kern_synch.c revision 1.141 1 /* $NetBSD: kern_synch.c,v 1.141 2004/02/13 11:36:23 wiz Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.141 2004/02/13 11:36:23 wiz Exp $");
78
79 #include "opt_ddb.h"
80 #include "opt_ktrace.h"
81 #include "opt_kstack.h"
82 #include "opt_lockdebug.h"
83 #include "opt_multiprocessor.h"
84 #include "opt_perfctrs.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #include <sys/buf.h>
92 #if defined(PERFCTRS)
93 #include <sys/pmc.h>
94 #endif
95 #include <sys/signalvar.h>
96 #include <sys/resourcevar.h>
97 #include <sys/sched.h>
98 #include <sys/sa.h>
99 #include <sys/savar.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #ifdef KTRACE
104 #include <sys/ktrace.h>
105 #endif
106
107 #include <machine/cpu.h>
108
109 int lbolt; /* once a second sleep address */
110 int rrticks; /* number of hardclock ticks per roundrobin() */
111
112 /*
113 * The global scheduler state.
114 */
115 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
116 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
117 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
118
119 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
120
121 void schedcpu(void *);
122 void updatepri(struct lwp *);
123 void endtsleep(void *);
124
125 __inline void sa_awaken(struct lwp *);
126 __inline void awaken(struct lwp *);
127
128 struct callout schedcpu_ch = CALLOUT_INITIALIZER;
129
130
131
132 /*
133 * Force switch among equal priority processes every 100ms.
134 * Called from hardclock every hz/10 == rrticks hardclock ticks.
135 */
136 /* ARGSUSED */
137 void
138 roundrobin(struct cpu_info *ci)
139 {
140 struct schedstate_percpu *spc = &ci->ci_schedstate;
141
142 spc->spc_rrticks = rrticks;
143
144 if (curlwp != NULL) {
145 if (spc->spc_flags & SPCF_SEENRR) {
146 /*
147 * The process has already been through a roundrobin
148 * without switching and may be hogging the CPU.
149 * Indicate that the process should yield.
150 */
151 spc->spc_flags |= SPCF_SHOULDYIELD;
152 } else
153 spc->spc_flags |= SPCF_SEENRR;
154 }
155 need_resched(curcpu());
156 }
157
158 /*
159 * Constants for digital decay and forget:
160 * 90% of (p_estcpu) usage in 5 * loadav time
161 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
162 * Note that, as ps(1) mentions, this can let percentages
163 * total over 100% (I've seen 137.9% for 3 processes).
164 *
165 * Note that hardclock updates p_estcpu and p_cpticks independently.
166 *
167 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
168 * That is, the system wants to compute a value of decay such
169 * that the following for loop:
170 * for (i = 0; i < (5 * loadavg); i++)
171 * p_estcpu *= decay;
172 * will compute
173 * p_estcpu *= 0.1;
174 * for all values of loadavg:
175 *
176 * Mathematically this loop can be expressed by saying:
177 * decay ** (5 * loadavg) ~= .1
178 *
179 * The system computes decay as:
180 * decay = (2 * loadavg) / (2 * loadavg + 1)
181 *
182 * We wish to prove that the system's computation of decay
183 * will always fulfill the equation:
184 * decay ** (5 * loadavg) ~= .1
185 *
186 * If we compute b as:
187 * b = 2 * loadavg
188 * then
189 * decay = b / (b + 1)
190 *
191 * We now need to prove two things:
192 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
193 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
194 *
195 * Facts:
196 * For x close to zero, exp(x) =~ 1 + x, since
197 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
198 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
199 * For x close to zero, ln(1+x) =~ x, since
200 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
201 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
202 * ln(.1) =~ -2.30
203 *
204 * Proof of (1):
205 * Solve (factor)**(power) =~ .1 given power (5*loadav):
206 * solving for factor,
207 * ln(factor) =~ (-2.30/5*loadav), or
208 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
209 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
210 *
211 * Proof of (2):
212 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
213 * solving for power,
214 * power*ln(b/(b+1)) =~ -2.30, or
215 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
216 *
217 * Actual power values for the implemented algorithm are as follows:
218 * loadav: 1 2 3 4
219 * power: 5.68 10.32 14.94 19.55
220 */
221
222 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
223 #define loadfactor(loadav) (2 * (loadav))
224 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
225
226 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
227 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
228
229 /*
230 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
231 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
232 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
233 *
234 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
235 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
236 *
237 * If you dont want to bother with the faster/more-accurate formula, you
238 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
239 * (more general) method of calculating the %age of CPU used by a process.
