Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.147
      1 /*	$NetBSD: kern_synch.c,v 1.147 2005/02/26 21:34:55 perry Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. Neither the name of the University nor the names of its contributors
     58  *    may be used to endorse or promote products derived from this software
     59  *    without specific prior written permission.
     60  *
     61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     71  * SUCH DAMAGE.
     72  *
     73  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.147 2005/02/26 21:34:55 perry Exp $");
     78 
     79 #include "opt_ddb.h"
     80 #include "opt_ktrace.h"
     81 #include "opt_kstack.h"
     82 #include "opt_lockdebug.h"
     83 #include "opt_multiprocessor.h"
     84 #include "opt_perfctrs.h"
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/callout.h>
     89 #include <sys/proc.h>
     90 #include <sys/kernel.h>
     91 #include <sys/buf.h>
     92 #if defined(PERFCTRS)
     93 #include <sys/pmc.h>
     94 #endif
     95 #include <sys/signalvar.h>
     96 #include <sys/resourcevar.h>
     97 #include <sys/sched.h>
     98 #include <sys/sa.h>
     99 #include <sys/savar.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 #ifdef KTRACE
    104 #include <sys/ktrace.h>
    105 #endif
    106 
    107 #include <machine/cpu.h>
    108 
    109 int	lbolt;			/* once a second sleep address */
    110 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    111 
    112 /*
    113  * The global scheduler state.
    114  */
    115 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    116 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    117 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    118 
    119 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    120 
    121 void schedcpu(void *);
    122 void updatepri(struct lwp *);
    123 void endtsleep(void *);
    124 
    125 __inline void sa_awaken(struct lwp *);
    126 __inline void awaken(struct lwp *);
    127 
    128 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    129 
    130 
    131 
    132 /*
    133  * Force switch among equal priority processes every 100ms.
    134  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    135  */
    136 /* ARGSUSED */
    137 void
    138 roundrobin(struct cpu_info *ci)
    139 {
    140 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    141 
    142 	spc->spc_rrticks = rrticks;
    143 
    144 	if (curlwp != NULL) {
    145 		if (spc->spc_flags & SPCF_SEENRR) {
    146 			/*
    147 			 * The process has already been through a roundrobin
    148 			 * without switching and may be hogging the CPU.
    149 			 * Indicate that the process should yield.
    150 			 */
    151 			spc->spc_flags |= SPCF_SHOULDYIELD;
    152 		} else
    153 			spc->spc_flags |= SPCF_SEENRR;
    154 	}
    155 	need_resched(curcpu());
    156 }
    157 
    158 /*
    159  * Constants for digital decay and forget:
    160  *	90% of (p_estcpu) usage in 5 * loadav time
    161  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    162  *          Note that, as ps(1) mentions, this can let percentages
    163  *          total over 100% (I've seen 137.9% for 3 processes).
    164  *
    165  * Note that hardclock updates p_estcpu and p_cpticks independently.
    166  *
    167  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    168  * That is, the system wants to compute a value of decay such
    169  * that the following for loop:
    170  * 	for (i = 0; i < (5 * loadavg); i++)
    171  * 		p_estcpu *= decay;
    172  * will compute
    173  * 	p_estcpu *= 0.1;
    174  * for all values of loadavg:
    175  *
    176  * Mathematically this loop can be expressed by saying:
    177  * 	decay ** (5 * loadavg) ~= .1
    178  *
    179  * The system computes decay as:
    180  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    181  *
    182  * We wish to prove that the system's computation of decay
    183  * will always fulfill the equation:
    184  * 	decay ** (5 * loadavg) ~= .1
    185  *
    186  * If we compute b as:
    187  * 	b = 2 * loadavg
    188  * then
    189  * 	decay = b / (b + 1)
    190  *
    191  * We now need to prove two things:
    192  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    193  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    194  *
    195  * Facts:
    196  *         For x close to zero, exp(x) =~ 1 + x, since
    197  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    198  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    199  *         For x close to zero, ln(1+x) =~ x, since
    200  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    201  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    202  *         ln(.1) =~ -2.30
    203  *
    204  * Proof of (1):
    205  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    206  *	solving for factor,
    207  *      ln(factor) =~ (-2.30/5*loadav), or
    208  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    209  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    210  *
    211  * Proof of (2):
    212  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    213  *	solving for power,
    214  *      power*ln(b/(b+1)) =~ -2.30, or
    215  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    216  *
    217  * Actual power values for the implemented algorithm are as follows:
    218  *      loadav: 1       2       3       4
    219  *      power:  5.68    10.32   14.94   19.55
    220  */
    221 
    222 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    223 #define	loadfactor(loadav)	(2 * (loadav))
    224 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    225 
    226 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    227 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    228 
    229 /*
    230  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    231  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    232  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    233  *
    234  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    235  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    236  *
    237  * If you dont want to bother with the faster/more-accurate formula, you
    238  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    239  * (more general) method of calculating the %age of CPU used by a process.
    240  */
    241 #define	CCPU_SHIFT	11
    242 
    243 /*
    244  * Recompute process priorities, every hz ticks.
