Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.151
      1 /*	$NetBSD: kern_synch.c,v 1.151 2005/10/06 07:02:14 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  * This code is derived from software contributed to The NetBSD Foundation
     11  * by Charles M. Hannum.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  * 3. All advertising materials mentioning features or use of this software
     22  *    must display the following acknowledgement:
     23  *	This product includes software developed by the NetBSD
     24  *	Foundation, Inc. and its contributors.
     25  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26  *    contributors may be used to endorse or promote products derived
     27  *    from this software without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39  * POSSIBILITY OF SUCH DAMAGE.
     40  */
     41 
     42 /*-
     43  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     44  *	The Regents of the University of California.  All rights reserved.
     45  * (c) UNIX System Laboratories, Inc.
     46  * All or some portions of this file are derived from material licensed
     47  * to the University of California by American Telephone and Telegraph
     48  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49  * the permission of UNIX System Laboratories, Inc.
     50  *
     51  * Redistribution and use in source and binary forms, with or without
     52  * modification, are permitted provided that the following conditions
     53  * are met:
     54  * 1. Redistributions of source code must retain the above copyright
     55  *    notice, this list of conditions and the following disclaimer.
     56  * 2. Redistributions in binary form must reproduce the above copyright
     57  *    notice, this list of conditions and the following disclaimer in the
     58  *    documentation and/or other materials provided with the distribution.
     59  * 3. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     76  */
     77 
     78 #include <sys/cdefs.h>
     79 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.151 2005/10/06 07:02:14 yamt Exp $");
     80 
     81 #include "opt_ddb.h"
     82 #include "opt_ktrace.h"
     83 #include "opt_kstack.h"
     84 #include "opt_lockdebug.h"
     85 #include "opt_multiprocessor.h"
     86 #include "opt_perfctrs.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/proc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/buf.h>
     94 #if defined(PERFCTRS)
     95 #include <sys/pmc.h>
     96 #endif
     97 #include <sys/signalvar.h>
     98 #include <sys/resourcevar.h>
     99 #include <sys/sched.h>
    100 #include <sys/sa.h>
    101 #include <sys/savar.h>
    102 
    103 #include <uvm/uvm_extern.h>
    104 
    105 #ifdef KTRACE
    106 #include <sys/ktrace.h>
    107 #endif
    108 
    109 #include <machine/cpu.h>
    110 
    111 int	lbolt;			/* once a second sleep address */
    112 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    113 
    114 /*
    115  * The global scheduler state.
    116  */
    117 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    118 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    119 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    120 
    121 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    122 
    123 void schedcpu(void *);
    124 void updatepri(struct lwp *);
    125 void endtsleep(void *);
    126 
    127 __inline void sa_awaken(struct lwp *);
    128 __inline void awaken(struct lwp *);
    129 
    130 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    131 
    132 
    133 
    134 /*
    135  * Force switch among equal priority processes every 100ms.
    136  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    137  */
    138 /* ARGSUSED */
    139 void
    140 roundrobin(struct cpu_info *ci)
    141 {
    142 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    143 
    144 	spc->spc_rrticks = rrticks;
    145 
    146 	if (curlwp != NULL) {
    147 		if (spc->spc_flags & SPCF_SEENRR) {
    148 			/*
    149 			 * The process has already been through a roundrobin
    150 			 * without switching and may be hogging the CPU.
    151 			 * Indicate that the process should yield.
    152 			 */
    153 			spc->spc_flags |= SPCF_SHOULDYIELD;
    154 		} else
    155 			spc->spc_flags |= SPCF_SEENRR;
    156 	}
    157 	need_resched(curcpu());
    158 }
    159 
    160 /*
    161  * Constants for digital decay and forget:
    162  *	90% of (p_estcpu) usage in 5 * loadav time
    163  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    164  *          Note that, as ps(1) mentions, this can let percentages
    165  *          total over 100% (I've seen 137.9% for 3 processes).
    166  *
    167  * Note that hardclock updates p_estcpu and p_cpticks independently.
    168  *
    169  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    170  * That is, the system wants to compute a value of decay such
    171  * that the following for loop:
    172  * 	for (i = 0; i < (5 * loadavg); i++)
    173  * 		p_estcpu *= decay;
    174  * will compute
    175  * 	p_estcpu *= 0.1;
    176  * for all values of loadavg:
    177  *
    178  * Mathematically this loop can be expressed by saying:
    179  * 	decay ** (5 * loadavg) ~= .1
    180  *
    181  * The system computes decay as:
    182  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    183  *
    184  * We wish to prove that the system's computation of decay
    185  * will always fulfill the equation:
    186  * 	decay ** (5 * loadavg) ~= .1
    187  *
    188  * If we compute b as:
    189  * 	b = 2 * loadavg
    190  * then
    191  * 	decay = b / (b + 1)
    192  *
    193  * We now need to prove two things:
    194  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    195  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    196  *
    197  * Facts:
    198  *         For x close to zero, exp(x) =~ 1 + x, since
    199  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    200  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    201  *         For x close to zero, ln(1+x) =~ x, since
    202  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    203  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    204  *         ln(.1) =~ -2.30
    205  *
    206  * Proof of (1):
    207  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    208  *	solving for factor,
    209  *      ln(factor) =~ (-2.30/5*loadav), or
    210  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    211  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    212  *
    213  * Proof of (2):
    214  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    215  *	solving for power,
    216  *      power*ln(b/(b+1)) =~ -2.30, or
    217  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    218  *
    219  * Actual power values for the implemented algorithm are as follows:
    220  *      loadav: 1       2       3       4
    221  *      power:  5.68    10.32   14.94   19.55
    222  */
    223 
    224 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    225 #define	loadfactor(loadav)	(2 * (loadav))
    226 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
    227 
    228 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    229 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    230 
    231 /*
    232  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    233  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    234  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    235  *
    236  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    237  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    238  *
    239  * If you dont want to bother with the faster/more-accurate formula, you
    240  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    241  * (more general) method of calculating the %age of CPU used by a process.