240 */
241 #define CCPU_SHIFT 11
242
243 /*
244 * Recompute process priorities, every hz ticks.
245 */
246 /* ARGSUSED */
247 void
248 schedcpu(void *arg)
249 {
250 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
251 struct lwp *l;
252 struct proc *p;
253 int s, minslp;
254 unsigned int newcpu;
255 int clkhz;
256
257 proclist_lock_read();
258 LIST_FOREACH(p, &allproc, p_list) {
259 /*
260 * Increment time in/out of memory and sleep time
261 * (if sleeping). We ignore overflow; with 16-bit int's
262 * (remember them?) overflow takes 45 days.
263 */
264 minslp = 2;
265 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
266 l->l_swtime++;
267 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
268 l->l_stat == LSSUSPENDED) {
269 l->l_slptime++;
270 minslp = min(minslp, l->l_slptime);
271 } else
272 minslp = 0;
273 }
274 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
275 /*
276 * If the process has slept the entire second,
277 * stop recalculating its priority until it wakes up.
278 */
279 if (minslp > 1)
280 continue;
281 s = splstatclock(); /* prevent state changes */
282 /*
283 * p_pctcpu is only for ps.
284 */
285 clkhz = stathz != 0 ? stathz : hz;
286 #if (FSHIFT >= CCPU_SHIFT)
287 p->p_pctcpu += (clkhz == 100)?
288 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
289 100 * (((fixpt_t) p->p_cpticks)
290 << (FSHIFT - CCPU_SHIFT)) / clkhz;
291 #else
292 p->p_pctcpu += ((FSCALE - ccpu) *
293 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
294 #endif
295 p->p_cpticks = 0;
296 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
297 p->p_estcpu = newcpu;
298 splx(s); /* Done with the process CPU ticks update */
299 SCHED_LOCK(s);
300 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
301 if (l->l_slptime > 1)
302 continue;
303 resetpriority(l);
304 if (l->l_priority >= PUSER) {
305 if (l->l_stat == LSRUN &&
306 (l->l_flag & L_INMEM) &&
307 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
308 remrunqueue(l);
309 l->l_priority = l->l_usrpri;
310 setrunqueue(l);
311 } else
312 l->l_priority = l->l_usrpri;
313 }
314 }
315 SCHED_UNLOCK(s);
316 }
317 proclist_unlock_read();
318 uvm_meter();
319 wakeup((caddr_t)&lbolt);
320 callout_reset(&schedcpu_ch, hz, schedcpu, NULL);
321 }
322
323 /*
324 * Recalculate the priority of a process after it has slept for a while.
325 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
326 * least six times the loadfactor will decay p_estcpu to zero.
327 */
328 void
329 updatepri(struct lwp *l)
330 {
331 struct proc *p = l->l_proc;
332 unsigned int newcpu;
333 fixpt_t loadfac;
334
335 SCHED_ASSERT_LOCKED();
336
337 newcpu = p->p_estcpu;
338 loadfac = loadfactor(averunnable.ldavg[0]);
339
340 if (l->l_slptime > 5 * loadfac)
341 p->p_estcpu = 0; /* XXX NJWLWP */
342 else {
343 l->l_slptime--; /* the first time was done in schedcpu */
344 while (newcpu && --l->l_slptime)
345 newcpu = (int) decay_cpu(loadfac, newcpu);
346 p->p_estcpu = newcpu;
347 }
348 resetpriority(l);
349 }
350
351 /*
352 * During autoconfiguration or after a panic, a sleep will simply
353 * lower the priority briefly to allow interrupts, then return.
354 * The priority to be used (safepri) is machine-dependent, thus this
355 * value is initialized and maintained in the machine-dependent layers.
356 * This priority will typically be 0, or the lowest priority
357 * that is safe for use on the interrupt stack; it can be made
358 * higher to block network software interrupts after panics.
359 */
360 int safepri;
361
362 /*
363 * General sleep call. Suspends the current process until a wakeup is
364 * performed on the specified identifier. The process will then be made
365 * runnable with the specified priority. Sleeps at most timo/hz seconds
366 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
367 * before and after sleeping, else signals are not checked. Returns 0 if
368 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
369 * signal needs to be delivered, ERESTART is returned if the current system
370 * call should be restarted if possible, and EINTR is returned if the system
371 * call should be interrupted by the signal (return EINTR).
