kern_synch.c revision 1.146 1 /* $NetBSD: kern_synch.c,v 1.146 2004/12/09 21:52:24 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.146 2004/12/09 21:52:24 matt Exp $");
78
79 #include "opt_ddb.h"
80 #include "opt_ktrace.h"
81 #include "opt_kstack.h"
82 #include "opt_lockdebug.h"
83 #include "opt_multiprocessor.h"
84 #include "opt_perfctrs.h"
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #include <sys/buf.h>
92 #if defined(PERFCTRS)
93 #include <sys/pmc.h>
94 #endif
95 #include <sys/signalvar.h>
96 #include <sys/resourcevar.h>
97 #include <sys/sched.h>
98 #include <sys/sa.h>
99 #include <sys/savar.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #ifdef KTRACE
104 #include <sys/ktrace.h>
105 #endif
106
107 #include <machine/cpu.h>
108
109 int lbolt; /* once a second sleep address */
110 int rrticks; /* number of hardclock ticks per roundrobin() */
111
112 /*
113 * The global scheduler state.
114 */
115 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
116 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
117 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
118
119 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
120
121 void schedcpu(void *);
122 void updatepri(struct lwp *);
123 void endtsleep(void *);
124
125 __inline void sa_awaken(struct lwp *);
126 __inline void awaken(struct lwp *);
127
128 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
129
130
131
132 /*
133 * Force switch among equal priority processes every 100ms.
134 * Called from hardclock every hz/10 == rrticks hardclock ticks.
135 */
136 /* ARGSUSED */
137 void
138 roundrobin(struct cpu_info *ci)
139 {
140 struct schedstate_percpu *spc = &ci->ci_schedstate;
141
142 spc->spc_rrticks = rrticks;
143
144 if (curlwp != NULL) {
145 if (spc->spc_flags & SPCF_SEENRR) {
146 /*
147 * The process has already been through a roundrobin
148 * without switching and may be hogging the CPU.
149 * Indicate that the process should yield.
150 */
151 spc->spc_flags |= SPCF_SHOULDYIELD;
152 } else
153 spc->spc_flags |= SPCF_SEENRR;
154 }
155 need_resched(curcpu());
156 }
157
158 /*
159 * Constants for digital decay and forget:
160 * 90% of (p_estcpu) usage in 5 * loadav time
161 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
162 * Note that, as ps(1) mentions, this can let percentages
163 * total over 100% (I've seen 137.9% for 3 processes).
164 *
165 * Note that hardclock updates p_estcpu and p_cpticks independently.
166 *
167 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
168 * That is, the system wants to compute a value of decay such
169 * that the following for loop:
170 * for (i = 0; i < (5 * loadavg); i++)
171 * p_estcpu *= decay;
172 * will compute
173 * p_estcpu *= 0.1;
174 * for all values of loadavg:
175 *
176 * Mathematically this loop can be expressed by saying:
177 * decay ** (5 * loadavg) ~= .1
178 *
179 * The system computes decay as:
180 * decay = (2 * loadavg) / (2 * loadavg + 1)
181 *
182 * We wish to prove that the system's computation of decay
183 * will always fulfill the equation:
184 * decay ** (5 * loadavg) ~= .1
185 *
186 * If we compute b as:
187 * b = 2 * loadavg
188 * then
189 * decay = b / (b + 1)
190 *
191 * We now need to prove two things:
192 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
193 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
194 *
195 * Facts:
196 * For x close to zero, exp(x) =~ 1 + x, since
197 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
198 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
199 * For x close to zero, ln(1+x) =~ x, since
200 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
201 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
202 * ln(.1) =~ -2.30
203 *
204 * Proof of (1):
205 * Solve (factor)**(power) =~ .1 given power (5*loadav):
206 * solving for factor,
207 * ln(factor) =~ (-2.30/5*loadav), or
208 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
209 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
210 *
211 * Proof of (2):
212 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
213 * solving for power,
214 * power*ln(b/(b+1)) =~ -2.30, or
215 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
216 *
217 * Actual power values for the implemented algorithm are as follows:
218 * loadav: 1 2 3 4
219 * power: 5.68 10.32 14.94 19.55
220 */
221
222 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
223 #define loadfactor(loadav) (2 * (loadav))
224 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
225
226 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
227 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
228
229 /*
230 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
231 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
232 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
233 *
234 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
235 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
236 *
237 * If you dont want to bother with the faster/more-accurate formula, you
238 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
239 * (more general) method of calculating the %age of CPU used by a process.
240 */
241 #define CCPU_SHIFT 11
242
243 /*
244 * Recompute process priorities, every hz ticks.
