Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.153
      1 /*	$NetBSD: kern_synch.c,v 1.153 2005/11/01 09:07:53 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  * This code is derived from software contributed to The NetBSD Foundation
     11  * by Charles M. Hannum.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  * 3. All advertising materials mentioning features or use of this software
     22  *    must display the following acknowledgement:
     23  *	This product includes software developed by the NetBSD
     24  *	Foundation, Inc. and its contributors.
     25  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26  *    contributors may be used to endorse or promote products derived
     27  *    from this software without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39  * POSSIBILITY OF SUCH DAMAGE.
     40  */
     41 
     42 /*-
     43  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     44  *	The Regents of the University of California.  All rights reserved.
     45  * (c) UNIX System Laboratories, Inc.
     46  * All or some portions of this file are derived from material licensed
     47  * to the University of California by American Telephone and Telegraph
     48  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49  * the permission of UNIX System Laboratories, Inc.
     50  *
     51  * Redistribution and use in source and binary forms, with or without
     52  * modification, are permitted provided that the following conditions
     53  * are met:
     54  * 1. Redistributions of source code must retain the above copyright
     55  *    notice, this list of conditions and the following disclaimer.
     56  * 2. Redistributions in binary form must reproduce the above copyright
     57  *    notice, this list of conditions and the following disclaimer in the
     58  *    documentation and/or other materials provided with the distribution.
     59  * 3. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     76  */
     77 
     78 #include <sys/cdefs.h>
     79 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.153 2005/11/01 09:07:53 yamt Exp $");
     80 
     81 #include "opt_ddb.h"
     82 #include "opt_ktrace.h"
     83 #include "opt_kstack.h"
     84 #include "opt_lockdebug.h"
     85 #include "opt_multiprocessor.h"
     86 #include "opt_perfctrs.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/proc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/buf.h>
     94 #if defined(PERFCTRS)
     95 #include <sys/pmc.h>
     96 #endif
     97 #include <sys/signalvar.h>
     98 #include <sys/resourcevar.h>
     99 #include <sys/sched.h>
    100 #include <sys/sa.h>
    101 #include <sys/savar.h>
    102 
    103 #include <uvm/uvm_extern.h>
    104 
    105 #ifdef KTRACE
    106 #include <sys/ktrace.h>
    107 #endif
    108 
    109 #include <machine/cpu.h>
    110 
    111 int	lbolt;			/* once a second sleep address */
    112 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    113 
    114 /*
    115  * Sleep queues.
    116  *
    117  * We're only looking at 7 bits of the address; everything is
    118  * aligned to 4, lots of things are aligned to greater powers
    119  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    120  */
    121 #define	SLPQUE_TABLESIZE	128
    122 #define	SLPQUE_LOOKUP(x)	(((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
    123 
    124 #define	SLPQUE(ident)	(&sched_slpque[SLPQUE_LOOKUP(ident)])
    125 
    126 /*
    127  * The global scheduler state.
    128  */
    129 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    130 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    131 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    132 
    133 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    134 
    135 void schedcpu(void *);
    136 void updatepri(struct lwp *);
    137 void endtsleep(void *);
    138 
    139 __inline void sa_awaken(struct lwp *);
    140 __inline void awaken(struct lwp *);
    141 
    142 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    143 
    144 
    145 
    146 /*
    147  * Force switch among equal priority processes every 100ms.
    148  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    149  */
    150 /* ARGSUSED */
    151 void
    152 roundrobin(struct cpu_info *ci)
    153 {
    154 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    155 
    156 	spc->spc_rrticks = rrticks;
    157 
    158 	if (curlwp != NULL) {
    159 		if (spc->spc_flags & SPCF_SEENRR) {
    160 			/*
    161 			 * The process has already been through a roundrobin
    162 			 * without switching and may be hogging the CPU.
    163 			 * Indicate that the process should yield.
    164 			 */
    165 			spc->spc_flags |= SPCF_SHOULDYIELD;
    166 		} else
    167 			spc->spc_flags |= SPCF_SEENRR;
    168 	}
    169 	need_resched(curcpu());
    170 }
    171 
    172 #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    173 #define	NICE_WEIGHT 2			/* priorities per nice level */
    174 
    175 #define	ESTCPU_SHIFT	11
    176 #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    177 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    178 
    179 /*
    180  * Constants for digital decay and forget:
    181  *	90% of (p_estcpu) usage in 5 * loadav time
    182  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    183  *          Note that, as ps(1) mentions, this can let percentages
    184  *          total over 100% (I've seen 137.9% for 3 processes).
    185  *
    186  * Note that hardclock updates p_estcpu and p_cpticks independently.