    245  */
    246 /* ARGSUSED */
    247 void
    248 schedcpu(void *arg)
    249 {
    250 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    251 	struct lwp *l;
    252 	struct proc *p;
    253 	int s, minslp;
    254 	unsigned int newcpu;
    255 	int clkhz;
    256 
    257 	proclist_lock_read();
    258 	PROCLIST_FOREACH(p, &allproc) {
    259 		/*
    260 		 * Increment time in/out of memory and sleep time
    261 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    262 		 * (remember them?) overflow takes 45 days.
    263 		 */
    264 		minslp = 2;
    265 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    266 			l->l_swtime++;
    267 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    268 			    l->l_stat == LSSUSPENDED) {
    269 				l->l_slptime++;
    270 				minslp = min(minslp, l->l_slptime);
    271 			} else
    272 				minslp = 0;
    273 		}
    274 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    275 		/*
    276 		 * If the process has slept the entire second,
    277 		 * stop recalculating its priority until it wakes up.
    278 		 */
    279 		if (minslp > 1)
    280 			continue;
    281 		s = splstatclock();	/* prevent state changes */
    282 		/*
    283 		 * p_pctcpu is only for ps.
    284 		 */
    285 		clkhz = stathz != 0 ? stathz : hz;
    286 #if	(FSHIFT >= CCPU_SHIFT)
    287 		p->p_pctcpu += (clkhz == 100)?
    288 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    289                 	100 * (((fixpt_t) p->p_cpticks)
    290 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    291 #else
    292 		p->p_pctcpu += ((FSCALE - ccpu) *
    293 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    294 #endif
    295 		p->p_cpticks = 0;
    296 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    297 		p->p_estcpu = newcpu;
    298 		splx(s);	/* Done with the process CPU ticks update */
    299 		SCHED_LOCK(s);
    300 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    301 			if (l->l_slptime > 1)
    302 				continue;
    303 			resetpriority(l);
    304 			if (l->l_priority >= PUSER) {
    305 				if (l->l_stat == LSRUN &&
    306 				    (l->l_flag & L_INMEM) &&
    307 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    308 					remrunqueue(l);
    309 					l->l_priority = l->l_usrpri;
    310 					setrunqueue(l);
    311 				} else
    312 					l->l_priority = l->l_usrpri;
    313 			}
    314 		}
    315 		SCHED_UNLOCK(s);
    316 	}
    317 	proclist_unlock_read();
    318 	uvm_meter();
    319 	wakeup((caddr_t)&lbolt);
    320 	callout_schedule(&schedcpu_ch, hz);
    321 }
    322 
    323 /*
    324  * Recalculate the priority of a process after it has slept for a while.
    325  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    326  * least six times the loadfactor will decay p_estcpu to zero.
    327  */
    328 void
    329 updatepri(struct lwp *l)
    330 {
    331 	struct proc *p = l->l_proc;
    332 	unsigned int newcpu;
    333 	fixpt_t loadfac;
    334 
    335 	SCHED_ASSERT_LOCKED();
    336 
    337 	newcpu = p->p_estcpu;
    338 	loadfac = loadfactor(averunnable.ldavg[0]);
    339 
    340 	if (l->l_slptime > 5 * loadfac)
    341 		p->p_estcpu = 0; /* XXX NJWLWP */
    342 	else {
    343 		l->l_slptime--;	/* the first time was done in schedcpu */
    344 		while (newcpu && --l->l_slptime)
    345 			newcpu = (int) decay_cpu(loadfac, newcpu);
    346 		p->p_estcpu = newcpu;
    347 	}
    348 	resetpriority(l);
    349 }
    350 
    351 /*
    352  * During autoconfiguration or after a panic, a sleep will simply
    353  * lower the priority briefly to allow interrupts, then return.
    354  * The priority to be used (safepri) is machine-dependent, thus this
    355  * value is initialized and maintained in the machine-dependent layers.
    356  * This priority will typically be 0, or the lowest priority
    357  * that is safe for use on the interrupt stack; it can be made
    358  * higher to block network software interrupts after panics.
    359  */
    360 int safepri;
    361 
    362 /*
    363  * General sleep call.  Suspends the current process until a wakeup is
    364  * performed on the specified identifier.  The process will then be made
    365  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    366  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    367  * before and after sleeping, else signals are not checked.  Returns 0 if
    368  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    369  * signal needs to be delivered, ERESTART is returned if the current system
    370  * call should be restarted if possible, and EINTR is returned if the system
    371  * call should be interrupted by the signal (return EINTR).
    372  *
    373  * The interlock is held until the scheduler_slock is acquired.  The
    374  * interlock will be locked before returning back to the caller
    375  * unless the PNORELOCK flag is specified, in which case the
    376  * interlock will always be unlocked upon return.
    377  */
    378 int
    379 ltsleep(const void *ident, int priority, const char *wmesg, int timo,
    380     __volatile struct simplelock *interlock)
    381 {
    382 	struct lwp *l = curlwp;
    383 	struct proc *p = l ? l->l_proc : NULL;
    384 	struct slpque *qp;
    385 	int sig, s;
    386 	int catch = priority & PCATCH;
    387 	int relock = (priority & PNORELOCK) == 0;
    388 	int exiterr = (priority & PNOEXITERR) == 0;
    389 
    390 	/*
    391 	 * XXXSMP
    392 	 * This is probably bogus.  Figure out what the right
    393 	 * thing to do here really is.