245 */
246 /* ARGSUSED */
247 void
248 schedcpu(void *arg)
249 {
250 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
251 struct lwp *l;
252 struct proc *p;
253 int s, minslp;
254 unsigned int newcpu;
255 int clkhz;
256
257 proclist_lock_read();
258 PROCLIST_FOREACH(p, &allproc) {
259 /*
260 * Increment time in/out of memory and sleep time
261 * (if sleeping). We ignore overflow; with 16-bit int's
262 * (remember them?) overflow takes 45 days.
263 */
264 minslp = 2;
265 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
266 l->l_swtime++;
267 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
268 l->l_stat == LSSUSPENDED) {
269 l->l_slptime++;
270 minslp = min(minslp, l->l_slptime);
271 } else
272 minslp = 0;
273 }
274 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
275 /*
276 * If the process has slept the entire second,
277 * stop recalculating its priority until it wakes up.
278 */
279 if (minslp > 1)
280 continue;
281 s = splstatclock(); /* prevent state changes */
282 /*
283 * p_pctcpu is only for ps.
284 */
285 clkhz = stathz != 0 ? stathz : hz;
286 #if (FSHIFT >= CCPU_SHIFT)
287 p->p_pctcpu += (clkhz == 100)?
288 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
289 100 * (((fixpt_t) p->p_cpticks)
290 << (FSHIFT - CCPU_SHIFT)) / clkhz;
291 #else
292 p->p_pctcpu += ((FSCALE - ccpu) *
293 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
294 #endif
295 p->p_cpticks = 0;
296 newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
297 p->p_estcpu = newcpu;
298 splx(s); /* Done with the process CPU ticks update */
299 SCHED_LOCK(s);
300 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
301 if (l->l_slptime > 1)
302 continue;
303 resetpriority(l);
304 if (l->l_priority >= PUSER) {
305 if (l->l_stat == LSRUN &&
306 (l->l_flag & L_INMEM) &&
307 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
308 remrunqueue(l);
309 l->l_priority = l->l_usrpri;
310 setrunqueue(l);
311 } else
312 l->l_priority = l->l_usrpri;
313 }
314 }
315 SCHED_UNLOCK(s);
316 }
317 proclist_unlock_read();
318 uvm_meter();
319 wakeup((caddr_t)&lbolt);
320 callout_schedule(&schedcpu_ch, hz);
321 }
322
323 /*
324 * Recalculate the priority of a process after it has slept for a while.
325 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
326 * least six times the loadfactor will decay p_estcpu to zero.
327 */
328 void
329 updatepri(struct lwp *l)
330 {
331 struct proc *p = l->l_proc;
332 unsigned int newcpu;
333 fixpt_t loadfac;
334
335 SCHED_ASSERT_LOCKED();
336
337 newcpu = p->p_estcpu;
338 loadfac = loadfactor(averunnable.ldavg[0]);
339
340 if (l->l_slptime > 5 * loadfac)
341 p->p_estcpu = 0; /* XXX NJWLWP */
342 else {
343 l->l_slptime--; /* the first time was done in schedcpu */
344 while (newcpu && --l->l_slptime)
345 newcpu = (int) decay_cpu(loadfac, newcpu);
346 p->p_estcpu = newcpu;
347 }
348 resetpriority(l);
349 }
350
351 /*
352 * During autoconfiguration or after a panic, a sleep will simply
353 * lower the priority briefly to allow interrupts, then return.
354 * The priority to be used (safepri) is machine-dependent, thus this
355 * value is initialized and maintained in the machine-dependent layers.
356 * This priority will typically be 0, or the lowest priority
357 * that is safe for use on the interrupt stack; it can be made
358 * higher to block network software interrupts after panics.
359 */
360 int safepri;
361
362 /*
363 * General sleep call. Suspends the current process until a wakeup is
364 * performed on the specified identifier. The process will then be made
365 * runnable with the specified priority. Sleeps at most timo/hz seconds
366 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
367 * before and after sleeping, else signals are not checked. Returns 0 if
368 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
369 * signal needs to be delivered, ERESTART is returned if the current system
370 * call should be restarted if possible, and EINTR is returned if the system
371 * call should be interrupted by the signal (return EINTR).
372 *
373 * The interlock is held until the scheduler_slock is acquired. The
374 * interlock will be locked before returning back to the caller
375 * unless the PNORELOCK flag is specified, in which case the
376 * interlock will always be unlocked upon return.