    187  *
    188  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    189  * That is, the system wants to compute a value of decay such
    190  * that the following for loop:
    191  * 	for (i = 0; i < (5 * loadavg); i++)
    192  * 		p_estcpu *= decay;
    193  * will compute
    194  * 	p_estcpu *= 0.1;
    195  * for all values of loadavg:
    196  *
    197  * Mathematically this loop can be expressed by saying:
    198  * 	decay ** (5 * loadavg) ~= .1
    199  *
    200  * The system computes decay as:
    201  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    202  *
    203  * We wish to prove that the system's computation of decay
    204  * will always fulfill the equation:
    205  * 	decay ** (5 * loadavg) ~= .1
    206  *
    207  * If we compute b as:
    208  * 	b = 2 * loadavg
    209  * then
    210  * 	decay = b / (b + 1)
    211  *
    212  * We now need to prove two things:
    213  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    214  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    215  *
    216  * Facts:
    217  *         For x close to zero, exp(x) =~ 1 + x, since
    218  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    219  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    220  *         For x close to zero, ln(1+x) =~ x, since
    221  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    222  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    223  *         ln(.1) =~ -2.30
    224  *
    225  * Proof of (1):
    226  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    227  *	solving for factor,
    228  *      ln(factor) =~ (-2.30/5*loadav), or
    229  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    230  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    231  *
    232  * Proof of (2):
    233  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    234  *	solving for power,
    235  *      power*ln(b/(b+1)) =~ -2.30, or
    236  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    237  *
    238  * Actual power values for the implemented algorithm are as follows:
    239  *      loadav: 1       2       3       4
    240  *      power:  5.68    10.32   14.94   19.55
    241  */
    242 
    243 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    244 #define	loadfactor(loadav)	(2 * (loadav))
    245 
    246 static fixpt_t
    247 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    248 {
    249 
    250 	if (estcpu == 0) {
    251 		return 0;
    252 	}
    253 
    254 #if !defined(_LP64)
    255 	/* avoid 64bit arithmetics. */
    256 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    257 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    258 		return estcpu * loadfac / (loadfac + FSCALE);
    259 	}
    260 #endif /* !defined(_LP64) */
    261 
    262 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    263 }
    264 
    265 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    266 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    267 
    268 /*
    269  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    270  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    271  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    272  *
    273  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    274  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    275  *
    276  * If you dont want to bother with the faster/more-accurate formula, you
    277  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    278  * (more general) method of calculating the %age of CPU used by a process.
    279  */
    280 #define	CCPU_SHIFT	11
    281 
    282 /*
    283  * Recompute process priorities, every hz ticks.
    284  */
    285 /* ARGSUSED */
    286 void
    287 schedcpu(void *arg)
    288 {
    289 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    290 	struct lwp *l;
    291 	struct proc *p;
    292 	int s, minslp;
    293 	int clkhz;
    294 
    295 	proclist_lock_read();
    296 	PROCLIST_FOREACH(p, &allproc) {
    297 		/*
    298 		 * Increment time in/out of memory and sleep time
    299 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    300 		 * (remember them?) overflow takes 45 days.
    301 		 */
    302 		minslp = 2;
    303 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    304 			l->l_swtime++;
    305 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    306 			    l->l_stat == LSSUSPENDED) {
    307 				l->l_slptime++;
    308 				minslp = min(minslp, l->l_slptime);
    309 			} else
    310 				minslp = 0;
    311 		}
    312 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    313 		/*
    314 		 * If the process has slept the entire second,
    315 		 * stop recalculating its priority until it wakes up.
    316 		 */
    317 		if (minslp > 1)
    318 			continue;
    319 		s = splstatclock();	/* prevent state changes */
    320 		/*
    321 		 * p_pctcpu is only for ps.
    322 		 */
    323 		clkhz = stathz != 0 ? stathz : hz;
    324 #if	(FSHIFT >= CCPU_SHIFT)
    325 		p->p_pctcpu += (clkhz == 100)?
    326 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    327                 	100 * (((fixpt_t) p->p_cpticks)
    328 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    329 #else
    330 		p->p_pctcpu += ((FSCALE - ccpu) *
    331 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    332 #endif
    333 		p->p_cpticks = 0;
    334 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    335 		splx(s);	/* Done with the process CPU ticks update */
    336 		SCHED_LOCK(s);
    337 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    338 			if (l->l_slptime > 1)
    339 				continue;
    340 			resetpriority(l);
    341 			if (l->l_priority >= PUSER) {
    342 				if (l->l_stat == LSRUN &&
    343 				    (l->l_flag & L_INMEM) &&
    344 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    345 					remrunqueue(l);
    346 					l->l_priority = l->l_usrpri;
    347 					setrunqueue(l);
    348 				} else
    349 					l->l_priority = l->l_usrpri;
    350 			}
    351 		}
    352 		SCHED_UNLOCK(s);
    353 	}
    354 	proclist_unlock_read();
    355 	uvm_meter();
    356 	wakeup((caddr_t)&lbolt);
    357 	callout_schedule(&schedcpu_ch, hz);
    358 }
    359 
    360 /*
    361  * Recalculate the priority of a process after it has slept for a while.
    362  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
    363  * least six times the loadfactor will decay p_estcpu to less than
    364  * (1 << ESTCPU_SHIFT).
    365  */
    366 void
    367 updatepri(struct lwp *l)
    368 {
    369 	struct proc *p = l->l_proc;
    370 	fixpt_t newcpu;
    371 	fixpt_t loadfac;
    372 
    373 	SCHED_ASSERT_LOCKED();
    374 
    375 	newcpu = p->p_estcpu;
    376 	loadfac = loadfactor(averunnable.ldavg[0]);
    377 
    378 	if (l->l_slptime > 5 * loadfac)
    379 		p->p_estcpu = 0; /* XXX NJWLWP */
    380 	else {
    381 		l->l_slptime--;	/* the first time was done in schedcpu */
    382 		while (newcpu && --l->l_slptime)
    383 			newcpu = decay_cpu(loadfac, newcpu);
    384 		p->p_estcpu = newcpu;
    385 	}
    386 	resetpriority(l);
    387 }
    388 
    389 /*
    390  * During autoconfiguration or after a panic, a sleep will simply
    391  * lower the priority briefly to allow interrupts, then return.
    392  * The priority to be used (safepri) is machine-dependent, thus this
    393  * value is initialized and maintained in the machine-dependent layers.