    242  */
    243 #define	CCPU_SHIFT	11
    244 
    245 /*
    246  * Recompute process priorities, every hz ticks.
    247  */
    248 /* ARGSUSED */
    249 void
    250 schedcpu(void *arg)
    251 {
    252 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    253 	struct lwp *l;
    254 	struct proc *p;
    255 	int s, minslp;
    256 	unsigned int newcpu;
    257 	int clkhz;
    258 
    259 	proclist_lock_read();
    260 	PROCLIST_FOREACH(p, &allproc) {
    261 		/*
    262 		 * Increment time in/out of memory and sleep time
    263 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    264 		 * (remember them?) overflow takes 45 days.
    265 		 */
    266 		minslp = 2;
    267 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    268 			l->l_swtime++;
    269 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    270 			    l->l_stat == LSSUSPENDED) {
    271 				l->l_slptime++;
    272 				minslp = min(minslp, l->l_slptime);
    273 			} else
    274 				minslp = 0;
    275 		}
    276 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    277 		/*
    278 		 * If the process has slept the entire second,
    279 		 * stop recalculating its priority until it wakes up.
    280 		 */
    281 		if (minslp > 1)
    282 			continue;
    283 		s = splstatclock();	/* prevent state changes */
    284 		/*
    285 		 * p_pctcpu is only for ps.
    286 		 */
    287 		clkhz = stathz != 0 ? stathz : hz;
    288 #if	(FSHIFT >= CCPU_SHIFT)
    289 		p->p_pctcpu += (clkhz == 100)?
    290 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    291                 	100 * (((fixpt_t) p->p_cpticks)
    292 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    293 #else
    294 		p->p_pctcpu += ((FSCALE - ccpu) *
    295 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    296 #endif
    297 		p->p_cpticks = 0;
    298 		newcpu = (u_int)decay_cpu(loadfac, p->p_estcpu);
    299 		p->p_estcpu = newcpu;
    300 		splx(s);	/* Done with the process CPU ticks update */
    301 		SCHED_LOCK(s);
    302 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    303 			if (l->l_slptime > 1)
    304 				continue;
    305 			resetpriority(l);
    306 			if (l->l_priority >= PUSER) {
    307 				if (l->l_stat == LSRUN &&
    308 				    (l->l_flag & L_INMEM) &&
    309 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    310 					remrunqueue(l);
    311 					l->l_priority = l->l_usrpri;
    312 					setrunqueue(l);
    313 				} else
    314 					l->l_priority = l->l_usrpri;
    315 			}
    316 		}
    317 		SCHED_UNLOCK(s);
    318 	}
    319 	proclist_unlock_read();
    320 	uvm_meter();
    321 	wakeup((caddr_t)&lbolt);
    322 	callout_schedule(&schedcpu_ch, hz);
    323 }
    324 
    325 /*
    326  * Recalculate the priority of a process after it has slept for a while.
    327  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    328  * least six times the loadfactor will decay p_estcpu to zero.
    329  */
    330 void
    331 updatepri(struct lwp *l)
    332 {
    333 	struct proc *p = l->l_proc;
    334 	unsigned int newcpu;
    335 	fixpt_t loadfac;
    336 
    337 	SCHED_ASSERT_LOCKED();
    338 
    339 	newcpu = p->p_estcpu;
    340 	loadfac = loadfactor(averunnable.ldavg[0]);
    341 
    342 	if (l->l_slptime > 5 * loadfac)
    343 		p->p_estcpu = 0; /* XXX NJWLWP */
    344 	else {
    345 		l->l_slptime--;	/* the first time was done in schedcpu */
    346 		while (newcpu && --l->l_slptime)
    347 			newcpu = (int) decay_cpu(loadfac, newcpu);
    348 		p->p_estcpu = newcpu;
    349 	}
    350 	resetpriority(l);
    351 }
    352 
    353 /*
    354  * During autoconfiguration or after a panic, a sleep will simply
    355  * lower the priority briefly to allow interrupts, then return.
    356  * The priority to be used (safepri) is machine-dependent, thus this
    357  * value is initialized and maintained in the machine-dependent layers.
    358  * This priority will typically be 0, or the lowest priority
    359  * that is safe for use on the interrupt stack; it can be made
    360  * higher to block network software interrupts after panics.
    361  */
    362 int safepri;
    363 
    364 /*
    365  * General sleep call.  Suspends the current process until a wakeup is
    366  * performed on the specified identifier.  The process will then be made
    367  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    368  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    369  * before and after sleeping, else signals are not checked.  Returns 0 if
    370  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    371  * signal needs to be delivered, ERESTART is returned if the current system
    372  * call should be restarted if possible, and EINTR is returned if the system
    373  * call should be interrupted by the signal (return EINTR).
    374  *
    375  * The interlock is held until the scheduler_slock is acquired.  The
    376  * interlock will be locked before returning back to the caller
    377  * unless the PNORELOCK flag is specified, in which case the
    378  * interlock will always be unlocked upon return.