377 */
378 int
379 ltsleep(const void *ident, int priority, const char *wmesg, int timo,
380 __volatile struct simplelock *interlock)
381 {
382 struct lwp *l = curlwp;
383 struct proc *p = l ? l->l_proc : NULL;
384 struct slpque *qp;
385 int sig, s;
386 int catch = priority & PCATCH;
387 int relock = (priority & PNORELOCK) == 0;
388 int exiterr = (priority & PNOEXITERR) == 0;
389
390 /*
391 * XXXSMP
392 * This is probably bogus. Figure out what the right
393 * thing to do here really is.
394 * Note that not sleeping if ltsleep is called with curlwp == NULL
395 * in the shutdown case is disgusting but partly necessary given
396 * how shutdown (barely) works.
397 */
398 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
399 /*
400 * After a panic, or during autoconfiguration,
401 * just give interrupts a chance, then just return;
402 * don't run any other procs or panic below,
403 * in case this is the idle process and already asleep.
404 */
405 s = splhigh();
406 splx(safepri);
407 splx(s);
408 if (interlock != NULL && relock == 0)
409 simple_unlock(interlock);
410 return (0);
411 }
412
413 KASSERT(p != NULL);
414 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
415
416 #ifdef KTRACE
417 if (KTRPOINT(p, KTR_CSW))
418 ktrcsw(p, 1, 0);
419 #endif
420
421 SCHED_LOCK(s);
422
423 #ifdef DIAGNOSTIC
424 if (ident == NULL)
425 panic("ltsleep: ident == NULL");
426 if (l->l_stat != LSONPROC)
427 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
428 if (l->l_back != NULL)
429 panic("ltsleep: p_back != NULL");
430 #endif
431
432 l->l_wchan = ident;
433 l->l_wmesg = wmesg;
434 l->l_slptime = 0;
435 l->l_priority = priority & PRIMASK;
436
437 qp = SLPQUE(ident);
438 if (qp->sq_head == 0)
439 qp->sq_head = l;
440 else {
441 *qp->sq_tailp = l;
442 }
443 *(qp->sq_tailp = &l->l_forw) = 0;
444
445 if (timo)
446 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
447
448 /*
449 * We can now release the interlock; the scheduler_slock
450 * is held, so a thread can't get in to do wakeup() before
451 * we do the switch.
452 *
453 * XXX We leave the code block here, after inserting ourselves
454 * on the sleep queue, because we might want a more clever
455 * data structure for the sleep queues at some point.
456 */
457 if (interlock != NULL)
458 simple_unlock(interlock);
459
460 /*
461 * We put ourselves on the sleep queue and start our timeout
462 * before calling CURSIG, as we could stop there, and a wakeup
463 * or a SIGCONT (or both) could occur while we were stopped.
464 * A SIGCONT would cause us to be marked as SSLEEP
465 * without resuming us, thus we must be ready for sleep
466 * when CURSIG is called. If the wakeup happens while we're
467 * stopped, p->p_wchan will be 0 upon return from CURSIG.
468 */
469 if (catch) {
470 l->l_flag |= L_SINTR;
471 if (((sig = CURSIG(l)) != 0) ||
472 ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
473 if (l->l_wchan != NULL)
474 unsleep(l);
475 l->l_stat = LSONPROC;
476 SCHED_UNLOCK(s);
477 goto resume;
478 }
479 if (l->l_wchan == NULL) {
480 catch = 0;
481 SCHED_UNLOCK(s);
482 goto resume;
483 }
484 } else
485 sig = 0;
486 l->l_stat = LSSLEEP;
487 p->p_nrlwps--;
488 p->p_stats->p_ru.ru_nvcsw++;
489 SCHED_ASSERT_LOCKED();
490 if (l->l_flag & L_SA)
491 sa_switch(l, SA_UPCALL_BLOCKED);
492 else
493 mi_switch(l, NULL);
494
495 #if defined(DDB) && !defined(GPROF)
496 /* handy breakpoint location after process "wakes" */
497 __asm(".globl bpendtsleep\nbpendtsleep:");
498 #endif
499 /*
500 * p->p_nrlwps is incremented by whoever made us runnable again,
501 * either setrunnable() or awaken().
502 */
503
504 SCHED_ASSERT_UNLOCKED();
505 splx(s);
506
507 resume:
508 KDASSERT(l->l_cpu != NULL);
509 KDASSERT(l->l_cpu == curcpu());
510 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
511
512 l->l_flag &= ~L_SINTR;
513 if (l->l_flag & L_TIMEOUT) {
514 l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
515 if (sig == 0) {
516 #ifdef KTRACE
517 if (KTRPOINT(p, KTR_CSW))
518 ktrcsw(p, 0, 0);
519 #endif
520 if (relock && interlock != NULL)
521 simple_lock(interlock);
522 return (EWOULDBLOCK);
523 }
524 } else if (timo)
525 callout_stop(&l->l_tsleep_ch);
526
527 if (catch) {
528 const int cancelled = l->l_flag & L_CANCELLED;
529 l->l_flag &= ~L_CANCELLED;
530 if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
531 #ifdef KTRACE
532 if (KTRPOINT(p, KTR_CSW))
533 ktrcsw(p, 0, 0);
534 #endif
535 if (relock && interlock != NULL)
536 simple_lock(interlock);
537 /*
538 * If this sleep was canceled, don't let the syscall
539 * restart.