    394  * This priority will typically be 0, or the lowest priority
    395  * that is safe for use on the interrupt stack; it can be made
    396  * higher to block network software interrupts after panics.
    397  */
    398 int safepri;
    399 
    400 /*
    401  * General sleep call.  Suspends the current process until a wakeup is
    402  * performed on the specified identifier.  The process will then be made
    403  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    404  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    405  * before and after sleeping, else signals are not checked.  Returns 0 if
    406  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    407  * signal needs to be delivered, ERESTART is returned if the current system
    408  * call should be restarted if possible, and EINTR is returned if the system
    409  * call should be interrupted by the signal (return EINTR).
    410  *
    411  * The interlock is held until the scheduler_slock is acquired.  The
    412  * interlock will be locked before returning back to the caller
    413  * unless the PNORELOCK flag is specified, in which case the
    414  * interlock will always be unlocked upon return.
    415  */
    416 int
    417 ltsleep(__volatile const void *ident, int priority, const char *wmesg, int timo,
    418     __volatile struct simplelock *interlock)
    419 {
    420 	struct lwp *l = curlwp;
    421 	struct proc *p = l ? l->l_proc : NULL;
    422 	struct slpque *qp;
    423 	struct sadata_upcall *sau;
    424 	int sig, s;
    425 	int catch = priority & PCATCH;
    426 	int relock = (priority & PNORELOCK) == 0;
    427 	int exiterr = (priority & PNOEXITERR) == 0;
    428 
    429 	/*
    430 	 * XXXSMP
    431 	 * This is probably bogus.  Figure out what the right
    432 	 * thing to do here really is.
    433 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    434 	 * in the shutdown case is disgusting but partly necessary given
    435 	 * how shutdown (barely) works.
    436 	 */
    437 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    438 		/*
    439 		 * After a panic, or during autoconfiguration,
    440 		 * just give interrupts a chance, then just return;
    441 		 * don't run any other procs or panic below,
    442 		 * in case this is the idle process and already asleep.
    443 		 */
    444 		s = splhigh();
    445 		splx(safepri);
    446 		splx(s);
    447 		if (interlock != NULL && relock == 0)
    448 			simple_unlock(interlock);
    449 		return (0);
    450 	}
    451 
    452 	KASSERT(p != NULL);
    453 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    454 
    455 #ifdef KTRACE
    456 	if (KTRPOINT(p, KTR_CSW))
    457 		ktrcsw(p, 1, 0);
    458 #endif
    459 
    460 	/*
    461 	 * XXX We need to allocate the sadata_upcall structure here,
    462 	 * XXX since we can't sleep while waiting for memory inside
    463 	 * XXX sa_upcall().  It would be nice if we could safely
    464 	 * XXX allocate the sadata_upcall structure on the stack, here.
    465 	 */
    466 	if (l->l_flag & L_SA) {
    467 		sau = sadata_upcall_alloc(0);
    468 	} else {
    469 		sau = NULL;
    470 	}
    471 
    472 	SCHED_LOCK(s);
    473 
    474 #ifdef DIAGNOSTIC
    475 	if (ident == NULL)
    476 		panic("ltsleep: ident == NULL");
    477 	if (l->l_stat != LSONPROC)
    478 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    479 	if (l->l_back != NULL)
    480 		panic("ltsleep: p_back != NULL");
    481 #endif
    482 
    483 	l->l_wchan = ident;
    484 	l->l_wmesg = wmesg;
    485 	l->l_slptime = 0;
    486 	l->l_priority = priority & PRIMASK;
    487 
    488 	qp = SLPQUE(ident);
    489 	if (qp->sq_head == 0)
    490 		qp->sq_head = l;
    491 	else {
    492 		*qp->sq_tailp = l;
    493 	}
    494 	*(qp->sq_tailp = &l->l_forw) = 0;
    495 
    496 	if (timo)
    497 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    498 
    499 	/*
    500 	 * We can now release the interlock; the scheduler_slock
    501 	 * is held, so a thread can't get in to do wakeup() before
    502 	 * we do the switch.
    503 	 *
    504 	 * XXX We leave the code block here, after inserting ourselves
    505 	 * on the sleep queue, because we might want a more clever
    506 	 * data structure for the sleep queues at some point.
    507 	 */
    508 	if (interlock != NULL)
    509 		simple_unlock(interlock);
    510 
    511 	/*
    512 	 * We put ourselves on the sleep queue and start our timeout
    513 	 * before calling CURSIG, as we could stop there, and a wakeup
    514 	 * or a SIGCONT (or both) could occur while we were stopped.
    515 	 * A SIGCONT would cause us to be marked as SSLEEP
    516 	 * without resuming us, thus we must be ready for sleep
    517 	 * when CURSIG is called.  If the wakeup happens while we're
    518 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    519 	 */
    520 	if (catch) {
    521 		l->l_flag |= L_SINTR;
    522 		if (((sig = CURSIG(l)) != 0) ||
    523 		    ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
    524 			if (l->l_wchan != NULL)
    525 				unsleep(l);
    526 			l->l_stat = LSONPROC;
    527 			SCHED_UNLOCK(s);
    528 			goto resume;
    529 		}
    530 		if (l->l_wchan == NULL) {
    531 			catch = 0;
    532 			SCHED_UNLOCK(s);
    533 			goto resume;
    534 		}
    535 	} else
    536 		sig = 0;
    537 	l->l_stat = LSSLEEP;
    538 	p->p_nrlwps--;
    539 	p->p_stats->p_ru.ru_nvcsw++;
    540 	SCHED_ASSERT_LOCKED();
    541 	if (l->l_flag & L_SA)
    542 		sa_switch(l, sau, SA_UPCALL_BLOCKED);
    543 	else
    544 		mi_switch(l, NULL);
    545 
    546 #if	defined(DDB) && !defined(GPROF)
    547 	/* handy breakpoint location after process "wakes" */
    548 	__asm(".globl bpendtsleep\nbpendtsleep:");
    549 #endif
    550 	/*
    551 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    552 	 * either setrunnable() or awaken().
