
845 SCHED_ASSERT_LOCKED();
846
847 #if defined(MULTIPROCESSOR)
848 /*
849 * Release the kernel_lock, as we are about to yield the CPU.
850 * The scheduler lock is still held until cpu_switch()
851 * selects a new process and removes it from the run queue.
852 */
853 if (l->l_flag & L_BIGLOCK)
854 hold_count = spinlock_release_all(&kernel_lock);
855 #endif
856
857 KDASSERT(l->l_cpu != NULL);
858 KDASSERT(l->l_cpu == curcpu());
859
860 spc = &l->l_cpu->ci_schedstate;
861
862 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
863 spinlock_switchcheck();
864 #endif
865 #ifdef LOCKDEBUG
866 simple_lock_switchcheck();
867 #endif
868
869 /*
870 * Compute the amount of time during which the current
871 * process was running.
872 */
873 microtime(&tv);
874 u = p->p_rtime.tv_usec +
875 (tv.tv_usec - spc->spc_runtime.tv_usec);
876 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
877 if (u < 0) {
878 u += 1000000;
879 s--;
880 } else if (u >= 1000000) {
881 u -= 1000000;
882 s++;
883 }
884 p->p_rtime.tv_usec = u;
885 p->p_rtime.tv_sec = s;
886
887 /*
888 * Check if the process exceeds its cpu resource allocation.
889 * If over max, kill it. In any case, if it has run for more
890 * than 10 minutes, reduce priority to give others a chance.
891 */
892 rlim = &p->p_rlimit[RLIMIT_CPU];
893 if (s >= rlim->rlim_cur) {
894 /*
895 * XXXSMP: we're inside the scheduler lock perimeter;
896 * use sched_psignal.
897 */
898 if (s >= rlim->rlim_max)
899 sched_psignal(p, SIGKILL);
900 else {
901 sched_psignal(p, SIGXCPU);
902 if (rlim->rlim_cur < rlim->rlim_max)
903 rlim->rlim_cur += 5;
904 }
905 }
906 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
907 p->p_nice == NZERO) {
908 p->p_nice = autoniceval + NZERO;
909 resetpriority(l);
910 }
911
912 /*
913 * Process is about to yield the CPU; clear the appropriate
914 * scheduling flags.
915 */
916 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
917
918 #ifdef KSTACK_CHECK_MAGIC
919 kstack_check_magic(l);
920 #endif
921
922 /*
923 * If we are using h/w performance counters, save context.
924 */
925 #if PERFCTRS
926 if (PMC_ENABLED(p))
927 pmc_save_context(p);
928 #endif
929
930 /*
931 * Switch to the new current process. When we
932 * run again, we'll return back here.
933 */
934 uvmexp.swtch++;
935 if (newl == NULL) {
936 retval = cpu_switch(l, NULL);
937 } else {
938 remrunqueue(newl);
939 cpu_switchto(l, newl);
940 retval = 0;
941 }
942
943 /*
944 * If we are using h/w performance counters, restore context.
945 */
946 #if PERFCTRS
947 if (PMC_ENABLED(p))
948 pmc_restore_context(p);
949 #endif
950
951 /*
952 * Make sure that MD code released the scheduler lock before
953 * resuming us.
954 */
955 SCHED_ASSERT_UNLOCKED();
956
957 /*
958 * We're running again; record our new start time. We might
959 * be running on a new CPU now, so don't use the cache'd
960 * schedstate_percpu pointer.
961 */
962 KDASSERT(l->l_cpu != NULL);
963 KDASSERT(l->l_cpu == curcpu());
964 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
965
966 #if defined(MULTIPROCESSOR)
967 /*
968 * Reacquire the kernel_lock now. We do this after we've
969 * released the scheduler lock to avoid deadlock, and before
970 * we reacquire the interlock.
971 */
972 if (l->l_flag & L_BIGLOCK)
973 spinlock_acquire_count(&kernel_lock, hold_count);
974 #endif
975
976 return retval;
977 }
978
979 /*
980 * Initialize the (doubly-linked) run queues
981 * to be empty.