540 */
541 if (cancelled ||
542 (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
543 return (EINTR);
544 return (ERESTART);
545 }
546 }
547
548 #ifdef KTRACE
549 if (KTRPOINT(p, KTR_CSW))
550 ktrcsw(p, 0, 0);
551 #endif
552 if (relock && interlock != NULL)
553 simple_lock(interlock);
554
555 /* XXXNJW this is very much a kluge.
556 * revisit. a better way of preventing looping/hanging syscalls like
557 * wait4() and _lwp_wait() from wedging an exiting process
558 * would be preferred.
559 */
560 if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
561 return (EINTR);
562 return (0);
563 }
564
565 /*
566 * Implement timeout for tsleep.
567 * If process hasn't been awakened (wchan non-zero),
568 * set timeout flag and undo the sleep. If proc
569 * is stopped, just unsleep so it will remain stopped.
570 */
571 void
572 endtsleep(void *arg)
573 {
574 struct lwp *l;
575 int s;
576
577 l = (struct lwp *)arg;
578 SCHED_LOCK(s);
579 if (l->l_wchan) {
580 if (l->l_stat == LSSLEEP)
581 setrunnable(l);
582 else
583 unsleep(l);
584 l->l_flag |= L_TIMEOUT;
585 }
586 SCHED_UNLOCK(s);
587 }
588
589 /*
590 * Remove a process from its wait queue
591 */
592 void
593 unsleep(struct lwp *l)
594 {
595 struct slpque *qp;
596 struct lwp **hp;
597
598 SCHED_ASSERT_LOCKED();
599
600 if (l->l_wchan) {
601 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
602 while (*hp != l)
603 hp = &(*hp)->l_forw;
604 *hp = l->l_forw;
605 if (qp->sq_tailp == &l->l_forw)
606 qp->sq_tailp = hp;
607 l->l_wchan = 0;
608 }
609 }
610
611 __inline void
612 sa_awaken(struct lwp *l)
613 {
614
615 SCHED_ASSERT_LOCKED();
616
617 if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
618 l->l_flag &= ~L_SA_IDLE;
619 }
620
621 /*
622 * Optimized-for-wakeup() version of setrunnable().
623 */
624 __inline void
625 awaken(struct lwp *l)
626 {
627
628 SCHED_ASSERT_LOCKED();
629
630 if (l->l_proc->p_sa)
631 sa_awaken(l);
632
633 if (l->l_slptime > 1)
634 updatepri(l);
635 l->l_slptime = 0;
636 l->l_stat = LSRUN;
637 l->l_proc->p_nrlwps++;
638 /*
639 * Since curpriority is a user priority, p->p_priority
640 * is always better than curpriority on the last CPU on
641 * which it ran.
642 *
643 * XXXSMP See affinity comment in resched_proc().
644 */
645 if (l->l_flag & L_INMEM) {
646 setrunqueue(l);
647 KASSERT(l->l_cpu != NULL);
648 need_resched(l->l_cpu);
649 } else
650 sched_wakeup(&proc0);
651 }
652
653 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
654 void
655 sched_unlock_idle(void)
656 {
657
658 simple_unlock(&sched_lock);
659 }
660
661 void
662 sched_lock_idle(void)
663 {
664
665 simple_lock(&sched_lock);
666 }
667 #endif /* MULTIPROCESSOR || LOCKDEBUG */
668
669 /*
670 * Make all processes sleeping on the specified identifier runnable.
671 */
672
673 void
674 wakeup(const void *ident)
675 {
676 int s;
677
678 SCHED_ASSERT_UNLOCKED();
679
680 SCHED_LOCK(s);
681 sched_wakeup(ident);
682 SCHED_UNLOCK(s);
683 }
684
685 void
686 sched_wakeup(const void *ident)
687 {
688 struct slpque *qp;
689 struct lwp *l, **q;
690
691 SCHED_ASSERT_LOCKED();
692
693 qp = SLPQUE(ident);
694 restart:
695 for (q = &qp->sq_head; (l = *q) != NULL; ) {
696 #ifdef DIAGNOSTIC
697 if (l->l_back || (l->l_stat != LSSLEEP &&
698 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
699 panic("wakeup");
700 #endif
701 if (l->l_wchan == ident) {
702 l->l_wchan = 0;
703 *q = l->l_forw;
704 if (qp->sq_tailp == &l->l_forw)
705 qp->sq_tailp = q;
706 if (l->l_stat == LSSLEEP) {
707 awaken(l);
708 goto restart;
709 }
710 } else
711 q = &l->l_forw;
712 }
713 }
714
715 /*
716 * Make the highest priority process first in line on the specified
717 * identifier runnable.