    553 	 */
    554 
    555 	SCHED_ASSERT_UNLOCKED();
    556 	splx(s);
    557 
    558  resume:
    559 	KDASSERT(l->l_cpu != NULL);
    560 	KDASSERT(l->l_cpu == curcpu());
    561 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    562 
    563 	l->l_flag &= ~L_SINTR;
    564 	if (l->l_flag & L_TIMEOUT) {
    565 		l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
    566 		if (sig == 0) {
    567 #ifdef KTRACE
    568 			if (KTRPOINT(p, KTR_CSW))
    569 				ktrcsw(p, 0, 0);
    570 #endif
    571 			if (relock && interlock != NULL)
    572 				simple_lock(interlock);
    573 			return (EWOULDBLOCK);
    574 		}
    575 	} else if (timo)
    576 		callout_stop(&l->l_tsleep_ch);
    577 
    578 	if (catch) {
    579 		const int cancelled = l->l_flag & L_CANCELLED;
    580 		l->l_flag &= ~L_CANCELLED;
    581 		if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
    582 #ifdef KTRACE
    583 			if (KTRPOINT(p, KTR_CSW))
    584 				ktrcsw(p, 0, 0);
    585 #endif
    586 			if (relock && interlock != NULL)
    587 				simple_lock(interlock);
    588 			/*
    589 			 * If this sleep was canceled, don't let the syscall
    590 			 * restart.
    591 			 */
    592 			if (cancelled ||
    593 			    (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    594 				return (EINTR);
    595 			return (ERESTART);
    596 		}
    597 	}
    598 
    599 #ifdef KTRACE
    600 	if (KTRPOINT(p, KTR_CSW))
    601 		ktrcsw(p, 0, 0);
    602 #endif
    603 	if (relock && interlock != NULL)
    604 		simple_lock(interlock);
    605 
    606 	/* XXXNJW this is very much a kluge.
    607 	 * revisit. a better way of preventing looping/hanging syscalls like
    608 	 * wait4() and _lwp_wait() from wedging an exiting process
    609 	 * would be preferred.
    610 	 */
    611 	if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
    612 		return (EINTR);
    613 	return (0);
    614 }
    615 
    616 /*
    617  * Implement timeout for tsleep.
    618  * If process hasn't been awakened (wchan non-zero),
    619  * set timeout flag and undo the sleep.  If proc
    620  * is stopped, just unsleep so it will remain stopped.
    621  */
    622 void
    623 endtsleep(void *arg)
    624 {
    625 	struct lwp *l;
    626 	int s;
    627 
    628 	l = (struct lwp *)arg;
    629 	SCHED_LOCK(s);
    630 	if (l->l_wchan) {
    631 		if (l->l_stat == LSSLEEP)
    632 			setrunnable(l);
    633 		else
    634 			unsleep(l);
    635 		l->l_flag |= L_TIMEOUT;
    636 	}
    637 	SCHED_UNLOCK(s);
    638 }
    639 
    640 /*
    641  * Remove a process from its wait queue
    642  */
    643 void
    644 unsleep(struct lwp *l)
    645 {
    646 	struct slpque *qp;
    647 	struct lwp **hp;
    648 
    649 	SCHED_ASSERT_LOCKED();
    650 
    651 	if (l->l_wchan) {
    652 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    653 		while (*hp != l)
    654 			hp = &(*hp)->l_forw;
    655 		*hp = l->l_forw;
    656 		if (qp->sq_tailp == &l->l_forw)
    657 			qp->sq_tailp = hp;
    658 		l->l_wchan = 0;
    659 	}
    660 }
    661 
    662 __inline void
    663 sa_awaken(struct lwp *l)
    664 {
    665 
    666 	SCHED_ASSERT_LOCKED();
    667 
    668 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    669 		l->l_flag &= ~L_SA_IDLE;
    670 }
    671 
    672 /*
    673  * Optimized-for-wakeup() version of setrunnable().
    674  */
    675 __inline void
    676 awaken(struct lwp *l)
    677 {
    678 
    679 	SCHED_ASSERT_LOCKED();
    680 
    681 	if (l->l_proc->p_sa)
    682 		sa_awaken(l);
    683 
    684 	if (l->l_slptime > 1)
    685 		updatepri(l);
    686 	l->l_slptime = 0;
    687 	l->l_stat = LSRUN;
    688 	l->l_proc->p_nrlwps++;
    689 	/*
    690 	 * Since curpriority is a user priority, p->p_priority
    691 	 * is always better than curpriority on the last CPU on
    692 	 * which it ran.
    693 	 *
    694 	 * XXXSMP See affinity comment in resched_proc().
    695 	 */
    696 	if (l->l_flag & L_INMEM) {
    697 		setrunqueue(l);
    698 		KASSERT(l->l_cpu != NULL);
    699 		need_resched(l->l_cpu);
    700 	} else
    701 		sched_wakeup(&proc0);
    702 }
    703 
    704 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    705 void
    706 sched_unlock_idle(void)
    707 {
    708 
    709 	simple_unlock(&sched_lock);
    710 }
    711 
    712 void
    713 sched_lock_idle(void)
    714 {
    715 
    716 	simple_lock(&sched_lock);
    717 }
    718 #endif /* MULTIPROCESSOR || LOCKDEBUG */
    719 
    720 /*
    721  * Make all processes sleeping on the specified identifier runnable.