    379  */
    380 int
    381 ltsleep(__volatile const void *ident, int priority, const char *wmesg, int timo,
    382     __volatile struct simplelock *interlock)
    383 {
    384 	struct lwp *l = curlwp;
    385 	struct proc *p = l ? l->l_proc : NULL;
    386 	struct slpque *qp;
    387 	struct sadata_upcall *sau;
    388 	int sig, s;
    389 	int catch = priority & PCATCH;
    390 	int relock = (priority & PNORELOCK) == 0;
    391 	int exiterr = (priority & PNOEXITERR) == 0;
    392 
    393 	/*
    394 	 * XXXSMP
    395 	 * This is probably bogus.  Figure out what the right
    396 	 * thing to do here really is.
    397 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    398 	 * in the shutdown case is disgusting but partly necessary given
    399 	 * how shutdown (barely) works.
    400 	 */
    401 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    402 		/*
    403 		 * After a panic, or during autoconfiguration,
    404 		 * just give interrupts a chance, then just return;
    405 		 * don't run any other procs or panic below,
    406 		 * in case this is the idle process and already asleep.
    407 		 */
    408 		s = splhigh();
    409 		splx(safepri);
    410 		splx(s);
    411 		if (interlock != NULL && relock == 0)
    412 			simple_unlock(interlock);
    413 		return (0);
    414 	}
    415 
    416 	KASSERT(p != NULL);
    417 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    418 
    419 #ifdef KTRACE
    420 	if (KTRPOINT(p, KTR_CSW))
    421 		ktrcsw(p, 1, 0);
    422 #endif
    423 
    424 	/*
    425 	 * XXX We need to allocate the sadata_upcall structure here,
    426 	 * XXX since we can't sleep while waiting for memory inside
    427 	 * XXX sa_upcall().  It would be nice if we could safely
    428 	 * XXX allocate the sadata_upcall structure on the stack, here.
    429 	 */
    430 	if (l->l_flag & L_SA) {
    431 		sau = sadata_upcall_alloc(0);
    432 	} else {
    433 		sau = NULL;
    434 	}
    435 
    436 	SCHED_LOCK(s);
    437 
    438 #ifdef DIAGNOSTIC
    439 	if (ident == NULL)
    440 		panic("ltsleep: ident == NULL");
    441 	if (l->l_stat != LSONPROC)
    442 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    443 	if (l->l_back != NULL)
    444 		panic("ltsleep: p_back != NULL");
    445 #endif
    446 
    447 	l->l_wchan = ident;
    448 	l->l_wmesg = wmesg;
    449 	l->l_slptime = 0;
    450 	l->l_priority = priority & PRIMASK;
    451 
    452 	qp = SLPQUE(ident);
    453 	if (qp->sq_head == 0)
    454 		qp->sq_head = l;
    455 	else {
    456 		*qp->sq_tailp = l;
    457 	}
    458 	*(qp->sq_tailp = &l->l_forw) = 0;
    459 
    460 	if (timo)
    461 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    462 
    463 	/*
    464 	 * We can now release the interlock; the scheduler_slock
    465 	 * is held, so a thread can't get in to do wakeup() before
    466 	 * we do the switch.
    467 	 *
    468 	 * XXX We leave the code block here, after inserting ourselves
    469 	 * on the sleep queue, because we might want a more clever
    470 	 * data structure for the sleep queues at some point.
    471 	 */
    472 	if (interlock != NULL)
    473 		simple_unlock(interlock);
    474 
    475 	/*
    476 	 * We put ourselves on the sleep queue and start our timeout
    477 	 * before calling CURSIG, as we could stop there, and a wakeup
    478 	 * or a SIGCONT (or both) could occur while we were stopped.
    479 	 * A SIGCONT would cause us to be marked as SSLEEP
    480 	 * without resuming us, thus we must be ready for sleep
    481 	 * when CURSIG is called.  If the wakeup happens while we're
    482 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    483 	 */
    484 	if (catch) {
    485 		l->l_flag |= L_SINTR;
    486 		if (((sig = CURSIG(l)) != 0) ||
    487 		    ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
    488 			if (l->l_wchan != NULL)
    489 				unsleep(l);
    490 			l->l_stat = LSONPROC;
    491 			SCHED_UNLOCK(s);
    492 			goto resume;
    493 		}
    494 		if (l->l_wchan == NULL) {
    495 			catch = 0;
    496 			SCHED_UNLOCK(s);
    497 			goto resume;
    498 		}
    499 	} else
    500 		sig = 0;
    501 	l->l_stat = LSSLEEP;
    502 	p->p_nrlwps--;
    503 	p->p_stats->p_ru.ru_nvcsw++;
    504 	SCHED_ASSERT_LOCKED();
    505 	if (l->l_flag & L_SA)
    506 		sa_switch(l, sau, SA_UPCALL_BLOCKED);
    507 	else
    508 		mi_switch(l, NULL);
    509 
    510 #if	defined(DDB) && !defined(GPROF)
    511 	/* handy breakpoint location after process "wakes" */
    512 	__asm(".globl bpendtsleep\nbpendtsleep:");
    513 #endif
    514 	/*
    515 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    516 	 * either setrunnable() or awaken().