372 *
373 * The interlock is held until the scheduler_slock is acquired. The
374 * interlock will be locked before returning back to the caller
375 * unless the PNORELOCK flag is specified, in which case the
376 * interlock will always be unlocked upon return.
377 */
378 int
379 ltsleep(const void *ident, int priority, const char *wmesg, int timo,
380 __volatile struct simplelock *interlock)
381 {
382 struct lwp *l = curlwp;
383 struct proc *p = l ? l->l_proc : NULL;
384 struct slpque *qp;
385 int sig, s;
386 int catch = priority & PCATCH;
387 int relock = (priority & PNORELOCK) == 0;
388 int exiterr = (priority & PNOEXITERR) == 0;
389
390 /*
391 * XXXSMP
392 * This is probably bogus. Figure out what the right
393 * thing to do here really is.
394 * Note that not sleeping if ltsleep is called with curlwp == NULL
395 * in the shutdown case is disgusting but partly necessary given
396 * how shutdown (barely) works.
397 */
398 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
399 /*
400 * After a panic, or during autoconfiguration,
401 * just give interrupts a chance, then just return;
402 * don't run any other procs or panic below,
403 * in case this is the idle process and already asleep.
404 */
405 s = splhigh();
406 splx(safepri);
407 splx(s);
408 if (interlock != NULL && relock == 0)
409 simple_unlock(interlock);
410 return (0);
411 }
412
413 KASSERT(p != NULL);
414 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
415
416 #ifdef KTRACE
417 if (KTRPOINT(p, KTR_CSW))
418 ktrcsw(p, 1, 0);
419 #endif
420
421 SCHED_LOCK(s);
422
423 #ifdef DIAGNOSTIC
424 if (ident == NULL)
425 panic("ltsleep: ident == NULL");
426 if (l->l_stat != LSONPROC)
427 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
428 if (l->l_back != NULL)
429 panic("ltsleep: p_back != NULL");
430 #endif
431
432 l->l_wchan = ident;
433 l->l_wmesg = wmesg;
434 l->l_slptime = 0;
435 l->l_priority = priority & PRIMASK;
436
437 qp = SLPQUE(ident);
438 if (qp->sq_head == 0)
439 qp->sq_head = l;
440 else {
441 *qp->sq_tailp = l;
442 }
443 *(qp->sq_tailp = &l->l_forw) = 0;
444
445 if (timo)
446 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
447
448 /*
449 * We can now release the interlock; the scheduler_slock
450 * is held, so a thread can't get in to do wakeup() before
451 * we do the switch.
452 *
453 * XXX We leave the code block here, after inserting ourselves
454 * on the sleep queue, because we might want a more clever
455 * data structure for the sleep queues at some point.
456 */
457 if (interlock != NULL)
458 simple_unlock(interlock);
459
460 /*
461 * We put ourselves on the sleep queue and start our timeout
462 * before calling CURSIG, as we could stop there, and a wakeup
463 * or a SIGCONT (or both) could occur while we were stopped.
464 * A SIGCONT would cause us to be marked as SSLEEP
465 * without resuming us, thus we must be ready for sleep
466 * when CURSIG is called. If the wakeup happens while we're
467 * stopped, p->p_wchan will be 0 upon return from CURSIG.
468 */
469 if (catch) {
470 l->l_flag |= L_SINTR;
471 if (((sig = CURSIG(l)) != 0) ||
472 ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
473 if (l->l_wchan != NULL)
474 unsleep(l);
475 l->l_stat = LSONPROC;
476 SCHED_UNLOCK(s);
477 goto resume;
478 }
479 if (l->l_wchan == NULL) {
480 catch = 0;
481 SCHED_UNLOCK(s);
482 goto resume;
483 }
484 } else
485 sig = 0;
486 l->l_stat = LSSLEEP;
487 p->p_nrlwps--;
488 p->p_stats->p_ru.ru_nvcsw++;
489 SCHED_ASSERT_LOCKED();
490 if (l->l_flag & L_SA)
491 sa_switch(l, SA_UPCALL_BLOCKED);
492 else
493 mi_switch(l, NULL);
494
495 #if defined(DDB) && !defined(GPROF)
496 /* handy breakpoint location after process "wakes" */
497 __asm(".globl bpendtsleep\nbpendtsleep:");
498 #endif
499 /*
500 * p->p_nrlwps is incremented by whoever made us runnable again,
501 * either setrunnable() or awaken().