    722  */
    723 
    724 void
    725 wakeup(__volatile const void *ident)
    726 {
    727 	int s;
    728 
    729 	SCHED_ASSERT_UNLOCKED();
    730 
    731 	SCHED_LOCK(s);
    732 	sched_wakeup(ident);
    733 	SCHED_UNLOCK(s);
    734 }
    735 
    736 void
    737 sched_wakeup(__volatile const void *ident)
    738 {
    739 	struct slpque *qp;
    740 	struct lwp *l, **q;
    741 
    742 	SCHED_ASSERT_LOCKED();
    743 
    744 	qp = SLPQUE(ident);
    745  restart:
    746 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    747 #ifdef DIAGNOSTIC
    748 		if (l->l_back || (l->l_stat != LSSLEEP &&
    749 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    750 			panic("wakeup");
    751 #endif
    752 		if (l->l_wchan == ident) {
    753 			l->l_wchan = 0;
    754 			*q = l->l_forw;
    755 			if (qp->sq_tailp == &l->l_forw)
    756 				qp->sq_tailp = q;
    757 			if (l->l_stat == LSSLEEP) {
    758 				awaken(l);
    759 				goto restart;
    760 			}
    761 		} else
    762 			q = &l->l_forw;
    763 	}
    764 }
    765 
    766 /*
    767  * Make the highest priority process first in line on the specified
    768  * identifier runnable.
    769  */
    770 void
    771 wakeup_one(__volatile const void *ident)
    772 {
    773 	struct slpque *qp;
    774 	struct lwp *l, **q;
    775 	struct lwp *best_sleepp, **best_sleepq;
    776 	struct lwp *best_stopp, **best_stopq;
    777 	int s;
    778 
    779 	best_sleepp = best_stopp = NULL;
    780 	best_sleepq = best_stopq = NULL;
    781 
    782 	SCHED_LOCK(s);
    783 
    784 	qp = SLPQUE(ident);
    785 
    786 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    787 #ifdef DIAGNOSTIC
    788 		if (l->l_back || (l->l_stat != LSSLEEP &&
    789 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    790 			panic("wakeup_one");
    791 #endif
    792 		if (l->l_wchan == ident) {
    793 			if (l->l_stat == LSSLEEP) {
    794 				if (best_sleepp == NULL ||
    795 				    l->l_priority < best_sleepp->l_priority) {
    796 					best_sleepp = l;
    797 					best_sleepq = q;
    798 				}
    799 			} else {
    800 				if (best_stopp == NULL ||
    801 				    l->l_priority < best_stopp->l_priority) {
    802 				    	best_stopp = l;
    803 					best_stopq = q;
    804 				}
    805 			}
    806 		}
    807 	}
    808 
    809 	/*
    810 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    811 	 * process.
    812 	 */
    813 	if (best_sleepp != NULL) {
    814 		l = best_sleepp;
    815 		q = best_sleepq;
    816 	} else {
    817 		l = best_stopp;
    818 		q = best_stopq;
    819 	}
    820 
    821 	if (l != NULL) {
    822 		l->l_wchan = NULL;
    823 		*q = l->l_forw;
    824 		if (qp->sq_tailp == &l->l_forw)
    825 			qp->sq_tailp = q;
    826 		if (l->l_stat == LSSLEEP)
    827 			awaken(l);
    828 	}
    829 	SCHED_UNLOCK(s);
    830 }
    831 
    832 /*
    833  * General yield call.  Puts the current process back on its run queue and
    834  * performs a voluntary context switch.  Should only be called when the
    835  * current process explicitly requests it (eg sched_yield(2) in compat code).
    836  */
    837 void
    838 yield(void)
    839 {
    840 	struct lwp *l = curlwp;
    841 	int s;
    842 
    843 	SCHED_LOCK(s);
    844 	l->l_priority = l->l_usrpri;
    845 	l->l_stat = LSRUN;
    846 	setrunqueue(l);
    847 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    848 	mi_switch(l, NULL);
    849 	SCHED_ASSERT_UNLOCKED();
    850 	splx(s);
    851 }
    852 
    853 /*
    854  * General preemption call.  Puts the current process back on its run queue
    855  * and performs an involuntary context switch.  If a process is supplied,
    856  * we switch to that process.  Otherwise, we use the normal process selection
    857  * criteria.
    858  */
    859 
    860 void
    861 preempt(int more)
    862 {
    863 	struct lwp *l = curlwp;
    864 	int r, s;
    865 
    866 	SCHED_LOCK(s);
    867 	l->l_priority = l->l_usrpri;
    868 	l->l_stat = LSRUN;
    869 	setrunqueue(l);
    870 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
    871 	r = mi_switch(l, NULL);
    872 	SCHED_ASSERT_UNLOCKED();
    873 	splx(s);
    874 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    875 		sa_preempt(l);
    876 }
    877 
    878 /*
    879  * The machine independent parts of context switch.
    880  * Must be called at splsched() (no higher!) and with
    881  * the sched_lock held.
    882  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    883  * the next lwp.
    884  *
    885  * Returns 1 if another process was actually run.
    886  */
    887 int
    888 mi_switch(struct lwp *l, struct lwp *newl)
    889 {
    890 	struct schedstate_percpu *spc;
    891 	struct rlimit *rlim;
    892 	long s, u;
    893 	struct timeval tv;
    894 	int hold_count;
    895 	struct proc *p = l->l_proc;
    896 	int retval;
    897 
    898 	SCHED_ASSERT_LOCKED();
    899 
    900 	/*
    901 	 * Release the kernel_lock, as we are about to yield the CPU.