718 */
719 void
720 wakeup_one(const void *ident)
721 {
722 struct slpque *qp;
723 struct lwp *l, **q;
724 struct lwp *best_sleepp, **best_sleepq;
725 struct lwp *best_stopp, **best_stopq;
726 int s;
727
728 best_sleepp = best_stopp = NULL;
729 best_sleepq = best_stopq = NULL;
730
731 SCHED_LOCK(s);
732
733 qp = SLPQUE(ident);
734
735 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
736 #ifdef DIAGNOSTIC
737 if (l->l_back || (l->l_stat != LSSLEEP &&
738 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
739 panic("wakeup_one");
740 #endif
741 if (l->l_wchan == ident) {
742 if (l->l_stat == LSSLEEP) {
743 if (best_sleepp == NULL ||
744 l->l_priority < best_sleepp->l_priority) {
745 best_sleepp = l;
746 best_sleepq = q;
747 }
748 } else {
749 if (best_stopp == NULL ||
750 l->l_priority < best_stopp->l_priority) {
751 best_stopp = l;
752 best_stopq = q;
753 }
754 }
755 }
756 }
757
758 /*
759 * Consider any SSLEEP process higher than the highest priority SSTOP
760 * process.
761 */
762 if (best_sleepp != NULL) {
763 l = best_sleepp;
764 q = best_sleepq;
765 } else {
766 l = best_stopp;
767 q = best_stopq;
768 }
769
770 if (l != NULL) {
771 l->l_wchan = NULL;
772 *q = l->l_forw;
773 if (qp->sq_tailp == &l->l_forw)
774 qp->sq_tailp = q;
775 if (l->l_stat == LSSLEEP)
776 awaken(l);
777 }
778 SCHED_UNLOCK(s);
779 }
780
781 /*
782 * General yield call. Puts the current process back on its run queue and
783 * performs a voluntary context switch. Should only be called when the
784 * current process explicitly requests it (eg sched_yield(2) in compat code).
785 */
786 void
787 yield(void)
788 {
789 struct lwp *l = curlwp;
790 int s;
791
792 SCHED_LOCK(s);
793 l->l_priority = l->l_usrpri;
794 l->l_stat = LSRUN;
795 setrunqueue(l);
796 l->l_proc->p_stats->p_ru.ru_nvcsw++;
797 mi_switch(l, NULL);
798 SCHED_ASSERT_UNLOCKED();
799 splx(s);
800 }
801
802 /*
803 * General preemption call. Puts the current process back on its run queue
804 * and performs an involuntary context switch. If a process is supplied,
805 * we switch to that process. Otherwise, we use the normal process selection
806 * criteria.
807 */
808
809 void
810 preempt(int more)
811 {
812 struct lwp *l = curlwp;
813 int r, s;
814
815 SCHED_LOCK(s);
816 l->l_priority = l->l_usrpri;
817 l->l_stat = LSRUN;
818 setrunqueue(l);
819 l->l_proc->p_stats->p_ru.ru_nivcsw++;
820 r = mi_switch(l, NULL);
821 SCHED_ASSERT_UNLOCKED();
822 splx(s);
823 if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
824 sa_preempt(l);
825 }
826
827 /*
828 * The machine independent parts of context switch.
829 * Must be called at splsched() (no higher!) and with
830 * the sched_lock held.
831 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
832 * the next lwp.
833 *
834 * Returns 1 if another process was actually run.
835 */
836 int
837 mi_switch(struct lwp *l, struct lwp *newl)
838 {
839 struct schedstate_percpu *spc;
840 struct rlimit *rlim;
841 long s, u;
842 struct timeval tv;
843 int hold_count;
844 struct proc *p = l->l_proc;
845 int retval;
846
847 SCHED_ASSERT_LOCKED();
848
849 /*
850 * Release the kernel_lock, as we are about to yield the CPU.
851 * The scheduler lock is still held until cpu_switch()
852 * selects a new process and removes it from the run queue.