    394 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    395 	 * in the shutdown case is disgusting but partly necessary given
    396 	 * how shutdown (barely) works.
    397 	 */
    398 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    399 		/*
    400 		 * After a panic, or during autoconfiguration,
    401 		 * just give interrupts a chance, then just return;
    402 		 * don't run any other procs or panic below,
    403 		 * in case this is the idle process and already asleep.
    404 		 */
    405 		s = splhigh();
    406 		splx(safepri);
    407 		splx(s);
    408 		if (interlock != NULL && relock == 0)
    409 			simple_unlock(interlock);
    410 		return (0);
    411 	}
    412 
    413 	KASSERT(p != NULL);
    414 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    415 
    416 #ifdef KTRACE
    417 	if (KTRPOINT(p, KTR_CSW))
    418 		ktrcsw(p, 1, 0);
    419 #endif
    420 
    421 	SCHED_LOCK(s);
    422 
    423 #ifdef DIAGNOSTIC
    424 	if (ident == NULL)
    425 		panic("ltsleep: ident == NULL");
    426 	if (l->l_stat != LSONPROC)
    427 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    428 	if (l->l_back != NULL)
    429 		panic("ltsleep: p_back != NULL");
    430 #endif
    431 
    432 	l->l_wchan = ident;
    433 	l->l_wmesg = wmesg;
    434 	l->l_slptime = 0;
    435 	l->l_priority = priority & PRIMASK;
    436 
    437 	qp = SLPQUE(ident);
    438 	if (qp->sq_head == 0)
    439 		qp->sq_head = l;
    440 	else {
    441 		*qp->sq_tailp = l;
    442 	}
    443 	*(qp->sq_tailp = &l->l_forw) = 0;
    444 
    445 	if (timo)
    446 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    447 
    448 	/*
    449 	 * We can now release the interlock; the scheduler_slock
    450 	 * is held, so a thread can't get in to do wakeup() before
    451 	 * we do the switch.
    452 	 *
    453 	 * XXX We leave the code block here, after inserting ourselves
    454 	 * on the sleep queue, because we might want a more clever
    455 	 * data structure for the sleep queues at some point.
    456 	 */
    457 	if (interlock != NULL)
    458 		simple_unlock(interlock);
    459 
    460 	/*
    461 	 * We put ourselves on the sleep queue and start our timeout
    462 	 * before calling CURSIG, as we could stop there, and a wakeup
    463 	 * or a SIGCONT (or both) could occur while we were stopped.
    464 	 * A SIGCONT would cause us to be marked as SSLEEP
    465 	 * without resuming us, thus we must be ready for sleep
    466 	 * when CURSIG is called.  If the wakeup happens while we're
    467 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    468 	 */
    469 	if (catch) {
    470 		l->l_flag |= L_SINTR;
    471 		if (((sig = CURSIG(l)) != 0) ||
    472 		    ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
    473 			if (l->l_wchan != NULL)
    474 				unsleep(l);
    475 			l->l_stat = LSONPROC;
    476 			SCHED_UNLOCK(s);
    477 			goto resume;
    478 		}
    479 		if (l->l_wchan == NULL) {
    480 			catch = 0;
    481 			SCHED_UNLOCK(s);
    482 			goto resume;
    483 		}
    484 	} else
    485 		sig = 0;
    486 	l->l_stat = LSSLEEP;
    487 	p->p_nrlwps--;
    488 	p->p_stats->p_ru.ru_nvcsw++;
    489 	SCHED_ASSERT_LOCKED();
    490 	if (l->l_flag & L_SA)
    491 		sa_switch(l, SA_UPCALL_BLOCKED);
    492 	else
    493 		mi_switch(l, NULL);
    494 
    495 #if	defined(DDB) && !defined(GPROF)
    496 	/* handy breakpoint location after process "wakes" */
    497 	__asm(".globl bpendtsleep\nbpendtsleep:");
    498 #endif
    499 	/*
    500 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    501 	 * either setrunnable() or awaken().
    502 	 */
    503 
    504 	SCHED_ASSERT_UNLOCKED();
    505 	splx(s);
    506 
    507  resume:
    508 	KDASSERT(l->l_cpu != NULL);
    509 	KDASSERT(l->l_cpu == curcpu());
    510 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    511 
    512 	l->l_flag &= ~L_SINTR;
    513 	if (l->l_flag & L_TIMEOUT) {
    514 		l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
    515 		if (sig == 0) {
    516 #ifdef KTRACE
    517 			if (KTRPOINT(p, KTR_CSW))
    518 				ktrcsw(p, 0, 0);
    519 #endif
    520 			if (relock && interlock != NULL)
    521 				simple_lock(interlock);
    522 			return (EWOULDBLOCK);
    523 		}
    524 	} else if (timo)
    525 		callout_stop(&l->l_tsleep_ch);
    526 
    527 	if (catch) {
    528 		const int cancelled = l->l_flag & L_CANCELLED;
    529 		l->l_flag &= ~L_CANCELLED;
    530 		if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
    531 #ifdef KTRACE
    532 			if (KTRPOINT(p, KTR_CSW))
    533 				ktrcsw(p, 0, 0);
    534 #endif
    535 			if (relock && interlock != NULL)
    536 				simple_lock(interlock);
    537 			/*
    538 			 * If this sleep was canceled, don't let the syscall
    539 			 * restart.