    902 	 * The scheduler lock is still held until cpu_switch()
    903 	 * selects a new process and removes it from the run queue.
    904 	 */
    905 	hold_count = KERNEL_LOCK_RELEASE_ALL();
    906 
    907 	KDASSERT(l->l_cpu != NULL);
    908 	KDASSERT(l->l_cpu == curcpu());
    909 
    910 	spc = &l->l_cpu->ci_schedstate;
    911 
    912 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    913 	spinlock_switchcheck();
    914 #endif
    915 #ifdef LOCKDEBUG
    916 	simple_lock_switchcheck();
    917 #endif
    918 
    919 	/*
    920 	 * Compute the amount of time during which the current
    921 	 * process was running.
    922 	 */
    923 	microtime(&tv);
    924 	u = p->p_rtime.tv_usec +
    925 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    926 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    927 	if (u < 0) {
    928 		u += 1000000;
    929 		s--;
    930 	} else if (u >= 1000000) {
    931 		u -= 1000000;
    932 		s++;
    933 	}
    934 	p->p_rtime.tv_usec = u;
    935 	p->p_rtime.tv_sec = s;
    936 
    937 	/*
    938 	 * Check if the process exceeds its CPU resource allocation.
    939 	 * If over max, kill it.  In any case, if it has run for more
    940 	 * than 10 minutes, reduce priority to give others a chance.
    941 	 */
    942 	rlim = &p->p_rlimit[RLIMIT_CPU];
    943 	if (s >= rlim->rlim_cur) {
    944 		/*
    945 		 * XXXSMP: we're inside the scheduler lock perimeter;
    946 		 * use sched_psignal.
    947 		 */
    948 		if (s >= rlim->rlim_max)
    949 			sched_psignal(p, SIGKILL);
    950 		else {
    951 			sched_psignal(p, SIGXCPU);
    952 			if (rlim->rlim_cur < rlim->rlim_max)
    953 				rlim->rlim_cur += 5;
    954 		}
    955 	}
    956 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    957 	    p->p_nice == NZERO) {
    958 		p->p_nice = autoniceval + NZERO;
    959 		resetpriority(l);
    960 	}
    961 
    962 	/*
    963 	 * Process is about to yield the CPU; clear the appropriate
    964 	 * scheduling flags.
    965 	 */
    966 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    967 
    968 #ifdef KSTACK_CHECK_MAGIC
    969 	kstack_check_magic(l);
    970 #endif
    971 
    972 	/*
    973 	 * If we are using h/w performance counters, save context.
    974 	 */
    975 #if PERFCTRS
    976 	if (PMC_ENABLED(p))
    977 		pmc_save_context(p);
    978 #endif
    979 
    980 	/*
    981 	 * Switch to the new current process.  When we
    982 	 * run again, we'll return back here.
    983 	 */
    984 	uvmexp.swtch++;
    985 	if (newl == NULL) {
    986 		retval = cpu_switch(l, NULL);
    987 	} else {
    988 		remrunqueue(newl);
    989 		cpu_switchto(l, newl);
    990 		retval = 0;
    991 	}
    992 
    993 	/*
    994 	 * If we are using h/w performance counters, restore context.
    995 	 */
    996 #if PERFCTRS
    997 	if (PMC_ENABLED(p))
    998 		pmc_restore_context(p);
    999 #endif
   1000 
   1001 	/*
   1002 	 * Make sure that MD code released the scheduler lock before
   1003 	 * resuming us.
   1004 	 */
   1005 	SCHED_ASSERT_UNLOCKED();
   1006 
   1007 	/*
   1008 	 * We're running again; record our new start time.  We might
   1009 	 * be running on a new CPU now, so don't use the cache'd
   1010 	 * schedstate_percpu pointer.
   1011 	 */
   1012 	KDASSERT(l->l_cpu != NULL);
   1013 	KDASSERT(l->l_cpu == curcpu());
   1014 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
   1015 
   1016 	/*
   1017 	 * Reacquire the kernel_lock now.  We do this after we've
   1018 	 * released the scheduler lock to avoid deadlock, and before
   1019 	 * we reacquire the interlock.
   1020 	 */
   1021 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
   1022 
   1023 	return retval;
   1024 }
   1025 
   1026 /*
   1027  * Initialize the (doubly-linked) run queues
   1028  * to be empty.
   1029  */
   1030 void
   1031 rqinit()
   1032 {
   1033 	int i;
   1034 
   1035 	for (i = 0; i < RUNQUE_NQS; i++)
   1036 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
   1037 		    (struct lwp *)&sched_qs[i];
   1038 }
   1039 
   1040 static __inline void
   1041 resched_proc(struct lwp *l, u_char pri)
   1042 {
   1043 	struct cpu_info *ci;
   1044 
   1045 	/*
   1046 	 * XXXSMP
   1047 	 * Since l->l_cpu persists across a context switch,
   1048 	 * this gives us *very weak* processor affinity, in
   1049 	 * that we notify the CPU on which the process last
   1050 	 * ran that it should try to switch.
   1051 	 *
   1052 	 * This does not guarantee that the process will run on
   1053 	 * that processor next, because another processor might
   1054 	 * grab it the next time it performs a context switch.