853 */
854 hold_count = KERNEL_LOCK_RELEASE_ALL();
855
856 KDASSERT(l->l_cpu != NULL);
857 KDASSERT(l->l_cpu == curcpu());
858
859 spc = &l->l_cpu->ci_schedstate;
860
861 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
862 spinlock_switchcheck();
863 #endif
864 #ifdef LOCKDEBUG
865 simple_lock_switchcheck();
866 #endif
867
868 /*
869 * Compute the amount of time during which the current
870 * process was running.
871 */
872 microtime(&tv);
873 u = p->p_rtime.tv_usec +
874 (tv.tv_usec - spc->spc_runtime.tv_usec);
875 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
876 if (u < 0) {
877 u += 1000000;
878 s--;
879 } else if (u >= 1000000) {
880 u -= 1000000;
881 s++;
882 }
883 p->p_rtime.tv_usec = u;
884 p->p_rtime.tv_sec = s;
885
886 /*
887 * Check if the process exceeds its CPU resource allocation.
888 * If over max, kill it. In any case, if it has run for more
889 * than 10 minutes, reduce priority to give others a chance.
890 */
891 rlim = &p->p_rlimit[RLIMIT_CPU];
892 if (s >= rlim->rlim_cur) {
893 /*
894 * XXXSMP: we're inside the scheduler lock perimeter;
895 * use sched_psignal.
896 */
897 if (s >= rlim->rlim_max)
898 sched_psignal(p, SIGKILL);
899 else {
900 sched_psignal(p, SIGXCPU);
901 if (rlim->rlim_cur < rlim->rlim_max)
902 rlim->rlim_cur += 5;
903 }
904 }
905 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
906 p->p_nice == NZERO) {
907 p->p_nice = autoniceval + NZERO;
908 resetpriority(l);
909 }
910
911 /*
912 * Process is about to yield the CPU; clear the appropriate
913 * scheduling flags.
914 */
915 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
916
917 #ifdef KSTACK_CHECK_MAGIC
918 kstack_check_magic(l);
919 #endif
920
921 /*
922 * If we are using h/w performance counters, save context.
923 */
924 #if PERFCTRS
925 if (PMC_ENABLED(p))
926 pmc_save_context(p);
927 #endif
928
929 /*
930 * Switch to the new current process. When we
931 * run again, we'll return back here.
932 */
933 uvmexp.swtch++;
934 if (newl == NULL) {
935 retval = cpu_switch(l, NULL);
936 } else {
937 remrunqueue(newl);
938 cpu_switchto(l, newl);
939 retval = 0;
940 }
941
942 /*
943 * If we are using h/w performance counters, restore context.
944 */
945 #if PERFCTRS
946 if (PMC_ENABLED(p))
947 pmc_restore_context(p);
948 #endif
949
950 /*
951 * Make sure that MD code released the scheduler lock before
952 * resuming us.
953 */
954 SCHED_ASSERT_UNLOCKED();
955
956 /*
957 * We're running again; record our new start time. We might
958 * be running on a new CPU now, so don't use the cache'd
959 * schedstate_percpu pointer.
960 */
961 KDASSERT(l->l_cpu != NULL);
962 KDASSERT(l->l_cpu == curcpu());
963 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
964
965 /*
966 * Reacquire the kernel_lock now. We do this after we've
967 * released the scheduler lock to avoid deadlock, and before
968 * we reacquire the interlock.
969 */
970 KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
971
972 return retval;
973 }
974
975 /*
976 * Initialize the (doubly-linked) run queues
977 * to be empty.
978 */
979 void
980 rqinit()
981 {
982 int i;
983
984 for (i = 0; i < RUNQUE_NQS; i++)
985 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
986 (struct lwp *)&sched_qs[i];
987 }
988
989 static __inline void
990 resched_proc(struct lwp *l, u_char pri)
991 {
992 struct cpu_info *ci;
993
994 /*
995 * XXXSMP
996 * Since l->l_cpu persists across a context switch,
997 * this gives us *very weak* processor affinity, in
998 * that we notify the CPU on which the process last
999 * ran that it should try to switch.
1000 *
1001 * This does not guarantee that the process will run on
1002 * that processor next, because another processor might
1003 * grab it the next time it performs a context switch.
1004 *
1005 * This also does not handle the case where its last
1006 * CPU is running a higher-priority process, but every
1007 * other CPU is running a lower-priority process. There
1008 * are ways to handle this situation, but they're not
1009 * currently very pretty, and we also need to weigh the
1010 * cost of moving a process from one CPU to another.
1011 *
1012 * XXXSMP
1013 * There is also the issue of locking the other CPU's
1014 * sched state, which we currently do not do.