502 */
503
504 SCHED_ASSERT_UNLOCKED();
505 splx(s);
506
507 resume:
508 KDASSERT(l->l_cpu != NULL);
509 KDASSERT(l->l_cpu == curcpu());
510 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
511
512 l->l_flag &= ~L_SINTR;
513 if (l->l_flag & L_TIMEOUT) {
514 l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
515 if (sig == 0) {
516 #ifdef KTRACE
517 if (KTRPOINT(p, KTR_CSW))
518 ktrcsw(p, 0, 0);
519 #endif
520 if (relock && interlock != NULL)
521 simple_lock(interlock);
522 return (EWOULDBLOCK);
523 }
524 } else if (timo)
525 callout_stop(&l->l_tsleep_ch);
526
527 if (catch) {
528 const int cancelled = l->l_flag & L_CANCELLED;
529 l->l_flag &= ~L_CANCELLED;
530 if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
531 #ifdef KTRACE
532 if (KTRPOINT(p, KTR_CSW))
533 ktrcsw(p, 0, 0);
534 #endif
535 if (relock && interlock != NULL)
536 simple_lock(interlock);
537 /*
538 * If this sleep was canceled, don't let the syscall
539 * restart.
540 */
541 if (cancelled ||
542 (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
543 return (EINTR);
544 return (ERESTART);
545 }
546 }
547
548 #ifdef KTRACE
549 if (KTRPOINT(p, KTR_CSW))
550 ktrcsw(p, 0, 0);
551 #endif
552 if (relock && interlock != NULL)
553 simple_lock(interlock);
554
555 /* XXXNJW this is very much a kluge.
556 * revisit. a better way of preventing looping/hanging syscalls like
557 * wait4() and _lwp_wait() from wedging an exiting process
558 * would be preferred.
559 */
560 if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
561 return (EINTR);
562 return (0);
563 }
564
565 /*
566 * Implement timeout for tsleep.
567 * If process hasn't been awakened (wchan non-zero),
568 * set timeout flag and undo the sleep. If proc
569 * is stopped, just unsleep so it will remain stopped.
570 */
571 void
572 endtsleep(void *arg)
573 {
574 struct lwp *l;
575 int s;
576
577 l = (struct lwp *)arg;
578 SCHED_LOCK(s);
579 if (l->l_wchan) {
580 if (l->l_stat == LSSLEEP)
581 setrunnable(l);
582 else
583 unsleep(l);
584 l->l_flag |= L_TIMEOUT;
585 }
586 SCHED_UNLOCK(s);
587 }
588
589 /*
590 * Remove a process from its wait queue
591 */
592 void
593 unsleep(struct lwp *l)
594 {
595 struct slpque *qp;
596 struct lwp **hp;
597
598 SCHED_ASSERT_LOCKED();
599
600 if (l->l_wchan) {
601 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
602 while (*hp != l)
603 hp = &(*hp)->l_forw;
604 *hp = l->l_forw;
605 if (qp->sq_tailp == &l->l_forw)
606 qp->sq_tailp = hp;
607 l->l_wchan = 0;
608 }
609 }
610
611 __inline void
612 sa_awaken(struct lwp *l)
613 {
614 struct sadata *sa = l->l_proc->p_sa;
615
616 SCHED_ASSERT_LOCKED();
617
618 if (l == sa->sa_vp && l->l_flag & L_SA_YIELD)
619 l->l_flag &= ~L_SA_IDLE;
620 }
621
622 /*
623 * Optimized-for-wakeup() version of setrunnable().
624 */
625 __inline void
626 awaken(struct lwp *l)
627 {
628
629 SCHED_ASSERT_LOCKED();
630
631 if (l->l_proc->p_sa)
632 sa_awaken(l);
633
634 if (l->l_slptime > 1)
635 updatepri(l);
636 l->l_slptime = 0;
637 l->l_stat = LSRUN;
638 l->l_proc->p_nrlwps++;
639 /*
640 * Since curpriority is a user priority, p->p_priority
641 * is always better than curpriority on the last CPU on
642 * which it ran.
643 *
644 * XXXSMP See affinity comment in resched_proc().