    540 			 */
    541 			if (cancelled ||
    542 			    (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    543 				return (EINTR);
    544 			return (ERESTART);
    545 		}
    546 	}
    547 
    548 #ifdef KTRACE
    549 	if (KTRPOINT(p, KTR_CSW))
    550 		ktrcsw(p, 0, 0);
    551 #endif
    552 	if (relock && interlock != NULL)
    553 		simple_lock(interlock);
    554 
    555 	/* XXXNJW this is very much a kluge.
    556 	 * revisit. a better way of preventing looping/hanging syscalls like
    557 	 * wait4() and _lwp_wait() from wedging an exiting process
    558 	 * would be preferred.
    559 	 */
    560 	if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
    561 		return (EINTR);
    562 	return (0);
    563 }
    564 
    565 /*
    566  * Implement timeout for tsleep.
    567  * If process hasn't been awakened (wchan non-zero),
    568  * set timeout flag and undo the sleep.  If proc
    569  * is stopped, just unsleep so it will remain stopped.
    570  */
    571 void
    572 endtsleep(void *arg)
    573 {
    574 	struct lwp *l;
    575 	int s;
    576 
    577 	l = (struct lwp *)arg;
    578 	SCHED_LOCK(s);
    579 	if (l->l_wchan) {
    580 		if (l->l_stat == LSSLEEP)
    581 			setrunnable(l);
    582 		else
    583 			unsleep(l);
    584 		l->l_flag |= L_TIMEOUT;
    585 	}
    586 	SCHED_UNLOCK(s);
    587 }
    588 
    589 /*
    590  * Remove a process from its wait queue
    591  */
    592 void
    593 unsleep(struct lwp *l)
    594 {
    595 	struct slpque *qp;
    596 	struct lwp **hp;
    597 
    598 	SCHED_ASSERT_LOCKED();
    599 
    600 	if (l->l_wchan) {
    601 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    602 		while (*hp != l)
    603 			hp = &(*hp)->l_forw;
    604 		*hp = l->l_forw;
    605 		if (qp->sq_tailp == &l->l_forw)
    606 			qp->sq_tailp = hp;
    607 		l->l_wchan = 0;
    608 	}
    609 }
    610 
    611 __inline void
    612 sa_awaken(struct lwp *l)
    613 {
    614 
    615 	SCHED_ASSERT_LOCKED();
    616 
    617 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    618 		l->l_flag &= ~L_SA_IDLE;
    619 }
    620 
    621 /*
    622  * Optimized-for-wakeup() version of setrunnable().
    623  */
    624 __inline void
    625 awaken(struct lwp *l)
    626 {
    627 
    628 	SCHED_ASSERT_LOCKED();
    629 
    630 	if (l->l_proc->p_sa)
    631 		sa_awaken(l);
    632 
    633 	if (l->l_slptime > 1)
    634 		updatepri(l);
    635 	l->l_slptime = 0;
    636 	l->l_stat = LSRUN;
    637 	l->l_proc->p_nrlwps++;
    638 	/*
    639 	 * Since curpriority is a user priority, p->p_priority
    640 	 * is always better than curpriority on the last CPU on
    641 	 * which it ran.
    642 	 *
    643 	 * XXXSMP See affinity comment in resched_proc().
    644 	 */
    645 	if (l->l_flag & L_INMEM) {
    646 		setrunqueue(l);
    647 		KASSERT(l->l_cpu != NULL);
    648 		need_resched(l->l_cpu);
    649 	} else
    650 		sched_wakeup(&proc0);
    651 }
    652 
    653 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    654 void
    655 sched_unlock_idle(void)
    656 {
    657 
    658 	simple_unlock(&sched_lock);
    659 }
    660 
    661 void
    662 sched_lock_idle(void)
    663 {
    664 
    665 	simple_lock(&sched_lock);
    666 }
    667 #endif /* MULTIPROCESSOR || LOCKDEBUG */
    668 
    669 /*
    670  * Make all processes sleeping on the specified identifier runnable.