1015 */
1016 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1017 if (pri < ci->ci_schedstate.spc_curpriority)
1018 need_resched(ci);
1019 }
1020
1021 /*
1022 * Change process state to be runnable,
1023 * placing it on the run queue if it is in memory,
1024 * and awakening the swapper if it isn't in memory.
1025 */
1026 void
1027 setrunnable(struct lwp *l)
1028 {
1029 struct proc *p = l->l_proc;
1030
1031 SCHED_ASSERT_LOCKED();
1032
1033 switch (l->l_stat) {
1034 case 0:
1035 case LSRUN:
1036 case LSONPROC:
1037 case LSZOMB:
1038 case LSDEAD:
1039 default:
1040 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
1041 case LSSTOP:
1042 /*
1043 * If we're being traced (possibly because someone attached us
1044 * while we were stopped), check for a signal from the debugger.
1045 */
1046 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1047 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1048 CHECKSIGS(p);
1049 }
1050 case LSSLEEP:
1051 unsleep(l); /* e.g. when sending signals */
1052 break;
1053
1054 case LSIDL:
1055 break;
1056 case LSSUSPENDED:
1057 break;
1058 }
1059
1060 if (l->l_proc->p_sa)
1061 sa_awaken(l);
1062
1063 l->l_stat = LSRUN;
1064 p->p_nrlwps++;
1065
1066 if (l->l_flag & L_INMEM)
1067 setrunqueue(l);
1068
1069 if (l->l_slptime > 1)
1070 updatepri(l);
1071 l->l_slptime = 0;
1072 if ((l->l_flag & L_INMEM) == 0)
1073 sched_wakeup((caddr_t)&proc0);
1074 else
1075 resched_proc(l, l->l_priority);
1076 }
1077
1078 /*
1079 * Compute the priority of a process when running in user mode.
1080 * Arrange to reschedule if the resulting priority is better
1081 * than that of the current process.
1082 */
1083 void
1084 resetpriority(struct lwp *l)
1085 {
1086 unsigned int newpriority;
1087 struct proc *p = l->l_proc;
1088
1089 SCHED_ASSERT_LOCKED();
1090
1091 newpriority = PUSER + p->p_estcpu +
1092 NICE_WEIGHT * (p->p_nice - NZERO);
1093 newpriority = min(newpriority, MAXPRI);
1094 l->l_usrpri = newpriority;
1095 resched_proc(l, l->l_usrpri);
1096 }
1097
1098 /*
1099 * Recompute priority for all LWPs in a process.
1100 */
1101 void
1102 resetprocpriority(struct proc *p)
1103 {
1104 struct lwp *l;
1105
1106 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1107 resetpriority(l);
1108 }
1109
1110 /*
1111 * We adjust the priority of the current process. The priority of a process
1112 * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
1113 * is increased here. The formula for computing priorities (in kern_synch.c)
1114 * will compute a different value each time p_estcpu increases. This can
1115 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1116 * queue will not change. The CPU usage estimator ramps up quite quickly
1117 * when the process is running (linearly), and decays away exponentially, at
1118 * a rate which is proportionally slower when the system is busy. The basic
1119 * principle is that the system will 90% forget that the process used a lot
1120 * of CPU time in 5 * loadav seconds. This causes the system to favor
1121 * processes which haven't run much recently, and to round-robin among other
1122 * processes.
1123 */
1124
1125 void
1126 schedclock(struct lwp *l)
1127 {
1128 struct proc *p = l->l_proc;
1129 int s;
1130
1131 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1132 SCHED_LOCK(s);
1133 resetpriority(l);
1134 SCHED_UNLOCK(s);
1135
1136 if (l->l_priority >= PUSER)
1137 l->l_priority = l->l_usrpri;
1138 }
1139
1140 void
1141 suspendsched()
1142 {
1143 struct lwp *l;
1144 int s;
1145
1146 /*
1147 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1148 * LSSUSPENDED.
1149 */
1150 proclist_lock_read();
1151 SCHED_LOCK(s);
1152 LIST_FOREACH(l, &alllwp, l_list) {
1153 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1154 continue;
1155
1156 switch (l->l_stat) {
1157 case LSRUN:
1158 l->l_proc->p_nrlwps--;
1159 if ((l->l_flag & L_INMEM) != 0)
1160 remrunqueue(l);
1161 /* FALLTHROUGH */
1162 case LSSLEEP:
1163 l->l_stat = LSSUSPENDED;
1164 break;
1165 case LSONPROC:
1166 /*
1167 * XXX SMP: we need to deal with processes on
1168 * others CPU !