645 */
646 if (l->l_flag & L_INMEM) {
647 setrunqueue(l);
648 KASSERT(l->l_cpu != NULL);
649 need_resched(l->l_cpu);
650 } else
651 sched_wakeup(&proc0);
652 }
653
654 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
655 void
656 sched_unlock_idle(void)
657 {
658
659 simple_unlock(&sched_lock);
660 }
661
662 void
663 sched_lock_idle(void)
664 {
665
666 simple_lock(&sched_lock);
667 }
668 #endif /* MULTIPROCESSOR || LOCKDEBUG */
669
670 /*
671 * Make all processes sleeping on the specified identifier runnable.
672 */
673
674 void
675 wakeup(const void *ident)
676 {
677 int s;
678
679 SCHED_ASSERT_UNLOCKED();
680
681 SCHED_LOCK(s);
682 sched_wakeup(ident);
683 SCHED_UNLOCK(s);
684 }
685
686 void
687 sched_wakeup(const void *ident)
688 {
689 struct slpque *qp;
690 struct lwp *l, **q;
691
692 SCHED_ASSERT_LOCKED();
693
694 qp = SLPQUE(ident);
695 restart:
696 for (q = &qp->sq_head; (l = *q) != NULL; ) {
697 #ifdef DIAGNOSTIC
698 if (l->l_back || (l->l_stat != LSSLEEP &&
699 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
700 panic("wakeup");
701 #endif
702 if (l->l_wchan == ident) {
703 l->l_wchan = 0;
704 *q = l->l_forw;
705 if (qp->sq_tailp == &l->l_forw)
706 qp->sq_tailp = q;
707 if (l->l_stat == LSSLEEP) {
708 awaken(l);
709 goto restart;
710 }
711 } else
712 q = &l->l_forw;
713 }
714 }
715
716 /*
717 * Make the highest priority process first in line on the specified
718 * identifier runnable.
719 */
720 void
721 wakeup_one(const void *ident)
722 {
723 struct slpque *qp;
724 struct lwp *l, **q;
725 struct lwp *best_sleepp, **best_sleepq;
726 struct lwp *best_stopp, **best_stopq;
727 int s;
728
729 best_sleepp = best_stopp = NULL;
730 best_sleepq = best_stopq = NULL;
731
732 SCHED_LOCK(s);
733
734 qp = SLPQUE(ident);
735
736 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
737 #ifdef DIAGNOSTIC
738 if (l->l_back || (l->l_stat != LSSLEEP &&
739 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
740 panic("wakeup_one");
741 #endif
742 if (l->l_wchan == ident) {
743 if (l->l_stat == LSSLEEP) {
744 if (best_sleepp == NULL ||
745 l->l_priority < best_sleepp->l_priority) {
746 best_sleepp = l;
747 best_sleepq = q;
748 }
749 } else {
750 if (best_stopp == NULL ||
751 l->l_priority < best_stopp->l_priority) {
752 best_stopp = l;
753 best_stopq = q;
754 }
755 }
756 }
757 }
758
759 /*
760 * Consider any SSLEEP process higher than the highest priority SSTOP
761 * process.
762 */
763 if (best_sleepp != NULL) {
764 l = best_sleepp;
765 q = best_sleepq;
766 } else {
767 l = best_stopp;
768 q = best_stopq;
769 }
770
771 if (l != NULL) {
772 l->l_wchan = NULL;
773 *q = l->l_forw;
774 if (qp->sq_tailp == &l->l_forw)
775 qp->sq_tailp = q;
776 if (l->l_stat == LSSLEEP)
777 awaken(l);
778 }
779 SCHED_UNLOCK(s);
780 }
781
782 /*
783 * General yield call. Puts the current process back on its run queue and
784 * performs a voluntary context switch. Should only be called when the
785 * current process explicitly requests it (eg sched_yield(2) in compat code).
786 */
787 void
788 yield(void)
789 {
790 struct lwp *l = curlwp;
791 int s;
792
793 SCHED_LOCK(s);
794 l->l_priority = l->l_usrpri;
795 l->l_stat = LSRUN;
796 setrunqueue(l);
797 l->l_proc->p_stats->p_ru.ru_nvcsw++;
798 mi_switch(l, NULL);
799 SCHED_ASSERT_UNLOCKED();
800 splx(s);
801 }
802
803 /*
804 * General preemption call. Puts the current process back on its run queue
805 * and performs an involuntary context switch. If a process is supplied,
806 * we switch to that process. Otherwise, we use the normal process selection
807 * criteria.