    671  */
    672 
    673 void
    674 wakeup(const void *ident)
    675 {
    676 	int s;
    677 
    678 	SCHED_ASSERT_UNLOCKED();
    679 
    680 	SCHED_LOCK(s);
    681 	sched_wakeup(ident);
    682 	SCHED_UNLOCK(s);
    683 }
    684 
    685 void
    686 sched_wakeup(const void *ident)
    687 {
    688 	struct slpque *qp;
    689 	struct lwp *l, **q;
    690 
    691 	SCHED_ASSERT_LOCKED();
    692 
    693 	qp = SLPQUE(ident);
    694  restart:
    695 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    696 #ifdef DIAGNOSTIC
    697 		if (l->l_back || (l->l_stat != LSSLEEP &&
    698 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    699 			panic("wakeup");
    700 #endif
    701 		if (l->l_wchan == ident) {
    702 			l->l_wchan = 0;
    703 			*q = l->l_forw;
    704 			if (qp->sq_tailp == &l->l_forw)
    705 				qp->sq_tailp = q;
    706 			if (l->l_stat == LSSLEEP) {
    707 				awaken(l);
    708 				goto restart;
    709 			}
    710 		} else
    711 			q = &l->l_forw;
    712 	}
    713 }
    714 
    715 /*
    716  * Make the highest priority process first in line on the specified
    717  * identifier runnable.
    718  */
    719 void
    720 wakeup_one(const void *ident)
    721 {
    722 	struct slpque *qp;
    723 	struct lwp *l, **q;
    724 	struct lwp *best_sleepp, **best_sleepq;
    725 	struct lwp *best_stopp, **best_stopq;
    726 	int s;
    727 
    728 	best_sleepp = best_stopp = NULL;
    729 	best_sleepq = best_stopq = NULL;
    730 
    731 	SCHED_LOCK(s);
    732 
    733 	qp = SLPQUE(ident);
    734 
    735 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    736 #ifdef DIAGNOSTIC
    737 		if (l->l_back || (l->l_stat != LSSLEEP &&
    738 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    739 			panic("wakeup_one");
    740 #endif
    741 		if (l->l_wchan == ident) {
    742 			if (l->l_stat == LSSLEEP) {
    743 				if (best_sleepp == NULL ||
    744 				    l->l_priority < best_sleepp->l_priority) {
    745 					best_sleepp = l;
    746 					best_sleepq = q;
    747 				}
    748 			} else {
    749 				if (best_stopp == NULL ||
    750 				    l->l_priority < best_stopp->l_priority) {
    751 				    	best_stopp = l;
    752 					best_stopq = q;
    753 				}
    754 			}
    755 		}
    756 	}
    757 
    758 	/*
    759 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    760 	 * process.
    761 	 */
    762 	if (best_sleepp != NULL) {
    763 		l = best_sleepp;
    764 		q = best_sleepq;
    765 	} else {
    766 		l = best_stopp;
    767 		q = best_stopq;
    768 	}
    769 
    770 	if (l != NULL) {
    771 		l->l_wchan = NULL;
    772 		*q = l->l_forw;
    773 		if (qp->sq_tailp == &l->l_forw)
    774 			qp->sq_tailp = q;
    775 		if (l->l_stat == LSSLEEP)
    776 			awaken(l);
    777 	}
    778 	SCHED_UNLOCK(s);
    779 }
    780 
    781 /*
    782  * General yield call.  Puts the current process back on its run queue and
    783  * performs a voluntary context switch.  Should only be called when the
    784  * current process explicitly requests it (eg sched_yield(2) in compat code).
    785  */
    786 void
    787 yield(void)
    788 {
    789 	struct lwp *l = curlwp;
    790 	int s;
    791 
    792 	SCHED_LOCK(s);
    793 	l->l_priority = l->l_usrpri;
    794 	l->l_stat = LSRUN;
    795 	setrunqueue(l);
    796 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    797 	mi_switch(l, NULL);
    798 	SCHED_ASSERT_UNLOCKED();
    799 	splx(s);
    800 }
    801 
    802 /*
    803  * General preemption call.  Puts the current process back on its run queue
    804  * and performs an involuntary context switch.  If a process is supplied,
    805  * we switch to that process.  Otherwise, we use the normal process selection
    806  * criteria.
    807  */
    808 
    809 void
    810 preempt(int more)
    811 {
    812 	struct lwp *l = curlwp;
    813 	int r, s;
    814 
    815 	SCHED_LOCK(s);
    816 	l->l_priority = l->l_usrpri;
    817 	l->l_stat = LSRUN;
    818 	setrunqueue(l);
    819 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
    820 	r = mi_switch(l, NULL);
    821 	SCHED_ASSERT_UNLOCKED();
    822 	splx(s);
    823 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    824 		sa_preempt(l);
    825 }
    826 
    827 /*
    828  * The machine independent parts of context switch.
    829  * Must be called at splsched() (no higher!) and with
    830  * the sched_lock held.
    831  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    832  * the next lwp.
    833  *
    834  * Returns 1 if another process was actually run.
    835  */
    836 int
    837 mi_switch(struct lwp *l, struct lwp *newl)
    838 {
    839 	struct schedstate_percpu *spc;
    840 	struct rlimit *rlim;
    841 	long s, u;
    842 	struct timeval tv;
    843 	int hold_count;
    844 	struct proc *p = l->l_proc;
    845 	int retval;
    846 
    847 	SCHED_ASSERT_LOCKED();
    848 
    849 	/*
    850 	 * Release the kernel_lock, as we are about to yield the CPU.
    851 	 * The scheduler lock is still held until cpu_switch()
    852 	 * selects a new process and removes it from the run queue.