    517 	 */
    518 
    519 	SCHED_ASSERT_UNLOCKED();
    520 	splx(s);
    521 
    522  resume:
    523 	KDASSERT(l->l_cpu != NULL);
    524 	KDASSERT(l->l_cpu == curcpu());
    525 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    526 
    527 	l->l_flag &= ~L_SINTR;
    528 	if (l->l_flag & L_TIMEOUT) {
    529 		l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
    530 		if (sig == 0) {
    531 #ifdef KTRACE
    532 			if (KTRPOINT(p, KTR_CSW))
    533 				ktrcsw(p, 0, 0);
    534 #endif
    535 			if (relock && interlock != NULL)
    536 				simple_lock(interlock);
    537 			return (EWOULDBLOCK);
    538 		}
    539 	} else if (timo)
    540 		callout_stop(&l->l_tsleep_ch);
    541 
    542 	if (catch) {
    543 		const int cancelled = l->l_flag & L_CANCELLED;
    544 		l->l_flag &= ~L_CANCELLED;
    545 		if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
    546 #ifdef KTRACE
    547 			if (KTRPOINT(p, KTR_CSW))
    548 				ktrcsw(p, 0, 0);
    549 #endif
    550 			if (relock && interlock != NULL)
    551 				simple_lock(interlock);
    552 			/*
    553 			 * If this sleep was canceled, don't let the syscall
    554 			 * restart.
    555 			 */
    556 			if (cancelled ||
    557 			    (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    558 				return (EINTR);
    559 			return (ERESTART);
    560 		}
    561 	}
    562 
    563 #ifdef KTRACE
    564 	if (KTRPOINT(p, KTR_CSW))
    565 		ktrcsw(p, 0, 0);
    566 #endif
    567 	if (relock && interlock != NULL)
    568 		simple_lock(interlock);
    569 
    570 	/* XXXNJW this is very much a kluge.
    571 	 * revisit. a better way of preventing looping/hanging syscalls like
    572 	 * wait4() and _lwp_wait() from wedging an exiting process
    573 	 * would be preferred.
    574 	 */
    575 	if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
    576 		return (EINTR);
    577 	return (0);
    578 }
    579 
    580 /*
    581  * Implement timeout for tsleep.
    582  * If process hasn't been awakened (wchan non-zero),
    583  * set timeout flag and undo the sleep.  If proc
    584  * is stopped, just unsleep so it will remain stopped.
    585  */
    586 void
    587 endtsleep(void *arg)
    588 {
    589 	struct lwp *l;
    590 	int s;
    591 
    592 	l = (struct lwp *)arg;
    593 	SCHED_LOCK(s);
    594 	if (l->l_wchan) {
    595 		if (l->l_stat == LSSLEEP)
    596 			setrunnable(l);
    597 		else
    598 			unsleep(l);
    599 		l->l_flag |= L_TIMEOUT;
    600 	}
    601 	SCHED_UNLOCK(s);
    602 }
    603 
    604 /*
    605  * Remove a process from its wait queue
    606  */
    607 void
    608 unsleep(struct lwp *l)
    609 {
    610 	struct slpque *qp;
    611 	struct lwp **hp;
    612 
    613 	SCHED_ASSERT_LOCKED();
    614 
    615 	if (l->l_wchan) {
    616 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    617 		while (*hp != l)
    618 			hp = &(*hp)->l_forw;
    619 		*hp = l->l_forw;
    620 		if (qp->sq_tailp == &l->l_forw)
    621 			qp->sq_tailp = hp;
    622 		l->l_wchan = 0;
    623 	}
    624 }
    625 
    626 __inline void
    627 sa_awaken(struct lwp *l)
    628 {
    629 
    630 	SCHED_ASSERT_LOCKED();
    631 
    632 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    633 		l->l_flag &= ~L_SA_IDLE;
    634 }
    635 
    636 /*
    637  * Optimized-for-wakeup() version of setrunnable().
    638  */
    639 __inline void
    640 awaken(struct lwp *l)
    641 {
    642 
    643 	SCHED_ASSERT_LOCKED();
    644 
    645 	if (l->l_proc->p_sa)
    646 		sa_awaken(l);
    647 
    648 	if (l->l_slptime > 1)
    649 		updatepri(l);
    650 	l->l_slptime = 0;
    651 	l->l_stat = LSRUN;
    652 	l->l_proc->p_nrlwps++;
    653 	/*
    654 	 * Since curpriority is a user priority, p->p_priority
    655 	 * is always better than curpriority on the last CPU on
    656 	 * which it ran.
    657 	 *
    658 	 * XXXSMP See affinity comment in resched_proc().
    659 	 */
    660 	if (l->l_flag & L_INMEM) {
    661 		setrunqueue(l);
    662 		KASSERT(l->l_cpu != NULL);
    663 		need_resched(l->l_cpu);
    664 	} else
    665 		sched_wakeup(&proc0);
    666 }
    667 
    668 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    669 void
    670 sched_unlock_idle(void)
    671 {
    672 
    673 	simple_unlock(&sched_lock);
    674 }
    675 
    676 void
    677 sched_lock_idle(void)
    678 {
    679 
    680 	simple_lock(&sched_lock);
    681 }
    682 #endif /* MULTIPROCESSOR || LOCKDEBUG */
    683 
    684 /*
    685  * Make all processes sleeping on the specified identifier runnable.