808 */
809
810 void
811 preempt(int more)
812 {
813 struct lwp *l = curlwp;
814 int r, s;
815
816 SCHED_LOCK(s);
817 l->l_priority = l->l_usrpri;
818 l->l_stat = LSRUN;
819 setrunqueue(l);
820 l->l_proc->p_stats->p_ru.ru_nivcsw++;
821 r = mi_switch(l, NULL);
822 SCHED_ASSERT_UNLOCKED();
823 splx(s);
824 if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
825 sa_preempt(l);
826 }
827
828 /*
829 * The machine independent parts of context switch.
830 * Must be called at splsched() (no higher!) and with
831 * the sched_lock held.
832 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
833 * the next lwp.
834 *
835 * Returns 1 if another process was actually run.
836 */
837 int
838 mi_switch(struct lwp *l, struct lwp *newl)
839 {
840 struct schedstate_percpu *spc;
841 struct rlimit *rlim;
842 long s, u;
843 struct timeval tv;
844 #if defined(MULTIPROCESSOR)
845 int hold_count = 0; /* XXX: gcc */
846 #endif
847 struct proc *p = l->l_proc;
848 int retval;
849
850 SCHED_ASSERT_LOCKED();
851
852 #if defined(MULTIPROCESSOR)
853 /*
854 * Release the kernel_lock, as we are about to yield the CPU.
855 * The scheduler lock is still held until cpu_switch()
856 * selects a new process and removes it from the run queue.
857 */
858 if (l->l_flag & L_BIGLOCK)
859 hold_count = spinlock_release_all(&kernel_lock);
860 #endif
861
862 KDASSERT(l->l_cpu != NULL);
863 KDASSERT(l->l_cpu == curcpu());
864
865 spc = &l->l_cpu->ci_schedstate;
866
867 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
868 spinlock_switchcheck();
869 #endif
870 #ifdef LOCKDEBUG
871 simple_lock_switchcheck();
872 #endif
873
874 /*
875 * Compute the amount of time during which the current
876 * process was running.
877 */
878 microtime(&tv);
879 u = p->p_rtime.tv_usec +
880 (tv.tv_usec - spc->spc_runtime.tv_usec);
881 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
882 if (u < 0) {
883 u += 1000000;
884 s--;
885 } else if (u >= 1000000) {
886 u -= 1000000;
887 s++;
888 }
889 p->p_rtime.tv_usec = u;
890 p->p_rtime.tv_sec = s;
891
892 /*
893 * Check if the process exceeds its CPU resource allocation.
894 * If over max, kill it. In any case, if it has run for more
895 * than 10 minutes, reduce priority to give others a chance.
896 */
897 rlim = &p->p_rlimit[RLIMIT_CPU];
898 if (s >= rlim->rlim_cur) {
899 /*
900 * XXXSMP: we're inside the scheduler lock perimeter;
901 * use sched_psignal.
902 */
903 if (s >= rlim->rlim_max)
904 sched_psignal(p, SIGKILL);
905 else {
906 sched_psignal(p, SIGXCPU);
907 if (rlim->rlim_cur < rlim->rlim_max)
908 rlim->rlim_cur += 5;
909 }
910 }
911 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
912 p->p_nice == NZERO) {
913 p->p_nice = autoniceval + NZERO;
914 resetpriority(l);
915 }
916
917 /*
918 * Process is about to yield the CPU; clear the appropriate
919 * scheduling flags.
920 */
921 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
922
923 #ifdef KSTACK_CHECK_MAGIC
924 kstack_check_magic(l);
925 #endif
926
927 /*
928 * If we are using h/w performance counters, save context.
929 */
930 #if PERFCTRS
931 if (PMC_ENABLED(p))
932 pmc_save_context(p);
933 #endif
934
935 /*
936 * Switch to the new current process. When we
937 * run again, we'll return back here.
938 */
939 uvmexp.swtch++;
940 if (newl == NULL) {
941 retval = cpu_switch(l, NULL);
942 } else {
943 remrunqueue(newl);
944 cpu_switchto(l, newl);
945 retval = 0;
946 }
947
948 /*
949 * If we are using h/w performance counters, restore context.
950 */
951 #if PERFCTRS
952 if (PMC_ENABLED(p))
953 pmc_restore_context(p);
954 #endif
955
956 /*
957 * Make sure that MD code released the scheduler lock before
958 * resuming us.
959 */
960 SCHED_ASSERT_UNLOCKED();
961
962 /*
963 * We're running again; record our new start time. We might
964 * be running on a new CPU now, so don't use the cache'd
965 * schedstate_percpu pointer.