    853 	 */
    854 	hold_count = KERNEL_LOCK_RELEASE_ALL();
    855 
    856 	KDASSERT(l->l_cpu != NULL);
    857 	KDASSERT(l->l_cpu == curcpu());
    858 
    859 	spc = &l->l_cpu->ci_schedstate;
    860 
    861 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    862 	spinlock_switchcheck();
    863 #endif
    864 #ifdef LOCKDEBUG
    865 	simple_lock_switchcheck();
    866 #endif
    867 
    868 	/*
    869 	 * Compute the amount of time during which the current
    870 	 * process was running.
    871 	 */
    872 	microtime(&tv);
    873 	u = p->p_rtime.tv_usec +
    874 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    875 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    876 	if (u < 0) {
    877 		u += 1000000;
    878 		s--;
    879 	} else if (u >= 1000000) {
    880 		u -= 1000000;
    881 		s++;
    882 	}
    883 	p->p_rtime.tv_usec = u;
    884 	p->p_rtime.tv_sec = s;
    885 
    886 	/*
    887 	 * Check if the process exceeds its CPU resource allocation.
    888 	 * If over max, kill it.  In any case, if it has run for more
    889 	 * than 10 minutes, reduce priority to give others a chance.
    890 	 */
    891 	rlim = &p->p_rlimit[RLIMIT_CPU];
    892 	if (s >= rlim->rlim_cur) {
    893 		/*
    894 		 * XXXSMP: we're inside the scheduler lock perimeter;
    895 		 * use sched_psignal.
    896 		 */
    897 		if (s >= rlim->rlim_max)
    898 			sched_psignal(p, SIGKILL);
    899 		else {
    900 			sched_psignal(p, SIGXCPU);
    901 			if (rlim->rlim_cur < rlim->rlim_max)
    902 				rlim->rlim_cur += 5;
    903 		}
    904 	}
    905 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    906 	    p->p_nice == NZERO) {
    907 		p->p_nice = autoniceval + NZERO;
    908 		resetpriority(l);
    909 	}
    910 
    911 	/*
    912 	 * Process is about to yield the CPU; clear the appropriate
    913 	 * scheduling flags.
    914 	 */
    915 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    916 
    917 #ifdef KSTACK_CHECK_MAGIC
    918 	kstack_check_magic(l);
    919 #endif
    920 
    921 	/*
    922 	 * If we are using h/w performance counters, save context.
    923 	 */
    924 #if PERFCTRS
    925 	if (PMC_ENABLED(p))
    926 		pmc_save_context(p);
    927 #endif
    928 
    929 	/*
    930 	 * Switch to the new current process.  When we
    931 	 * run again, we'll return back here.
    932 	 */
    933 	uvmexp.swtch++;
    934 	if (newl == NULL) {
    935 		retval = cpu_switch(l, NULL);
    936 	} else {
    937 		remrunqueue(newl);
    938 		cpu_switchto(l, newl);
    939 		retval = 0;
    940 	}
    941 
    942 	/*
    943 	 * If we are using h/w performance counters, restore context.
    944 	 */
    945 #if PERFCTRS
    946 	if (PMC_ENABLED(p))
    947 		pmc_restore_context(p);
    948 #endif
    949 
    950 	/*
    951 	 * Make sure that MD code released the scheduler lock before
    952 	 * resuming us.
    953 	 */
    954 	SCHED_ASSERT_UNLOCKED();
    955 
    956 	/*
    957 	 * We're running again; record our new start time.  We might
    958 	 * be running on a new CPU now, so don't use the cache'd
    959 	 * schedstate_percpu pointer.
    960 	 */
    961 	KDASSERT(l->l_cpu != NULL);
    962 	KDASSERT(l->l_cpu == curcpu());
    963 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    964 
    965 	/*
    966 	 * Reacquire the kernel_lock now.  We do this after we've
    967 	 * released the scheduler lock to avoid deadlock, and before
    968 	 * we reacquire the interlock.
    969 	 */
    970 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
    971 
    972 	return retval;
    973 }
    974 
    975 /*
    976  * Initialize the (doubly-linked) run queues
    977  * to be empty.
    978  */
    979 void
    980 rqinit()
    981 {
    982 	int i;
    983 
    984 	for (i = 0; i < RUNQUE_NQS; i++)
    985 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    986 		    (struct lwp *)&sched_qs[i];
    987 }
    988 
    989 static __inline void
    990 resched_proc(struct lwp *l, u_char pri)
    991 {
    992 	struct cpu_info *ci;
    993 
    994 	/*
    995 	 * XXXSMP
    996 	 * Since l->l_cpu persists across a context switch,
    997 	 * this gives us *very weak* processor affinity, in
    998 	 * that we notify the CPU on which the process last
    999 	 * ran that it should try to switch.
   1000 	 *
   1001 	 * This does not guarantee that the process will run on
   1002 	 * that processor next, because another processor might
   1003 	 * grab it the next time it performs a context switch.
   1004 	 *
   1005 	 * This also does not handle the case where its last
   1006 	 * CPU is running a higher-priority process, but every
   1007 	 * other CPU is running a lower-priority process.  There
   1008 	 * are ways to handle this situation, but they're not
   1009 	 * currently very pretty, and we also need to weigh the
   1010 	 * cost of moving a process from one CPU to another.