982 */
983 void
984 rqinit()
985 {
986 int i;
987
988 for (i = 0; i < RUNQUE_NQS; i++)
989 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
990 (struct lwp *)&sched_qs[i];
991 }
992
993 static __inline void
994 resched_proc(struct lwp *l, u_char pri)
995 {
996 struct cpu_info *ci;
997
998 /*
999 * XXXSMP
1000 * Since l->l_cpu persists across a context switch,
1001 * this gives us *very weak* processor affinity, in
1002 * that we notify the CPU on which the process last
1003 * ran that it should try to switch.
1004 *
1005 * This does not guarantee that the process will run on
1006 * that processor next, because another processor might
1007 * grab it the next time it performs a context switch.
1008 *
1009 * This also does not handle the case where its last
1010 * CPU is running a higher-priority process, but every
1011 * other CPU is running a lower-priority process. There
1012 * are ways to handle this situation, but they're not
1013 * currently very pretty, and we also need to weigh the
1014 * cost of moving a process from one CPU to another.
1015 *
1016 * XXXSMP
1017 * There is also the issue of locking the other CPU's
1018 * sched state, which we currently do not do.
1019 */
1020 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1021 if (pri < ci->ci_schedstate.spc_curpriority)
1022 need_resched(ci);
1023 }
1024
1025 /*
1026 * Change process state to be runnable,
1027 * placing it on the run queue if it is in memory,
1028 * and awakening the swapper if it isn't in memory.
1029 */
1030 void
1031 setrunnable(struct lwp *l)
1032 {
1033 struct proc *p = l->l_proc;
1034
1035 SCHED_ASSERT_LOCKED();
1036
1037 switch (l->l_stat) {
1038 case 0:
1039 case LSRUN:
1040 case LSONPROC:
1041 case LSZOMB:
1042 case LSDEAD:
1043 default:
1044 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
1045 case LSSTOP:
1046 /*
1047 * If we're being traced (possibly because someone attached us
1048 * while we were stopped), check for a signal from the debugger.
1049 */
1050 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1051 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1052 CHECKSIGS(p);
1053 }
1054 case LSSLEEP:
1055 unsleep(l); /* e.g. when sending signals */
1056 break;
1057
1058 case LSIDL:
1059 break;
1060 case LSSUSPENDED:
1061 break;
1062 }
1063 l->l_stat = LSRUN;
1064 p->p_nrlwps++;
1065
1066 if (l->l_flag & L_INMEM)
1067 setrunqueue(l);
1068
1069 if (l->l_slptime > 1)
1070 updatepri(l);
1071 l->l_slptime = 0;
1072 if ((l->l_flag & L_INMEM) == 0)
1073 sched_wakeup((caddr_t)&proc0);
1074 else
1075 resched_proc(l, l->l_priority);
1076 }
1077
1078 /*
1079 * Compute the priority of a process when running in user mode.
1080 * Arrange to reschedule if the resulting priority is better
1081 * than that of the current process.
1082 */
1083 void
1084 resetpriority(struct lwp *l)
1085 {
1086 unsigned int newpriority;
1087 struct proc *p = l->l_proc;
1088
1089 SCHED_ASSERT_LOCKED();
1090
1091 newpriority = PUSER + p->p_estcpu +
1092 NICE_WEIGHT * (p->p_nice - NZERO);
1093 newpriority = min(newpriority, MAXPRI);
1094 l->l_usrpri = newpriority;
1095 resched_proc(l, l->l_usrpri);
1096 }
1097
1098 /*
1099 * Recompute priority for all LWPs in a process.