966 */
967 KDASSERT(l->l_cpu != NULL);
968 KDASSERT(l->l_cpu == curcpu());
969 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
970
971 #if defined(MULTIPROCESSOR)
972 /*
973 * Reacquire the kernel_lock now. We do this after we've
974 * released the scheduler lock to avoid deadlock, and before
975 * we reacquire the interlock.
976 */
977 if (l->l_flag & L_BIGLOCK)
978 spinlock_acquire_count(&kernel_lock, hold_count);
979 #endif
980
981 return retval;
982 }
983
984 /*
985 * Initialize the (doubly-linked) run queues
986 * to be empty.
987 */
988 void
989 rqinit()
990 {
991 int i;
992
993 for (i = 0; i < RUNQUE_NQS; i++)
994 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
995 (struct lwp *)&sched_qs[i];
996 }
997
998 static __inline void
999 resched_proc(struct lwp *l, u_char pri)
1000 {
1001 struct cpu_info *ci;
1002
1003 /*
1004 * XXXSMP
1005 * Since l->l_cpu persists across a context switch,
1006 * this gives us *very weak* processor affinity, in
1007 * that we notify the CPU on which the process last
1008 * ran that it should try to switch.
1009 *
1010 * This does not guarantee that the process will run on
1011 * that processor next, because another processor might
1012 * grab it the next time it performs a context switch.
1013 *
1014 * This also does not handle the case where its last
1015 * CPU is running a higher-priority process, but every
1016 * other CPU is running a lower-priority process. There
1017 * are ways to handle this situation, but they're not
1018 * currently very pretty, and we also need to weigh the
1019 * cost of moving a process from one CPU to another.
1020 *
1021 * XXXSMP
1022 * There is also the issue of locking the other CPU's
1023 * sched state, which we currently do not do.
1024 */
1025 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1026 if (pri < ci->ci_schedstate.spc_curpriority)
1027 need_resched(ci);
1028 }
1029
1030 /*
1031 * Change process state to be runnable,
1032 * placing it on the run queue if it is in memory,
1033 * and awakening the swapper if it isn't in memory.
1034 */
1035 void
1036 setrunnable(struct lwp *l)
1037 {
1038 struct proc *p = l->l_proc;
1039
1040 SCHED_ASSERT_LOCKED();
1041
1042 switch (l->l_stat) {
1043 case 0:
1044 case LSRUN:
1045 case LSONPROC:
1046 case LSZOMB:
1047 case LSDEAD:
1048 default:
1049 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
1050 case LSSTOP:
1051 /*
1052 * If we're being traced (possibly because someone attached us
1053 * while we were stopped), check for a signal from the debugger.
1054 */
1055 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1056 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1057 CHECKSIGS(p);
1058 }
1059 case LSSLEEP:
1060 unsleep(l); /* e.g. when sending signals */
1061 break;
1062
1063 case LSIDL:
1064 break;
1065 case LSSUSPENDED:
1066 break;
1067 }
1068
1069 if (l->l_proc->p_sa)
1070 sa_awaken(l);
1071
1072 l->l_stat = LSRUN;
1073 p->p_nrlwps++;
1074
1075 if (l->l_flag & L_INMEM)
1076 setrunqueue(l);
1077
1078 if (l->l_slptime > 1)
1079 updatepri(l);
1080 l->l_slptime = 0;
1081 if ((l->l_flag & L_INMEM) == 0)
1082 sched_wakeup((caddr_t)&proc0);
1083 else
1084 resched_proc(l, l->l_priority);
1085 }
1086
1087 /*
1088 * Compute the priority of a process when running in user mode.
1089 * Arrange to reschedule if the resulting priority is better
1090 * than that of the current process.
1091 */
1092 void
1093 resetpriority(struct lwp *l)
1094 {
1095 unsigned int newpriority;
1096 struct proc *p = l->l_proc;
1097
1098 SCHED_ASSERT_LOCKED();
1099
1100 newpriority = PUSER + p->p_estcpu +
1101 NICE_WEIGHT * (p->p_nice - NZERO);
1102 newpriority = min(newpriority, MAXPRI);
1103 l->l_usrpri = newpriority;
1104 resched_proc(l, l->l_usrpri);
1105 }
1106
1107 /*
1108 * Recompute priority for all LWPs in a process.