   1011 	 *
   1012 	 * XXXSMP
   1013 	 * There is also the issue of locking the other CPU's
   1014 	 * sched state, which we currently do not do.
   1015 	 */
   1016 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1017 	if (pri < ci->ci_schedstate.spc_curpriority)
   1018 		need_resched(ci);
   1019 }
   1020 
   1021 /*
   1022  * Change process state to be runnable,
   1023  * placing it on the run queue if it is in memory,
   1024  * and awakening the swapper if it isn't in memory.
   1025  */
   1026 void
   1027 setrunnable(struct lwp *l)
   1028 {
   1029 	struct proc *p = l->l_proc;
   1030 
   1031 	SCHED_ASSERT_LOCKED();
   1032 
   1033 	switch (l->l_stat) {
   1034 	case 0:
   1035 	case LSRUN:
   1036 	case LSONPROC:
   1037 	case LSZOMB:
   1038 	case LSDEAD:
   1039 	default:
   1040 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
   1041 	case LSSTOP:
   1042 		/*
   1043 		 * If we're being traced (possibly because someone attached us
   1044 		 * while we were stopped), check for a signal from the debugger.
   1045 		 */
   1046 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1047 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1048 			CHECKSIGS(p);
   1049 		}
   1050 	case LSSLEEP:
   1051 		unsleep(l);		/* e.g. when sending signals */
   1052 		break;
   1053 
   1054 	case LSIDL:
   1055 		break;
   1056 	case LSSUSPENDED:
   1057 		break;
   1058 	}
   1059 
   1060 	if (l->l_proc->p_sa)
   1061 		sa_awaken(l);
   1062 
   1063 	l->l_stat = LSRUN;
   1064 	p->p_nrlwps++;
   1065 
   1066 	if (l->l_flag & L_INMEM)
   1067 		setrunqueue(l);
   1068 
   1069 	if (l->l_slptime > 1)
   1070 		updatepri(l);
   1071 	l->l_slptime = 0;
   1072 	if ((l->l_flag & L_INMEM) == 0)
   1073 		sched_wakeup((caddr_t)&proc0);
   1074 	else
   1075 		resched_proc(l, l->l_priority);
   1076 }
   1077 
   1078 /*
   1079  * Compute the priority of a process when running in user mode.
   1080  * Arrange to reschedule if the resulting priority is better
   1081  * than that of the current process.
   1082  */
   1083 void
   1084 resetpriority(struct lwp *l)
   1085 {
   1086 	unsigned int newpriority;
   1087 	struct proc *p = l->l_proc;
   1088 
   1089 	SCHED_ASSERT_LOCKED();
   1090 
   1091 	newpriority = PUSER + p->p_estcpu +
   1092 			NICE_WEIGHT * (p->p_nice - NZERO);
   1093 	newpriority = min(newpriority, MAXPRI);
   1094 	l->l_usrpri = newpriority;
   1095 	resched_proc(l, l->l_usrpri);
   1096 }
   1097 
   1098 /*
   1099  * Recompute priority for all LWPs in a process.
   1100  */
   1101 void
   1102 resetprocpriority(struct proc *p)
   1103 {
   1104 	struct lwp *l;
   1105 
   1106 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1107 	    resetpriority(l);
   1108 }
   1109 
   1110 /*
   1111  * We adjust the priority of the current process.  The priority of a process
   1112  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
   1113  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1114  * will compute a different value each time p_estcpu increases. This can
   1115  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1116  * queue will not change.  The CPU usage estimator ramps up quite quickly
   1117  * when the process is running (linearly), and decays away exponentially, at
   1118  * a rate which is proportionally slower when the system is busy.  The basic
   1119  * principle is that the system will 90% forget that the process used a lot
   1120  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1121  * processes which haven't run much recently, and to round-robin among other
   1122  * processes.
   1123  */
   1124 
   1125 void
   1126 schedclock(struct lwp *l)
   1127 {
   1128 	struct proc *p = l->l_proc;
   1129 	int s;
   1130 
   1131 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1132 	SCHED_LOCK(s);
   1133 	resetpriority(l);
   1134 	SCHED_UNLOCK(s);
   1135 
   1136 	if (l->l_priority >= PUSER)
   1137 		l->l_priority = l->l_usrpri;
   1138 }
   1139 
   1140 void
   1141 suspendsched()
   1142 {
   1143 	struct lwp *l;
   1144 	int s;
   1145 
   1146 	/*
   1147 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1148 	 * LSSUSPENDED.
   1149 	 */
   1150 	proclist_lock_read();
   1151 	SCHED_LOCK(s);
   1152 	LIST_FOREACH(l, &alllwp, l_list) {
   1153 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1154 			continue;
   1155 
   1156 		switch (l->l_stat) {
   1157 		case LSRUN:
   1158 			l->l_proc->p_nrlwps--;
   1159 			if ((l->l_flag & L_INMEM) != 0)
   1160 				remrunqueue(l);
   1161 			/* FALLTHROUGH */
   1162 		case LSSLEEP:
   1163 			l->l_stat = LSSUSPENDED;
   1164 			break;
   1165 		case LSONPROC:
   1166 			/*
   1167 			 * XXX SMP: we need to deal with processes on
   1168 			 * others CPU !