   1055 	 *
   1056 	 * This also does not handle the case where its last
   1057 	 * CPU is running a higher-priority process, but every
   1058 	 * other CPU is running a lower-priority process.  There
   1059 	 * are ways to handle this situation, but they're not
   1060 	 * currently very pretty, and we also need to weigh the
   1061 	 * cost of moving a process from one CPU to another.
   1062 	 *
   1063 	 * XXXSMP
   1064 	 * There is also the issue of locking the other CPU's
   1065 	 * sched state, which we currently do not do.
   1066 	 */
   1067 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1068 	if (pri < ci->ci_schedstate.spc_curpriority)
   1069 		need_resched(ci);
   1070 }
   1071 
   1072 /*
   1073  * Change process state to be runnable,
   1074  * placing it on the run queue if it is in memory,
   1075  * and awakening the swapper if it isn't in memory.
   1076  */
   1077 void
   1078 setrunnable(struct lwp *l)
   1079 {
   1080 	struct proc *p = l->l_proc;
   1081 
   1082 	SCHED_ASSERT_LOCKED();
   1083 
   1084 	switch (l->l_stat) {
   1085 	case 0:
   1086 	case LSRUN:
   1087 	case LSONPROC:
   1088 	case LSZOMB:
   1089 	case LSDEAD:
   1090 	default:
   1091 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
   1092 	case LSSTOP:
   1093 		/*
   1094 		 * If we're being traced (possibly because someone attached us
   1095 		 * while we were stopped), check for a signal from the debugger.
   1096 		 */
   1097 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1098 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1099 			CHECKSIGS(p);
   1100 		}
   1101 	case LSSLEEP:
   1102 		unsleep(l);		/* e.g. when sending signals */
   1103 		break;
   1104 
   1105 	case LSIDL:
   1106 		break;
   1107 	case LSSUSPENDED:
   1108 		break;
   1109 	}
   1110 
   1111 	if (l->l_proc->p_sa)
   1112 		sa_awaken(l);
   1113 
   1114 	l->l_stat = LSRUN;
   1115 	p->p_nrlwps++;
   1116 
   1117 	if (l->l_flag & L_INMEM)
   1118 		setrunqueue(l);
   1119 
   1120 	if (l->l_slptime > 1)
   1121 		updatepri(l);
   1122 	l->l_slptime = 0;
   1123 	if ((l->l_flag & L_INMEM) == 0)
   1124 		sched_wakeup((caddr_t)&proc0);
   1125 	else
   1126 		resched_proc(l, l->l_priority);
   1127 }
   1128 
   1129 /*
   1130  * Compute the priority of a process when running in user mode.
   1131  * Arrange to reschedule if the resulting priority is better
   1132  * than that of the current process.
   1133  */
   1134 void
   1135 resetpriority(struct lwp *l)
   1136 {
   1137 	unsigned int newpriority;
   1138 	struct proc *p = l->l_proc;
   1139 
   1140 	SCHED_ASSERT_LOCKED();
   1141 
   1142 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
   1143 			NICE_WEIGHT * (p->p_nice - NZERO);
   1144 	newpriority = min(newpriority, MAXPRI);
   1145 	l->l_usrpri = newpriority;
   1146 	resched_proc(l, l->l_usrpri);
   1147 }
   1148 
   1149 /*
   1150  * Recompute priority for all LWPs in a process.
   1151  */
   1152 void
   1153 resetprocpriority(struct proc *p)
   1154 {
   1155 	struct lwp *l;
   1156 
   1157 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1158 	    resetpriority(l);
   1159 }
   1160 
   1161 /*
   1162  * We adjust the priority of the current process.  The priority of a process
   1163  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
   1164  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1165  * will compute a different value each time p_estcpu increases. This can
   1166  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1167  * queue will not change.  The CPU usage estimator ramps up quite quickly
   1168  * when the process is running (linearly), and decays away exponentially, at
   1169  * a rate which is proportionally slower when the system is busy.  The basic
   1170  * principle is that the system will 90% forget that the process used a lot
   1171  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1172  * processes which haven't run much recently, and to round-robin among other
   1173  * processes.
   1174  */
   1175 
   1176 void
   1177 schedclock(struct lwp *l)
   1178 {
   1179 	struct proc *p = l->l_proc;
   1180 	int s;
   1181 
   1182 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
   1183 	SCHED_LOCK(s);
   1184 	resetpriority(l);
   1185 	SCHED_UNLOCK(s);
   1186 
   1187 	if (l->l_priority >= PUSER)
   1188 		l->l_priority = l->l_usrpri;
   1189 }
   1190 
   1191 void
   1192 suspendsched()
   1193 {
   1194 	struct lwp *l;
   1195 	int s;
   1196 
   1197 	/*
   1198 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1199 	 * LSSUSPENDED.
   1200 	 */
   1201 	proclist_lock_read();
   1202 	SCHED_LOCK(s);
   1203 	LIST_FOREACH(l, &alllwp, l_list) {
   1204 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1205 			continue;
   1206 
   1207 		switch (l->l_stat) {
   1208 		case LSRUN:
   1209 			l->l_proc->p_nrlwps--;
   1210 			if ((l->l_flag & L_INMEM) != 0)
   1211 				remrunqueue(l);
   1212 			/* FALLTHROUGH */
   1213 		case LSSLEEP:
   1214 			l->l_stat = LSSUSPENDED;
   1215 			break;
   1216 		case LSONPROC:
   1217 			/*
   1218 			 * XXX SMP: we need to deal with processes on
   1219 			 * others CPU !