    686  */
    687 
    688 void
    689 wakeup(__volatile const void *ident)
    690 {
    691 	int s;
    692 
    693 	SCHED_ASSERT_UNLOCKED();
    694 
    695 	SCHED_LOCK(s);
    696 	sched_wakeup(ident);
    697 	SCHED_UNLOCK(s);
    698 }
    699 
    700 void
    701 sched_wakeup(__volatile const void *ident)
    702 {
    703 	struct slpque *qp;
    704 	struct lwp *l, **q;
    705 
    706 	SCHED_ASSERT_LOCKED();
    707 
    708 	qp = SLPQUE(ident);
    709  restart:
    710 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    711 #ifdef DIAGNOSTIC
    712 		if (l->l_back || (l->l_stat != LSSLEEP &&
    713 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    714 			panic("wakeup");
    715 #endif
    716 		if (l->l_wchan == ident) {
    717 			l->l_wchan = 0;
    718 			*q = l->l_forw;
    719 			if (qp->sq_tailp == &l->l_forw)
    720 				qp->sq_tailp = q;
    721 			if (l->l_stat == LSSLEEP) {
    722 				awaken(l);
    723 				goto restart;
    724 			}
    725 		} else
    726 			q = &l->l_forw;
    727 	}
    728 }
    729 
    730 /*
    731  * Make the highest priority process first in line on the specified
    732  * identifier runnable.
    733  */
    734 void
    735 wakeup_one(__volatile const void *ident)
    736 {
    737 	struct slpque *qp;
    738 	struct lwp *l, **q;
    739 	struct lwp *best_sleepp, **best_sleepq;
    740 	struct lwp *best_stopp, **best_stopq;
    741 	int s;
    742 
    743 	best_sleepp = best_stopp = NULL;
    744 	best_sleepq = best_stopq = NULL;
    745 
    746 	SCHED_LOCK(s);
    747 
    748 	qp = SLPQUE(ident);
    749 
    750 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    751 #ifdef DIAGNOSTIC
    752 		if (l->l_back || (l->l_stat != LSSLEEP &&
    753 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    754 			panic("wakeup_one");
    755 #endif
    756 		if (l->l_wchan == ident) {
    757 			if (l->l_stat == LSSLEEP) {
    758 				if (best_sleepp == NULL ||
    759 				    l->l_priority < best_sleepp->l_priority) {
    760 					best_sleepp = l;
    761 					best_sleepq = q;
    762 				}
    763 			} else {
    764 				if (best_stopp == NULL ||
    765 				    l->l_priority < best_stopp->l_priority) {
    766 				    	best_stopp = l;
    767 					best_stopq = q;
    768 				}
    769 			}
    770 		}
    771 	}
    772 
    773 	/*
    774 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    775 	 * process.
    776 	 */
    777 	if (best_sleepp != NULL) {
    778 		l = best_sleepp;
    779 		q = best_sleepq;
    780 	} else {
    781 		l = best_stopp;
    782 		q = best_stopq;
    783 	}
    784 
    785 	if (l != NULL) {
    786 		l->l_wchan = NULL;
    787 		*q = l->l_forw;
    788 		if (qp->sq_tailp == &l->l_forw)
    789 			qp->sq_tailp = q;
    790 		if (l->l_stat == LSSLEEP)
    791 			awaken(l);
    792 	}
    793 	SCHED_UNLOCK(s);
    794 }
    795 
    796 /*
    797  * General yield call.  Puts the current process back on its run queue and
    798  * performs a voluntary context switch.  Should only be called when the
    799  * current process explicitly requests it (eg sched_yield(2) in compat code).
    800  */
    801 void
    802 yield(void)
    803 {
    804 	struct lwp *l = curlwp;
    805 	int s;
    806 
    807 	SCHED_LOCK(s);
    808 	l->l_priority = l->l_usrpri;
    809 	l->l_stat = LSRUN;
    810 	setrunqueue(l);
    811 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    812 	mi_switch(l, NULL);
    813 	SCHED_ASSERT_UNLOCKED();
    814 	splx(s);
    815 }
    816 
    817 /*
    818  * General preemption call.  Puts the current process back on its run queue
    819  * and performs an involuntary context switch.  If a process is supplied,
    820  * we switch to that process.  Otherwise, we use the normal process selection
    821  * criteria.
    822  */
    823 
    824 void
    825 preempt(int more)
    826 {
    827 	struct lwp *l = curlwp;
    828 	int r, s;
    829 
    830 	SCHED_LOCK(s);
    831 	l->l_priority = l->l_usrpri;
    832 	l->l_stat = LSRUN;
    833 	setrunqueue(l);
    834 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
    835 	r = mi_switch(l, NULL);
    836 	SCHED_ASSERT_UNLOCKED();
    837 	splx(s);
    838 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    839 		sa_preempt(l);
    840 }
    841 
    842 /*
    843  * The machine independent parts of context switch.
    844  * Must be called at splsched() (no higher!) and with
    845  * the sched_lock held.
    846  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    847  * the next lwp.
    848  *
    849  * Returns 1 if another process was actually run.
    850  */
    851 int
    852 mi_switch(struct lwp *l, struct lwp *newl)
    853 {
    854 	struct schedstate_percpu *spc;
    855 	struct rlimit *rlim;
    856 	long s, u;
    857 	struct timeval tv;
    858 	int hold_count;
    859 	struct proc *p = l->l_proc;
    860 	int retval;
    861 
    862 	SCHED_ASSERT_LOCKED();
    863 
    864 	/*
    865 	 * Release the kernel_lock, as we are about to yield the CPU.
    866 	 * The scheduler lock is still held until cpu_switch()
    867 	 * selects a new process and removes it from the run queue.