   1169 			 */
   1170 			break;
   1171 		default:
   1172 			break;
   1173 		}
   1174 	}
   1175 	SCHED_UNLOCK(s);
   1176 	proclist_unlock_read();
   1177 }
   1178 
   1179 /*
   1180  * Low-level routines to access the run queue.  Optimised assembler
   1181  * routines can override these.
   1182  */
   1183 
   1184 #ifndef __HAVE_MD_RUNQUEUE
   1185 
   1186 /*
   1187  * On some architectures, it's faster to use a MSB ordering for the priorites
   1188  * than the traditional LSB ordering.
   1189  */
   1190 #ifdef __HAVE_BIGENDIAN_BITOPS
   1191 #define	RQMASK(n) (0x80000000 >> (n))
   1192 #else
   1193 #define	RQMASK(n) (0x00000001 << (n))
   1194 #endif
   1195 
   1196 /*
   1197  * The primitives that manipulate the run queues.  whichqs tells which
   1198  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1199  * into queues, remrunqueue removes them from queues.  The running process is
   1200  * on no queue, other processes are on a queue related to p->p_priority,
   1201  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1202  * available queues.
   1203  */
   1204 
   1205 #ifdef RQDEBUG
   1206 static void
   1207 checkrunqueue(int whichq, struct lwp *l)
   1208 {
   1209 	const struct prochd * const rq = &sched_qs[whichq];
   1210 	struct lwp *l2;
   1211 	int found = 0;
   1212 	int die = 0;
   1213 	int empty = 1;
   1214 	for (l2 = rq->ph_link; l2 != (void*) rq; l2 = l2->l_forw) {
   1215 		if (l2->l_stat != LSRUN) {
   1216 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1217 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1218 		}
   1219 		if (l2->l_back->l_forw != l2) {
   1220 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1221 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1222 			    l2->l_back->l_forw);
   1223 			die = 1;
   1224 		}
   1225 		if (l2->l_forw->l_back != l2) {
   1226 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1227 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1228 			    l2->l_forw->l_back);
   1229 			die = 1;
   1230 		}
   1231 		if (l2 == l)
   1232 			found = 1;
   1233 		empty = 0;
   1234 	}
   1235 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1236 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1237 		    whichq, rq);
   1238 		die = 1;
   1239 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1240 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1241 		    "run-queue %p\n", whichq, rq);
   1242 		die = 1;
   1243 	}
   1244 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1245 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1246 		    whichq, l);
   1247 		die = 1;
   1248 	}
   1249 	if (l != NULL && empty) {
   1250 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1251 		    "active lwp %p\n", whichq, rq, l);
   1252 		die = 1;
   1253 	}
   1254 	if (l != NULL && !found) {
   1255 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1256 		    whichq, l, rq);
   1257 		die = 1;
   1258 	}
   1259 	if (die)
   1260 		panic("checkrunqueue: inconsistency found");
   1261 }
   1262 #endif /* RQDEBUG */
   1263 
   1264 void
   1265 setrunqueue(struct lwp *l)
   1266 {
   1267 	struct prochd *rq;
   1268 	struct lwp *prev;
   1269 	const int whichq = l->l_priority / 4;
   1270 
   1271 #ifdef RQDEBUG
   1272 	checkrunqueue(whichq, NULL);
   1273 #endif
   1274 #ifdef DIAGNOSTIC
   1275 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1276 		panic("setrunqueue");
   1277 #endif
   1278 	sched_whichqs |= RQMASK(whichq);
   1279 	rq = &sched_qs[whichq];
   1280 	prev = rq->ph_rlink;
   1281 	l->l_forw = (struct lwp *)rq;
   1282 	rq->ph_rlink = l;
   1283 	prev->l_forw = l;
   1284 	l->l_back = prev;
   1285 #ifdef RQDEBUG
   1286 	checkrunqueue(whichq, l);
   1287 #endif
   1288 }
   1289 
   1290 void
   1291 remrunqueue(struct lwp *l)
   1292 {
   1293 	struct lwp *prev, *next;
   1294 	const int whichq = l->l_priority / 4;
   1295 #ifdef RQDEBUG
   1296 	checkrunqueue(whichq, l);
   1297 #endif
   1298 #ifdef DIAGNOSTIC
   1299 	if (((sched_whichqs & RQMASK(whichq)) == 0))
   1300 		panic("remrunqueue: bit %d not set", whichq);
   1301 #endif
   1302 	prev = l->l_back;
   1303 	l->l_back = NULL;
   1304 	next = l->l_forw;
   1305 	prev->l_forw = next;
   1306 	next->l_back = prev;
   1307 	if (prev == next)
   1308 		sched_whichqs &= ~RQMASK(whichq);
   1309 #ifdef RQDEBUG
   1310 	checkrunqueue(whichq, NULL);
   1311 #endif
   1312 }
   1313 
   1314 #undef RQMASK
   1315 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1316