   1220 			 */
   1221 			break;
   1222 		default:
   1223 			break;
   1224 		}
   1225 	}
   1226 	SCHED_UNLOCK(s);
   1227 	proclist_unlock_read();
   1228 }
   1229 
   1230 /*
   1231  * scheduler_fork_hook:
   1232  *
   1233  *	Inherit the parent's scheduler history.
   1234  */
   1235 void
   1236 scheduler_fork_hook(struct proc *parent, struct proc *child)
   1237 {
   1238 
   1239 	child->p_estcpu = parent->p_estcpu;
   1240 }
   1241 
   1242 /*
   1243  * scheduler_wait_hook:
   1244  *
   1245  *	Chargeback parents for the sins of their children.
   1246  */
   1247 void
   1248 scheduler_wait_hook(struct proc *parent, struct proc *child)
   1249 {
   1250 
   1251 	/* XXX Only if parent != init?? */
   1252 	parent->p_estcpu = ESTCPULIM(parent->p_estcpu + child->p_estcpu);
   1253 }
   1254 
   1255 /*
   1256  * Low-level routines to access the run queue.  Optimised assembler
   1257  * routines can override these.
   1258  */
   1259 
   1260 #ifndef __HAVE_MD_RUNQUEUE
   1261 
   1262 /*
   1263  * On some architectures, it's faster to use a MSB ordering for the priorites
   1264  * than the traditional LSB ordering.
   1265  */
   1266 #ifdef __HAVE_BIGENDIAN_BITOPS
   1267 #define	RQMASK(n) (0x80000000 >> (n))
   1268 #else
   1269 #define	RQMASK(n) (0x00000001 << (n))
   1270 #endif
   1271 
   1272 /*
   1273  * The primitives that manipulate the run queues.  whichqs tells which
   1274  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1275  * into queues, remrunqueue removes them from queues.  The running process is
   1276  * on no queue, other processes are on a queue related to p->p_priority,
   1277  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1278  * available queues.
   1279  */
   1280 
   1281 #ifdef RQDEBUG
   1282 static void
   1283 checkrunqueue(int whichq, struct lwp *l)
   1284 {
   1285 	const struct prochd * const rq = &sched_qs[whichq];
   1286 	struct lwp *l2;
   1287 	int found = 0;
   1288 	int die = 0;
   1289 	int empty = 1;
   1290 	for (l2 = rq->ph_link; l2 != (void*) rq; l2 = l2->l_forw) {
   1291 		if (l2->l_stat != LSRUN) {
   1292 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1293 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1294 		}
   1295 		if (l2->l_back->l_forw != l2) {
   1296 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1297 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1298 			    l2->l_back->l_forw);
   1299 			die = 1;
   1300 		}
   1301 		if (l2->l_forw->l_back != l2) {
   1302 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1303 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1304 			    l2->l_forw->l_back);
   1305 			die = 1;
   1306 		}
   1307 		if (l2 == l)
   1308 			found = 1;
   1309 		empty = 0;
   1310 	}
   1311 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1312 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1313 		    whichq, rq);
   1314 		die = 1;
   1315 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1316 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1317 		    "run-queue %p\n", whichq, rq);
   1318 		die = 1;
   1319 	}
   1320 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1321 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1322 		    whichq, l);
   1323 		die = 1;
   1324 	}
   1325 	if (l != NULL && empty) {
   1326 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1327 		    "active lwp %p\n", whichq, rq, l);
   1328 		die = 1;
   1329 	}
   1330 	if (l != NULL && !found) {
   1331 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1332 		    whichq, l, rq);
   1333 		die = 1;
   1334 	}
   1335 	if (die)
   1336 		panic("checkrunqueue: inconsistency found");
   1337 }
   1338 #endif /* RQDEBUG */
   1339 
   1340 void
   1341 setrunqueue(struct lwp *l)
   1342 {
   1343 	struct prochd *rq;
   1344 	struct lwp *prev;
   1345 	const int whichq = l->l_priority / PPQ;
   1346 
   1347 #ifdef RQDEBUG
   1348 	checkrunqueue(whichq, NULL);
   1349 #endif
   1350 #ifdef DIAGNOSTIC
   1351 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1352 		panic("setrunqueue");
   1353 #endif
   1354 	sched_whichqs |= RQMASK(whichq);
   1355 	rq = &sched_qs[whichq];
   1356 	prev = rq->ph_rlink;
   1357 	l->l_forw = (struct lwp *)rq;
   1358 	rq->ph_rlink = l;
   1359 	prev->l_forw = l;
   1360 	l->l_back = prev;
   1361 #ifdef RQDEBUG
   1362 	checkrunqueue(whichq, l);
   1363 #endif
   1364 }
   1365 
   1366 void
   1367 remrunqueue(struct lwp *l)
   1368 {
   1369 	struct lwp *prev, *next;
   1370 	const int whichq = l->l_priority / PPQ;
   1371 #ifdef RQDEBUG
   1372 	checkrunqueue(whichq, l);
   1373 #endif
   1374 #ifdef DIAGNOSTIC
   1375 	if (((sched_whichqs & RQMASK(whichq)) == 0))
   1376 		panic("remrunqueue: bit %d not set", whichq);
   1377 #endif
   1378 	prev = l->l_back;
   1379 	l->l_back = NULL;
   1380 	next = l->l_forw;
   1381 	prev->l_forw = next;
   1382 	next->l_back = prev;
   1383 	if (prev == next)
   1384 		sched_whichqs &= ~RQMASK(whichq);
   1385 #ifdef RQDEBUG
   1386 	checkrunqueue(whichq, NULL);
   1387 #endif
   1388 }
   1389 
   1390 #undef RQMASK
   1391 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1392