1169 */
1170 break;
1171 default:
1172 break;
1173 }
1174 }
1175 SCHED_UNLOCK(s);
1176 proclist_unlock_read();
1177 }
1178
1179 /*
1180 * Low-level routines to access the run queue. Optimised assembler
1181 * routines can override these.
1182 */
1183
1184 #ifndef __HAVE_MD_RUNQUEUE
1185
1186 /*
1187 * On some architectures, it's faster to use a MSB ordering for the priorites
1188 * than the traditional LSB ordering.
1189 */
1190 #ifdef __HAVE_BIGENDIAN_BITOPS
1191 #define RQMASK(n) (0x80000000 >> (n))
1192 #else
1193 #define RQMASK(n) (0x00000001 << (n))
1194 #endif
1195
1196 /*
1197 * The primitives that manipulate the run queues. whichqs tells which
1198 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1199 * into queues, remrunqueue removes them from queues. The running process is
1200 * on no queue, other processes are on a queue related to p->p_priority,
1201 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1202 * available queues.
1203 */
1204
1205 #ifdef RQDEBUG
1206 static void
1207 checkrunqueue(int whichq, struct lwp *l)
1208 {
1209 const struct prochd * const rq = &sched_qs[whichq];
1210 struct lwp *l2;
1211 int found = 0;
1212 int die = 0;
1213 int empty = 1;
1214 for (l2 = rq->ph_link; l2 != (void*) rq; l2 = l2->l_forw) {
1215 if (l2->l_stat != LSRUN) {
1216 printf("checkrunqueue[%d]: lwp %p state (%d) "
1217 " != LSRUN\n", whichq, l2, l2->l_stat);
1218 }
1219 if (l2->l_back->l_forw != l2) {
1220 printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1221 "corrupt %p\n", whichq, l2, l2->l_back,
1222 l2->l_back->l_forw);
1223 die = 1;
1224 }
1225 if (l2->l_forw->l_back != l2) {
1226 printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1227 "corrupt %p\n", whichq, l2, l2->l_forw,
1228 l2->l_forw->l_back);
1229 die = 1;
1230 }
1231 if (l2 == l)
1232 found = 1;
1233 empty = 0;
1234 }
1235 if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1236 printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1237 whichq, rq);
1238 die = 1;
1239 } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1240 printf("checkrunqueue[%d]: bit clear for non-empty "
1241 "run-queue %p\n", whichq, rq);
1242 die = 1;
1243 }
1244 if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1245 printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1246 whichq, l);
1247 die = 1;
1248 }
1249 if (l != NULL && empty) {
1250 printf("checkrunqueue[%d]: empty run-queue %p with "
1251 "active lwp %p\n", whichq, rq, l);
1252 die = 1;
1253 }
1254 if (l != NULL && !found) {
1255 printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1256 whichq, l, rq);
1257 die = 1;
1258 }
1259 if (die)
1260 panic("checkrunqueue: inconsistency found");
1261 }
1262 #endif /* RQDEBUG */
1263
1264 void
1265 setrunqueue(struct lwp *l)
1266 {
1267 struct prochd *rq;
1268 struct lwp *prev;
1269 const int whichq = l->l_priority / 4;
1270
1271 #ifdef RQDEBUG
1272 checkrunqueue(whichq, NULL);
1273 #endif
1274 #ifdef DIAGNOSTIC
1275 if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1276 panic("setrunqueue");
1277 #endif
1278 sched_whichqs |= RQMASK(whichq);
1279 rq = &sched_qs[whichq];
1280 prev = rq->ph_rlink;
1281 l->l_forw = (struct lwp *)rq;
1282 rq->ph_rlink = l;
1283 prev->l_forw = l;
1284 l->l_back = prev;
1285 #ifdef RQDEBUG
1286 checkrunqueue(whichq, l);
1287 #endif
1288 }
1289
1290 void
1291 remrunqueue(struct lwp *l)
1292 {
1293 struct lwp *prev, *next;
1294 const int whichq = l->l_priority / 4;
1295 #ifdef RQDEBUG
1296 checkrunqueue(whichq, l);
1297 #endif
1298 #ifdef DIAGNOSTIC
1299 if (((sched_whichqs & RQMASK(whichq)) == 0))
1300 panic("remrunqueue: bit %d not set", whichq);
1301 #endif
1302 prev = l->l_back;
1303 l->l_back = NULL;
1304 next = l->l_forw;
1305 prev->l_forw = next;
1306 next->l_back = prev;
1307 if (prev == next)
1308 sched_whichqs &= ~RQMASK(whichq);
1309 #ifdef RQDEBUG
1310 checkrunqueue(whichq, NULL);
1311 #endif
1312 }
1313
1314 #undef RQMASK
1315 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1316