1109 */
1110 void
1111 resetprocpriority(struct proc *p)
1112 {
1113 struct lwp *l;
1114
1115 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1116 resetpriority(l);
1117 }
1118
1119 /*
1120 * We adjust the priority of the current process. The priority of a process
1121 * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
1122 * is increased here. The formula for computing priorities (in kern_synch.c)
1123 * will compute a different value each time p_estcpu increases. This can
1124 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1125 * queue will not change. The CPU usage estimator ramps up quite quickly
1126 * when the process is running (linearly), and decays away exponentially, at
1127 * a rate which is proportionally slower when the system is busy. The basic
1128 * principle is that the system will 90% forget that the process used a lot
1129 * of CPU time in 5 * loadav seconds. This causes the system to favor
1130 * processes which haven't run much recently, and to round-robin among other
1131 * processes.
1132 */
1133
1134 void
1135 schedclock(struct lwp *l)
1136 {
1137 struct proc *p = l->l_proc;
1138 int s;
1139
1140 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1141 SCHED_LOCK(s);
1142 resetpriority(l);
1143 SCHED_UNLOCK(s);
1144
1145 if (l->l_priority >= PUSER)
1146 l->l_priority = l->l_usrpri;
1147 }
1148
1149 void
1150 suspendsched()
1151 {
1152 struct lwp *l;
1153 int s;
1154
1155 /*
1156 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1157 * LSSUSPENDED.
1158 */
1159 proclist_lock_read();
1160 SCHED_LOCK(s);
1161 LIST_FOREACH(l, &alllwp, l_list) {
1162 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1163 continue;
1164
1165 switch (l->l_stat) {
1166 case LSRUN:
1167 l->l_proc->p_nrlwps--;
1168 if ((l->l_flag & L_INMEM) != 0)
1169 remrunqueue(l);
1170 /* FALLTHROUGH */
1171 case LSSLEEP:
1172 l->l_stat = LSSUSPENDED;
1173 break;
1174 case LSONPROC:
1175 /*
1176 * XXX SMP: we need to deal with processes on
1177 * others CPU !
1178 */
1179 break;
1180 default:
1181 break;
1182 }
1183 }
1184 SCHED_UNLOCK(s);
1185 proclist_unlock_read();
1186 }
1187
1188 /*
1189 * Low-level routines to access the run queue. Optimised assembler
1190 * routines can override these.
1191 */
1192
1193 #ifndef __HAVE_MD_RUNQUEUE
1194
1195 /*
1196 * On some architectures, it's faster to use a MSB ordering for the priorites
1197 * than the traditional LSB ordering.
1198 */
1199 #ifdef __HAVE_BIGENDIAN_BITOPS
1200 #define RQMASK(n) (0x80000000 >> (n))
1201 #else
1202 #define RQMASK(n) (0x00000001 << (n))
1203 #endif
1204
1205 /*
1206 * The primitives that manipulate the run queues. whichqs tells which
1207 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1208 * into queues, remrunqueue removes them from queues. The running process is
1209 * on no queue, other processes are on a queue related to p->p_priority,
1210 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1211 * available queues.
1212 */
1213
1214 void
1215 setrunqueue(struct lwp *l)
1216 {
1217 struct prochd *rq;
1218 struct lwp *prev;
1219 const int whichq = l->l_priority / 4;
1220
1221 #ifdef DIAGNOSTIC
1222 if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1223 panic("setrunqueue");
1224 #endif
1225 sched_whichqs |= RQMASK(whichq);
1226 rq = &sched_qs[whichq];
1227 prev = rq->ph_rlink;
1228 l->l_forw = (struct lwp *)rq;
1229 rq->ph_rlink = l;
1230 prev->l_forw = l;
1231 l->l_back = prev;
1232 }
1233
1234 void
1235 remrunqueue(struct lwp *l)
1236 {
1237 struct lwp *prev, *next;
1238 const int whichq = l->l_priority / 4;
1239 #ifdef DIAGNOSTIC
1240 if (((sched_whichqs & RQMASK(whichq)) == 0))
1241 panic("remrunqueue");
1242 #endif
1243 prev = l->l_back;
1244 l->l_back = NULL;
1245 next = l->l_forw;
1246 prev->l_forw = next;
1247 next->l_back = prev;
1248 if (prev == next)
1249 sched_whichqs &= ~RQMASK(whichq);
1250 }
1251
1252 #undef RQMASK
1253 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1254