    868 	 */
    869 	hold_count = KERNEL_LOCK_RELEASE_ALL();
    870 
    871 	KDASSERT(l->l_cpu != NULL);
    872 	KDASSERT(l->l_cpu == curcpu());
    873 
    874 	spc = &l->l_cpu->ci_schedstate;
    875 
    876 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    877 	spinlock_switchcheck();
    878 #endif
    879 #ifdef LOCKDEBUG
    880 	simple_lock_switchcheck();
    881 #endif
    882 
    883 	/*
    884 	 * Compute the amount of time during which the current
    885 	 * process was running.
    886 	 */
    887 	microtime(&tv);
    888 	u = p->p_rtime.tv_usec +
    889 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    890 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    891 	if (u < 0) {
    892 		u += 1000000;
    893 		s--;
    894 	} else if (u >= 1000000) {
    895 		u -= 1000000;
    896 		s++;
    897 	}
    898 	p->p_rtime.tv_usec = u;
    899 	p->p_rtime.tv_sec = s;
    900 
    901 	/*
    902 	 * Check if the process exceeds its CPU resource allocation.
    903 	 * If over max, kill it.  In any case, if it has run for more
    904 	 * than 10 minutes, reduce priority to give others a chance.
    905 	 */
    906 	rlim = &p->p_rlimit[RLIMIT_CPU];
    907 	if (s >= rlim->rlim_cur) {
    908 		/*
    909 		 * XXXSMP: we're inside the scheduler lock perimeter;
    910 		 * use sched_psignal.
    911 		 */
    912 		if (s >= rlim->rlim_max)
    913 			sched_psignal(p, SIGKILL);
    914 		else {
    915 			sched_psignal(p, SIGXCPU);
    916 			if (rlim->rlim_cur < rlim->rlim_max)
    917 				rlim->rlim_cur += 5;
    918 		}
    919 	}
    920 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    921 	    p->p_nice == NZERO) {
    922 		p->p_nice = autoniceval + NZERO;
    923 		resetpriority(l);
    924 	}
    925 
    926 	/*
    927 	 * Process is about to yield the CPU; clear the appropriate
    928 	 * scheduling flags.
    929 	 */
    930 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    931 
    932 #ifdef KSTACK_CHECK_MAGIC
    933 	kstack_check_magic(l);
    934 #endif
    935 
    936 	/*
    937 	 * If we are using h/w performance counters, save context.
    938 	 */
    939 #if PERFCTRS
    940 	if (PMC_ENABLED(p))
    941 		pmc_save_context(p);
    942 #endif
    943 
    944 	/*
    945 	 * Switch to the new current process.  When we
    946 	 * run again, we'll return back here.
    947 	 */
    948 	uvmexp.swtch++;
    949 	if (newl == NULL) {
    950 		retval = cpu_switch(l, NULL);
    951 	} else {
    952 		remrunqueue(newl);
    953 		cpu_switchto(l, newl);
    954 		retval = 0;
    955 	}
    956 
    957 	/*
    958 	 * If we are using h/w performance counters, restore context.
    959 	 */
    960 #if PERFCTRS
    961 	if (PMC_ENABLED(p))
    962 		pmc_restore_context(p);
    963 #endif
    964 
    965 	/*
    966 	 * Make sure that MD code released the scheduler lock before
    967 	 * resuming us.
    968 	 */
    969 	SCHED_ASSERT_UNLOCKED();
    970 
    971 	/*
    972 	 * We're running again; record our new start time.  We might
    973 	 * be running on a new CPU now, so don't use the cache'd
    974 	 * schedstate_percpu pointer.
    975 	 */
    976 	KDASSERT(l->l_cpu != NULL);
    977 	KDASSERT(l->l_cpu == curcpu());
    978 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    979 
    980 	/*
    981 	 * Reacquire the kernel_lock now.  We do this after we've
    982 	 * released the scheduler lock to avoid deadlock, and before
    983 	 * we reacquire the interlock.
    984 	 */
    985 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
    986 
    987 	return retval;
    988 }
    989 
    990 /*
    991  * Initialize the (doubly-linked) run queues
    992  * to be empty.
    993  */
    994 void
    995 rqinit()
    996 {
    997 	int i;
    998 
    999 	for (i = 0; i < RUNQUE_NQS; i++)
   1000 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
   1001 		    (struct lwp *)&sched_qs[i];
   1002 }
   1003 
   1004 static __inline void
   1005 resched_proc(struct lwp *l, u_char pri)
   1006 {
   1007 	struct cpu_info *ci;
   1008 
   1009 	/*
   1010 	 * XXXSMP
   1011 	 * Since l->l_cpu persists across a context switch,
   1012 	 * this gives us *very weak* processor affinity, in
   1013 	 * that we notify the CPU on which the process last
   1014 	 * ran that it should try to switch.
   1015 	 *
   1016 	 * This does not guarantee that the process will run on
   1017 	 * that processor next, because another processor might
   1018 	 * grab it the next time it performs a context switch.
   1019 	 *
   1020 	 * This also does not handle the case where its last
   1021 	 * CPU is running a higher-priority process, but every
   1022 	 * other CPU is running a lower-priority process.  There
   1023 	 * are ways to handle this situation, but they're not
   1024 	 * currently very pretty, and we also need to weigh the
   1025 	 * cost of moving a process from one CPU to another.