1100 */
1101 void
1102 resetprocpriority(struct proc *p)
1103 {
1104 struct lwp *l;
1105
1106 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1107 resetpriority(l);
1108 }
1109
1110 /*
1111 * We adjust the priority of the current process. The priority of a process
1112 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu)
1113 * is increased here. The formula for computing priorities (in kern_synch.c)
1114 * will compute a different value each time p_estcpu increases. This can
1115 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1116 * queue will not change. The cpu usage estimator ramps up quite quickly
1117 * when the process is running (linearly), and decays away exponentially, at
1118 * a rate which is proportionally slower when the system is busy. The basic
1119 * principle is that the system will 90% forget that the process used a lot
1120 * of CPU time in 5 * loadav seconds. This causes the system to favor
1121 * processes which haven't run much recently, and to round-robin among other
1122 * processes.
1123 */
1124
1125 void
1126 schedclock(struct lwp *l)
1127 {
1128 struct proc *p = l->l_proc;
1129 int s;
1130
1131 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1132 SCHED_LOCK(s);
1133 resetpriority(l);
1134 SCHED_UNLOCK(s);
1135
1136 if (l->l_priority >= PUSER)
1137 l->l_priority = l->l_usrpri;
1138 }
1139
1140 void
1141 suspendsched()
1142 {
1143 struct lwp *l;
1144 int s;
1145
1146 /*
1147 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1148 * LSSUSPENDED.
1149 */
1150 proclist_lock_read();
1151 SCHED_LOCK(s);
1152 LIST_FOREACH(l, &alllwp, l_list) {
1153 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1154 continue;
1155
1156 switch (l->l_stat) {
1157 case LSRUN:
1158 l->l_proc->p_nrlwps--;
1159 if ((l->l_flag & L_INMEM) != 0)
1160 remrunqueue(l);
1161 /* FALLTHROUGH */
1162 case LSSLEEP:
1163 l->l_stat = LSSUSPENDED;
1164 break;
1165 case LSONPROC:
1166 /*
1167 * XXX SMP: we need to deal with processes on
1168 * others CPU !
1169 */
1170 break;
1171 default:
1172 break;
1173 }
1174 }
1175 SCHED_UNLOCK(s);
1176 proclist_unlock_read();
1177 }
1178
1179 /*
1180 * Low-level routines to access the run queue. Optimised assembler
1181 * routines can override these.
1182 */
1183
1184 #ifndef __HAVE_MD_RUNQUEUE
1185
1186 /*
1187 * On some architectures, it's faster to use a MSB ordering for the priorites
1188 * than the traditional LSB ordering.
1189 */
1190 #ifdef __HAVE_BIGENDIAN_BITOPS
1191 #define RQMASK(n) (0x80000000 >> (n))
1192 #else
1193 #define RQMASK(n) (0x00000001 << (n))
1194 #endif
1195
1196 /*
1197 * The primitives that manipulate the run queues. whichqs tells which
1198 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1199 * into queues, remrunqueue removes them from queues. The running process is
1200 * on no queue, other processes are on a queue related to p->p_priority,
1201 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1202 * available queues.
1203 */
1204
1205 void
1206 setrunqueue(struct lwp *l)
1207 {
1208 struct prochd *rq;
1209 struct lwp *prev;
1210 const int whichq = l->l_priority / 4;
1211
1212 #ifdef DIAGNOSTIC
1213 if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1214 panic("setrunqueue");
1215 #endif
1216 sched_whichqs |= RQMASK(whichq);
1217 rq = &sched_qs[whichq];
1218 prev = rq->ph_rlink;
1219 l->l_forw = (struct lwp *)rq;
1220 rq->ph_rlink = l;
1221 prev->l_forw = l;
1222 l->l_back = prev;
1223 }
1224
1225 void
1226 remrunqueue(struct lwp *l)
1227 {
1228 struct lwp *prev, *next;
1229 const int whichq = l->l_priority / 4;
1230 #ifdef DIAGNOSTIC
1231 if (((sched_whichqs & RQMASK(whichq)) == 0))
1232 panic("remrunqueue");
1233 #endif
1234 prev = l->l_back;
1235 l->l_back = NULL;
1236 next = l->l_forw;
1237 prev->l_forw = next;
1238 next->l_back = prev;
1239 if (prev == next)
1240 sched_whichqs &= ~RQMASK(whichq);
1241 }
1242
1243 #undef RQMASK
1244 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1245