   1026 	 *
   1027 	 * XXXSMP
   1028 	 * There is also the issue of locking the other CPU's
   1029 	 * sched state, which we currently do not do.
   1030 	 */
   1031 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1032 	if (pri < ci->ci_schedstate.spc_curpriority)
   1033 		need_resched(ci);
   1034 }
   1035 
   1036 /*
   1037  * Change process state to be runnable,
   1038  * placing it on the run queue if it is in memory,
   1039  * and awakening the swapper if it isn't in memory.
   1040  */
   1041 void
   1042 setrunnable(struct lwp *l)
   1043 {
   1044 	struct proc *p = l->l_proc;
   1045 
   1046 	SCHED_ASSERT_LOCKED();
   1047 
   1048 	switch (l->l_stat) {
   1049 	case 0:
   1050 	case LSRUN:
   1051 	case LSONPROC:
   1052 	case LSZOMB:
   1053 	case LSDEAD:
   1054 	default:
   1055 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
   1056 	case LSSTOP:
   1057 		/*
   1058 		 * If we're being traced (possibly because someone attached us
   1059 		 * while we were stopped), check for a signal from the debugger.
   1060 		 */
   1061 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1062 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1063 			CHECKSIGS(p);
   1064 		}
   1065 	case LSSLEEP:
   1066 		unsleep(l);		/* e.g. when sending signals */
   1067 		break;
   1068 
   1069 	case LSIDL:
   1070 		break;
   1071 	case LSSUSPENDED:
   1072 		break;
   1073 	}
   1074 
   1075 	if (l->l_proc->p_sa)
   1076 		sa_awaken(l);
   1077 
   1078 	l->l_stat = LSRUN;
   1079 	p->p_nrlwps++;
   1080 
   1081 	if (l->l_flag & L_INMEM)
   1082 		setrunqueue(l);
   1083 
   1084 	if (l->l_slptime > 1)
   1085 		updatepri(l);
   1086 	l->l_slptime = 0;
   1087 	if ((l->l_flag & L_INMEM) == 0)
   1088 		sched_wakeup((caddr_t)&proc0);
   1089 	else
   1090 		resched_proc(l, l->l_priority);
   1091 }
   1092 
   1093 /*
   1094  * Compute the priority of a process when running in user mode.
   1095  * Arrange to reschedule if the resulting priority is better
   1096  * than that of the current process.
   1097  */
   1098 void
   1099 resetpriority(struct lwp *l)
   1100 {
   1101 	unsigned int newpriority;
   1102 	struct proc *p = l->l_proc;
   1103 
   1104 	SCHED_ASSERT_LOCKED();
   1105 
   1106 	newpriority = PUSER + p->p_estcpu +
   1107 			NICE_WEIGHT * (p->p_nice - NZERO);
   1108 	newpriority = min(newpriority, MAXPRI);
   1109 	l->l_usrpri = newpriority;
   1110 	resched_proc(l, l->l_usrpri);
   1111 }
   1112 
   1113 /*
   1114  * Recompute priority for all LWPs in a process.
   1115  */
   1116 void
   1117 resetprocpriority(struct proc *p)
   1118 {
   1119 	struct lwp *l;
   1120 
   1121 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1122 	    resetpriority(l);
   1123 }
   1124 
   1125 /*
   1126  * We adjust the priority of the current process.  The priority of a process
   1127  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
   1128  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1129  * will compute a different value each time p_estcpu increases. This can
   1130  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1131  * queue will not change.  The CPU usage estimator ramps up quite quickly
   1132  * when the process is running (linearly), and decays away exponentially, at
   1133  * a rate which is proportionally slower when the system is busy.  The basic
   1134  * principle is that the system will 90% forget that the process used a lot
   1135  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1136  * processes which haven't run much recently, and to round-robin among other
   1137  * processes.
   1138  */
   1139 
   1140 void
   1141 schedclock(struct lwp *l)
   1142 {
   1143 	struct proc *p = l->l_proc;
   1144 	int s;
   1145 
   1146 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
   1147 	SCHED_LOCK(s);
   1148 	resetpriority(l);
   1149 	SCHED_UNLOCK(s);
   1150 
   1151 	if (l->l_priority >= PUSER)
   1152 		l->l_priority = l->l_usrpri;
   1153 }
   1154 
   1155 void
   1156 suspendsched()
   1157 {
   1158 	struct lwp *l;
   1159 	int s;
   1160 
   1161 	/*
   1162 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1163 	 * LSSUSPENDED.
   1164 	 */
   1165 	proclist_lock_read();
   1166 	SCHED_LOCK(s);
   1167 	LIST_FOREACH(l, &alllwp, l_list) {
   1168 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1169 			continue;
   1170 
   1171 		switch (l->l_stat) {
   1172 		case LSRUN:
   1173 			l->l_proc->p_nrlwps--;
   1174 			if ((l->l_flag & L_INMEM) != 0)
   1175 				remrunqueue(l);
   1176 			/* FALLTHROUGH */
   1177 		case LSSLEEP:
   1178 			l->l_stat = LSSUSPENDED;
   1179 			break;
   1180 		case LSONPROC:
   1181 			/*
   1182 			 * XXX SMP: we need to deal with processes on
   1183 			 * others CPU !
   1184 			 */
   1185 			break;
   1186 		default:
   1187 			break;
   1188 		}
   1189 	}
   1190 	SCHED_UNLOCK(s);
   1191 	proclist_unlock_read();
   1192 }
   1193 
   1194 /*
   1195  * scheduler_fork_hook:
   1196  *
   1197  *	Inherit the parent's scheduler history.
   1198  */
   1199 void
   1200 scheduler_fork_hook(struct proc *parent, struct proc *child)
   1201 {
   1202 
   1203 	child->p_estcpu = parent->p_estcpu;
   1204 }
   1205 
   1206 /*
   1207  * scheduler_wait_hook:
   1208  *
   1209  *	Chargeback parents for the sins of their children.
   1210  */
   1211 void
   1212 scheduler_wait_hook(struct proc *parent, struct proc *child)
   1213 {
   1214 
   1215 	/* XXX Only if parent != init?? */
   1216 	parent->p_estcpu = ESTCPULIM(parent->p_estcpu + child->p_estcpu);
   1217 }
   1218 
   1219 /*
   1220  * Low-level routines to access the run queue.  Optimised assembler
   1221  * routines can override these.
   1222  */
   1223 
   1224 #ifndef __HAVE_MD_RUNQUEUE
   1225 
   1226 /*
   1227  * On some architectures, it's faster to use a MSB ordering for the priorites
   1228  * than the traditional LSB ordering.
   1229  */
   1230 #ifdef __HAVE_BIGENDIAN_BITOPS
   1231 #define	RQMASK(n) (0x80000000 >> (n))
   1232 #else
   1233 #define	RQMASK(n) (0x00000001 << (n))
   1234 #endif
   1235 
   1236 /*
   1237  * The primitives that manipulate the run queues.  whichqs tells which
   1238  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1239  * into queues, remrunqueue removes them from queues.  The running process is
   1240  * on no queue, other processes are on a queue related to p->p_priority,
   1241  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1242  * available queues.
   1243  */
   1244 
   1245 #ifdef RQDEBUG
   1246 static void
   1247 checkrunqueue(int whichq, struct lwp *l)
   1248 {
   1249 	const struct prochd * const rq = &sched_qs[whichq];
   1250 	struct lwp *l2;
   1251 	int found = 0;
   1252 	int die = 0;
   1253 	int empty = 1;
   1254 	for (l2 = rq->ph_link; l2 != (void*) rq; l2 = l2->l_forw) {
   1255 		if (l2->l_stat != LSRUN) {
   1256 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1257 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1258 		}
   1259 		if (l2->l_back->l_forw != l2) {
   1260 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1261 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1262 			    l2->l_back->l_forw);
   1263 			die = 1;
   1264 		}
   1265 		if (l2->l_forw->l_back != l2) {
   1266 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1267 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1268 			    l2->l_forw->l_back);
   1269 			die = 1;
   1270 		}
   1271 		if (l2 == l)
   1272 			found = 1;
   1273 		empty = 0;
   1274 	}
   1275 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1276 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1277 		    whichq, rq);
   1278 		die = 1;
   1279 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1280 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1281 		    "run-queue %p\n", whichq, rq);
   1282 		die = 1;
   1283 	}
   1284 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1285 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1286 		    whichq, l);
   1287 		die = 1;
   1288 	}
   1289 	if (l != NULL && empty) {
   1290 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1291 		    "active lwp %p\n", whichq, rq, l);
   1292 		die = 1;
   1293 	}
   1294 	if (l != NULL && !found) {
   1295 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1296 		    whichq, l, rq);
   1297 		die = 1;
   1298 	}
   1299 	if (die)
   1300 		panic("checkrunqueue: inconsistency found");
   1301 }
   1302 #endif /* RQDEBUG */
   1303 
   1304 void
   1305 setrunqueue(struct lwp *l)
   1306 {
   1307 	struct prochd *rq;
   1308 	struct lwp *prev;
   1309 	const int whichq = l->l_priority / 4;
   1310 
   1311 #ifdef RQDEBUG
   1312 	checkrunqueue(whichq, NULL);
   1313 #endif
   1314 #ifdef DIAGNOSTIC
   1315 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1316 		panic("setrunqueue");
   1317 #endif
   1318 	sched_whichqs |= RQMASK(whichq);
   1319 	rq = &sched_qs[whichq];
   1320 	prev = rq->ph_rlink;
   1321 	l->l_forw = (struct lwp *)rq;
   1322 	rq->ph_rlink = l;
   1323 	prev->l_forw = l;
   1324 	l->l_back = prev;
   1325 #ifdef RQDEBUG
   1326 	checkrunqueue(whichq, l);
   1327 #endif
   1328 }
   1329 
   1330 void
   1331 remrunqueue(struct lwp *l)
   1332 {
   1333 	struct lwp *prev, *next;
   1334 	const int whichq = l->l_priority / 4;
   1335 #ifdef RQDEBUG
   1336 	checkrunqueue(whichq, l);
   1337 #endif
   1338 #ifdef DIAGNOSTIC
   1339 	if (((sched_whichqs & RQMASK(whichq)) == 0))
   1340 		panic("remrunqueue: bit %d not set", whichq);
   1341 #endif
   1342 	prev = l->l_back;
   1343 	l->l_back = NULL;
   1344 	next = l->l_forw;
   1345 	prev->l_forw = next;
   1346 	next->l_back = prev;
   1347 	if (prev == next)
   1348 		sched_whichqs &= ~RQMASK(whichq);
   1349 #ifdef RQDEBUG
   1350 	checkrunqueue(whichq, NULL);
   1351 #endif
   1352 }
   1353 
   1354 #undef RQMASK
   1355 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1356